
162

Scalable Verification of GNN-Based Job Schedulers
HAOZE WU, Stanford University, USA

CLARK BARRETT, Stanford University, USA

MAHMOOD SHARIF, Tel Aviv University, Israel
NINA NARODYTSKA, VMware Research, USA

GAGANDEEP SINGH, University of Illinois at Urbana-Champaign, USA

Recently, Graph Neural Networks (GNNs) have been applied for scheduling jobs over clusters, achieving

better performance than hand-crafted heuristics. Despite their impressive performance, concerns remain

over whether these GNN-based job schedulers meet users’ expectations about other important properties,

such as strategy-proofness, sharing incentive, and stability. In this work, we consider formal verification of

GNN-based job schedulers. We address several domain-specific challenges such as networks that are deeper

and specifications that are richer than those encountered when verifying image and NLP classifiers. We

develop vegas, the first general framework for verifying both single-step and multi-step properties of these

schedulers based on carefully designed algorithms that combine abstractions, refinements, solvers, and proof

transfer. Our experimental results show that vegas achieves significant speed-up when verifying important

properties of a state-of-the-art GNN-based scheduler compared to previous methods.

CCS Concepts: • Software and its engineering → General programming languages; • Social and pro-
fessional topics→ History of programming languages.

Additional Key Words and Phrases: Formal Verification, Neural Networks, Graph Neural Networks, Cluster

Scheduling, Abstract Interpretation, Forward-backward Analysis

ACM Reference Format:
Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh. 2022. Scalable Verification

of GNN-Based Job Schedulers. Proc. ACM Program. Lang. 6, OOPSLA2, Article 162 (October 2022), 30 pages.

https://doi.org/10.1145/3563325

1 INTRODUCTION
Designing efficient job scheduling for multi-user distributed-computing clusters is a challenging

and important task [Barroso et al. 2013]. One of the main evaluation metrics of a schedule is

performance, for example optimizing job completion time on a job profile. However, the user

expectation typically requires that the scheduler satisfy a number of important properties beyond

performance, such as strategy-proofness, sharing incentive, and stability [Ghodsi et al. 2011; Zaharia

et al. 2010]. If a scheduler lacks any of these properties, the result could be catastrophic, potentially

costing millions of dollars at scale. For example, if the scheduler is not strategy-proof (meaning

that users can benefit from misrepresenting their job attributes), the users would be incentivized to

manipulate their jobs to get them scheduled earlier than they are supposed to. The result could be

long waiting times for all users or inefficient overall operation of the cluster [Zaharia et al. 2010].

Authors’ addresses: Haoze Wu, Department of Computer Science, Stanford University, USA; Clark Barrett, Department

of Computer Science, Stanford University, USA; Mahmood Sharif, School of Computer Science, Tel Aviv University,

Israel; Nina Narodytska, VMware Research, USA; Gagandeep Singh, School of Computer Science, University of Illinois at

Urbana-Champaign, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/10-ART162

https://doi.org/10.1145/3563325

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

https://doi.org/10.1145/3563325
https://doi.org/10.1145/3563325

162:2 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

Recently, a class of job schedulers [Mao et al. 2019; Park et al. 2021; Sun et al. 2021] based on

Graph Neural Networks (GNNs) were shown to achieve significant performance improvement

over schedulers using hand-crafted heuristics. However, whether these GNN-based job schedulers

possess essential properties is not known and, more importantly, there are no tools available

to check whether these properties hold. Formally guaranteeing these properties is known to be

difficult and until now has only been achieved for simple hand-crafted policies [Shenker and Stoica

2013]. Introducing techniques for proving or disproving such properties for GNN-based schedulers

would allow system designers to better evaluate the policies implemented by these schedulers,

making adjustments so that the scheduler satisfies users’ expectations without sacrificing the

performance too much. However, GNNs’ decision-making processes are complex and opaque,

making it challenging to formally validate these properties.

In this work, we focus on the formal verification of GNN-based job schedulers, which, to the best

of our knowledge, has not been considered in prior work. In particular, given a specification over a

GNN-based job scheduler, our goal is to either formally prove the specification holds or disprove it

with a counter-example. While there is a growing body of work on formally analyzing and verifying

properties of deep neural networks applied in the vision, robotics, and natural language processing

domains, work on formal analysis of ML models in the systems domain has been limited. This may

be explained in part by the unique challenges posed by the systems domain, some of which we

outline below.

Computation graph with 100+ layers. GNN-based systems, including schedulers, perform a

message-passing algorithm as part of the inference stage. While message passing can be un-

rolled into a sequence of affine and non-linear activation layers, the resulting network is quite

deep, typically containing over 100 layers. Existing state-of-the-art verifiers are designed to handle

shallower networks (typically < 20 layers) and begin to lose substantial precision [Boopathy et al.

2019; Dutta et al. 2018; Ehlers 2017; Gehr et al. 2018; Huang et al. 2017; Lyu et al. 2020; Müller

et al. 2021b; Raghunathan et al. 2018; Salman et al. 2019; Singh et al. 2019a, 2018a, 2019b,c; Tjan-

draatmadja et al. 2020; Tjeng et al. 2019; Tran et al. 2020; Wang et al. 2018a,b, 2021b; Weng et al.

2018; Wong and Kolter 2018; Wu et al. 2020a; Xiang et al. 2018; Zelazny et al. 2022; Zhang et al.

2018] or scalability [Anderson et al. 2019; Bak et al. 2020; Botoeva et al. 2020; Bunel et al. 2020,

2018; Ehlers 2017; Fischetti and Jo 2017; Fromherz et al. 2020; Henriksen and Lomuscio 2021; Katz

et al. 2017, 2019; Khedr et al. 2020; Lu and Kumar 2019; Tjeng et al. 2019; Tran et al. 2020; Vincent

and Schwager 2020; Wu et al. 2022b; Xu et al. 2020] with increasing network depth. To deal with

this challenge, we propose a new, general framework for iterative forward-backward abstraction

refinement that balances the analysis precision and speed for deeper networks.

Rich specifications. Many desirable properties require reasoning about sets of nodes rather than

a single node. For example, one might specify “no task from job A is scheduled before at least one

task from job B is finished” for strategy-proofness. Properties like this contain a large disjunction:

we need to check the requirement for each task in job A. We propose an abstraction technique that

can reason about multiple disjuncts simultaneously to speed up verification of such properties. As

with robustness properties, many desirable properties for schedulers can be defined both globally

and locally. We focus on the latter which is popular in the neural network verification literature

and stronger than empirical evaluation on finite sets of inputs as done in the past for more complex

scheduling policies [Kandasamy et al. 2020]. Our framework can theoretically also handle global

properties. We discuss the practical difficulties of it in Sec. 7 and leave it as future work.

Sequential decision making. Schedulers perform sequential decisions to schedule tasks. Therefore,

to thoroughly analyze the learned schedulers, it is not sufficient to only reason about single-step

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:3

input-output properties considered by state-of-the-art verifiers, as a malicious user can craft a job

that affects the scheduler’s behavior downstream. Therefore, we consider multi-step verification to

reason about bounded traces produced by a sequence of scheduling actions from the scheduler.

This adds an extra layer of complexity on top of the already challenging single-step verification,

as we need to reason about all the different states along different traces, which requires unrolling

the system. To address this, we introduce a proof-transfer encoding of the system which only

registers incremental changes in the network encoding along the traces. This significantly speeds

up complete verification in the multi-step setting.

This work. We present the first approach for formally analyzing state-based and trace-based

properties of GNN-based job schedulers. We build general algorithms for single-step and multi-step

verification. Our main contributions are:

• We present a new, generic iterative refinement framework for forward-backward analysis of

neural networks. Our framework can be instantiated with popular numerical domains such

as Zonotope or DeepPoly to iteratively refine the analysis results.

• We provide a novel, tunable node abstraction for a set of node embeddings produced by the

GNN to speed up the verification of properties with multiple disjuncts.

• We present an algorithm for multi-step verification based on trace enumeration. To improve

speed, we leverage proof transfer to reuse encodings for the parts of the GNN structures that

do not change across time steps.

• We provide an end-to-end implementation of our approach in a framework called vegas
(verification of GNN-based schedulers) and evaluate its effectiveness for checking desirable

state-based and trace-based reachability properties for the state-of-the-art GNN-based sched-

uler Decima [Mao et al. 2019]. Our results show that analysis with vegas is significantly

more precise and scalable than baselines based on existing state-of-the-art verifiers. Using

vegas we prove that Decima satisfies the strategy-proofness property in many cases but not

always. Thus adjustments in the training procedure are potentially needed to make Decima

fully strategy-proof.

2 OVERVIEW
In this section, we first describe our verification workflow and then explain our key technical

contributions using small intuitive examples. Formal details are in later sections.

2.1 Verification Workflow
Our verification workflow shown in Fig. 1 has three components: (a) the system to verify; (b) a

formal language for specifying properties; and (c) the verification engine vegas.

GNN-based scheduling system. GNN arises as a natural solution for learning-based job schedulers

on clusters because many clusters (e.g., Spark) encode jobs as directed acyclic graphs (DAGs), with

each node representing a computational stage consisting of one or more tasks that can be run in

parallel. Each node is associated with a feature vector containing all the state information for that

node, including the average task duration and the number of remaining tasks. There is an edge

from stage v𝑖 to stage v𝑗 if the latter takes the outputs of the former as inputs. That is, v𝑗 cannot

be scheduled before v𝑖 is completed. We call a node with no children a frontier node. The input

to the GNN-based scheduler is a set of jobs to schedule. The output of the GNN is a score p𝑖 for

each frontier node v𝑖 , representing the estimated reward if v𝑖 is scheduled next. The node with the

highest score is selected to be scheduled.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:4 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

Fig. 1. Overview of our verification workflow. It has three main components: (a) the system to verify; (b) a
formal language for specifying properties; and (c) the verification engine vegas.

As is typical in a GNN, the GNN-based job scheduler contains a message passing component

which computes a latent representation (i.e., an embedding) 𝑒𝑖 for each node 𝑣𝑖 . We define message

passing precisely in Sec. 3.1. The score p𝑖 for a frontier node v𝑖 is computed from a prediction

network which takes 𝑒𝑖 as input. The scheduling action (i.e., the node with the highest score) is

reported to the environment, which schedules the reported node and produces a new state (with,

for example, nodes removed).

Specifications. We consider a wide range of specifications of the form 𝜙𝑖𝑛 → 𝜙𝑜𝑢𝑡 . We assume

𝜙𝑖𝑛 is a conjunction of linear constraints over the GNN input features, and consider post conditions

𝜙𝑜𝑢𝑡 in both single-step and multi-step settings. Single step post conditions are logical constraints

over linear inequalities on the outputs of the network. Multi-step post conditions are defined in

terms of unreachability of “bad” traces (i.e., sequences of scheduling decisions).

Verifier. Our verification engine vegas has two main components, a single-step engine and a

multi-step engine. Motivated by the unique challenges in this verification setting, we propose a

forward-backward abstraction refinement framework (Sec. 4) which goes beyond the forward-

propagation-only abstract interpretation, as well as a node-abstraction scheme (Sec. 5) for handling

disjunctions in the verification query. The multi-step engine runs a trace enumeration procedure

that repeatedly invokes the single-step engine. We propose an efficient encoding of the unrolled

system referred to as the proof-transfer encoding (Sec. 6) which significantly reduces the run-time.

2.2 Forward-backward abstraction refinement
As mentioned earlier, one of the distinctive features in GNN verification is the need to reason about

very deep computational graphs resulting from the unrolling of the message-passing procedure.

Forward abstract interpretation techniques are less effective here as the imprecision can grow

exponentially with increasing depth of the computation graph. We propose to refine the forward

abstraction by backward refinement guided by the output constraints. This yields a general forward-

backward abstraction refinement loop (Sec. 4). While our ideas are driven to tackle challenges in

GNN verification, we formalize and implement the proposed technique in a general manner so that

it can be applied for neural networks with different architectures and activations.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:5

Running example. We illustrate the forward-backward abstraction refinement on a pre-trained

fully-connected feed-forward neural network with Leaky ReLU activation functions (𝜎 (𝑥) =

max(𝛼𝑥, 𝑥)) shown in Fig. 2. Here 𝛼 is a hyper-parameter of Leaky ReLU. For numerical simplicity,

we assume 𝛼 = 0.1 in this example. We use Leaky ReLU as an example since it is used in the

state-of-the-art GNN-based job scheduler Decima which we set out to verify. Note that while the

running example uses a feed-forward neural network for simplicity, in practice the architecture

of a GNN is much more complex (e.g., contains residual connections). We discuss how to handle

forward-backward analysis in the GNN setting in Sec. 4.4.

The network here consists of four layers: an input layer, two hidden layers, and an output

layer with two neurons each. The outputs of a (non-input) layer are computed by applying an

affine transformation to the last layer’s outputs followed by the activation function. The activation

function is often not applied at the output layer (also in this example). The values on the edges

represent the learned weights of the affine transformations. The values above or below the neurons

represent the learned biases (translation values) of the affine transformation. For example, the top

neuron in the first hidden layer, 𝑥4, can be computed as 𝜎 (𝑥2), where 𝑥2, the pre-activation value

of the neuron, is equal to 𝑥0 + 𝑥1.

Specification. Let us assume a hypothetical job profile with two disconnected nodes. Suppose

their feature vectors (1-dimensional in this case) range from [0, 1]. Our goal is to prove that the

score for the second node (𝑥11) is always greater than the score for the first node (𝑥10), for any

possible values of the two features in the range [0, 1].

Forward abstract interpretation. A typical abstract interpretation on neural networks [Singh

et al. 2019a, 2018a, 2019b; Zhang et al. 2018] involves propagating the input set (represented in

pre-defined abstraction domain such as Zonotope or DeepPoly) forward layer by layer (via pre-

defined abstract transformers) to compute an over-approximation of the reachable output set. The

specification holds if the over-approximated output set is disjoint from the bad states (¬𝜙𝑜𝑢𝑡). In
this work, we use the DeepPoly domain [Singh et al. 2019b] for forward abstract interpretation,

though the refinement technique applies to any sub-polyhedral abstract domain [Singh et al. 2018b].

We show the intervals derived by the DeepPoly analysis in the bottom (blue) box in Fig. 2. The

steps to deriving these bounds are omitted here. As shown in the figure, the output bounds derived

by DeepPoly are not precise enough to prove the property.

Backward abstraction refinement. Normally, at this point, the abstraction-based analysis is incon-

clusive and we have to resort to search-based methods (e.g. MILP or SMT solvers) which perform

case analysis on the Leaky ReLUs and have an exponential runtime in the worst case. Instead, we

observe that the forward abstract interpretation typically ignores the post condition when comput-

ing the over-approximation at each layer leaving room for refinement guided by the verification

conditions and proving the property without invoking search-based methods. In the case where a

complete search is unavoidable, a refined over-approximation still helps to prune the search space.

We illustrate a forward-backward abstraction refinement on our example. We associate two

abstract elements, a forward one 𝑎𝑖 and a backward one 𝑎′𝑖 from the same abstract domain (e.g.,

DeepPoly) with each neuron 𝑥𝑖 . The analysis alternates between forward and backward passes,

which respectively update the forward abstract elements and the backward abstract elements. We

construct new forward transformers that consider both the forward and the backward abstract

elements (Sec. 4), yielding more precise forward analysis. The backward elements are initialized to

⊤ in the beginning, and therefore the first forward pass results in the same results as before. This

is followed by a backward pass.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:6 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

Fig. 2. A toy example for forward-backward abstraction refinement.

The backward analysis starts with the “bad” output set ¬𝜙𝑜𝑢𝑡 := 𝑥10 ≥ 𝑥11, which we use to refine

𝑎′
10
and 𝑎′

11
, which are currently set to⊤. We first compute the bounds of 𝑥10 and 𝑥11, conditioned on

the existing bounds and ¬𝜙𝑜𝑢𝑡 . This yields a tighter lower bound and upper bound for 𝑥10 and 𝑥11
respectively. These new bounds are then used to refine the underlying backward abstract element

a’11: a’11 = 𝑇cond (a11, 𝑥11 ∈ [−2, 1]), where a11 is the forward abstract element updated from the

forward pass and 𝑇cond is the conditional transformer from the domain. a’10 is updated similarly.

We now move to the last hidden layer. Again, we first compute sound intervals for neurons 𝑥8
and 𝑥9 with Linear Programming (LP). For instance, to compute an upper bound for 𝑥9, we can cast

the following optimization problem:

𝑢9 = max

𝑥8:11
𝑥9, s.t. 𝑥10 = −𝑥8 − 𝑥9, 𝑥11 = 𝑥8 + 2𝑥9 + 2

𝑥10 ∈ [−2, 1], 𝑥11 ∈ [−2, 1], 𝑥8 ∈ [−0.045, 2]

We obtain a tightened bound 𝑥9 ≤ −0.275. Importantly, now the underlying backward abstract

element 𝑎′
9
is set to 𝑇cond (𝑎9, [−0.3,−0.275]) where the input-output relationship for the Leaky

ReLU is linear (and can be captured exactly by domains like DeepPoly). The exactness significantly

improves the analysis precision in the next forward pass.

Note that in the most general form (and in our implementation), two LPs per neuron are called to

tighten the bounds. While this incurs overhead, the process is highly parallelizable as neurons from

the same layer can be processed independently. More importantly, we observe that this tractable

overhead (we prove complexity in Sec. 4) usually pays off in practice on challenging benchmarks

which would otherwise require extensive search by a complete procedure.

After refining 𝑎′
8
and 𝑎′

9
, we process 𝑥6 and 𝑥7, where 𝑥8 = 𝜎 (𝑥6) and 𝑥9 = 𝜎 (𝑥7). Due to the

non-linearity of the activation function, a precise encoding of Leaky ReLU results in a Mixed Integer

Linear Program, which is in general challenging to solve. Therefore, we encode a sound linear

relaxation [Ehlers 2017] of the activation function.

Next, using the same procedure, we derive that 𝑥4 ∈ [−7.5,−1.5]. Note that this is disjoint from
the interval derived during forward analysis. Intuitively, this means that for 𝜙𝑖𝑛 ∧ ¬𝜙𝑜𝑢𝑡 to hold, 𝑥4
must be less than or equal to -1.5, while for 𝜙𝑖𝑛 to hold, 𝑥4 must be between -0.1 to 1. This implies

that ¬𝜙𝑜𝑢𝑡 cannot hold for any input satisfying 𝜙𝑖𝑛 , and the property is proved without the use of

search-based methods.

In the case where the backward analysis does not prove the property by itself, we could perform

forward analysis again by taking the refined backward abstract elements into consideration. This

could result in a tighter over-approximation of the output set compared to the first forward analysis.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:7

Performing backward analysis again from this tighter over-approximation could in turn result

in further refinement. Thus, we could alternate between forward and backward analysis to keep

refining the abstractions until either the property is proved or some convergence condition is met.

We define this forward-backward analysis formally in Section 4.

2.3 Node abstraction with iterative refinement
If the post-condition 𝜙𝑜𝑢𝑡 contains multiple conjuncts, the bad output set ¬𝜙𝑜𝑢𝑡 becomes disjunctive.

This is a common occurrence in practice as the post-condition often specifies that a set of output

neurons all satisfy a certain property 𝑃 . For instance, the simple post-condition “node v1 is always

scheduled” can be formally specified as 𝜙𝑜𝑢𝑡 :=
∧

p
1
> p𝑖 , where p𝑖 extends over the score of all

frontier nodes other than p
1
. In this case, the bad output set ¬𝜙𝑜𝑢𝑡 becomes

∨
p
1
≤ p𝑖 . A naïve

approach would analyze each disjunct individually, which becomes expensive, especially when the

number of disjuncts is large. However, we observe that the special structure of a GNN used in node

prediction tasks allows us to reason about multiple nodes simultaneously.

We illustrate this idea on the weaker post-condition “node v1 has higher score than frontier

nodes in job 2” (in Fig. 1 (a)), that is,

∧
𝑖∈{4,5,6} p1 > p𝑖 . As shown in Fig. 3, a vanilla approach would

individually check for the unsatisfiability of the three formulas p
1
≤ p

4
, p

1
≤ p

5
, and p

1
≤ p

6
.

However, we observe that in GNNs for node prediction tasks [Wu et al. 2020b], the prediction for

a node v𝑖 is often computed by applying the same prediction network to the embedding e𝑖 . It is

therefore natural to consider an abstraction 𝑒 ′ at the embedding level which contains all values

that 𝑒4, 𝑒5, and 𝑒6 can take. As illustrated in Fig. 3, suppose 𝑒4 ∈ [−2, 2], 𝑒5 ∈ [−1, 3], and 𝑒6 ∈ [3, 5].
An abstract embedding 𝑒 ′ can then take values in [−2, 5]. If p

1
> p

′
holds, or equivalently, p

1
≤ p

′

is unsatisfiable, then the original post-condition must hold. We state and prove this formally in

Sec. 5. On the other hand, if we obtain a spurious counter-example, the analysis is inconclusive

Fig. 3. A toy example for node abstraction.

and we need to refine the abstraction. One way

to refine the abstraction is by reducing the num-

ber of node embeddings considered in the ab-

stract embedding. In particular, we heuristically

remove the embedding that reduces the volume

of the abstraction the most, in this case 𝑒6, and

try to reason about p
1
> p

6
and p

1
> p

′
individ-

ually. Now 𝑒 ′ is more constrained (e
′ ∈ [−2, 3]),

and the property is more likely to hold on e
′
.

We can perform this refinement iteratively until

either the property is proved or a real counter-

example is found. In the worst case, no node

abstraction can be performed and we would

have to examine each node individually. In prac-

tice, it often pays off to speculatively reason

about multiple neurons simultaneously, espe-

cially when the number of disjuncts is large.

2.4 Beyond single-step verification
Building on top of our single-step engine combining forward-backward refinement and node abstrac-

tion, we present a procedure for verifying multi-step properties in the form of trace (un)reachability

(𝜙𝑖𝑛 → unreach(𝑇)). As we shall see, this allows us to define meaningful specifications over the

job-scheduling system. We illustrate the procedure on the example in Fig. 4. The postcondition we

verify states that “v5 cannot be scheduled before v3”. Our procedure proves this by computing the set

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:8 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

of feasible traces from the initial state by repeatedly invoking the single-step engine. For example,

at step 0, we ask the single step engine to check 𝜙𝑖𝑛 → (v1 ≥ v4) and 𝜙𝑖𝑛 → (v1 ≤ v4). If both can

be violated (i.e., v1 and v4 can be scheduled), we proceed by computing the reachable traces from v1

and v4, respectively, and so forth. During this process, whenever we construct a reachable (partial)

Fig. 4. A toy example for multi-step verification.

trace 𝑡 , we check whether it matches the

prefix of any traces in𝑇 . If it does not (e.g.,

v1 → v4 → v3), we do not need to con-

tinue growing that trace as the property

must hold for any trace with this prefix.

If the partial trace matches exactly with a

trace in𝑇 (e.g., v4 → v1 → v2 → v5), then

the post-condition is violated. Finally, if it

is inconclusive, then we need to continue

growing the trace.

Fig. 5. Example of a naïve encoding of two steps.

When computing the possible next ac-

tions from a partial trace, a complete en-

coding of the system requires unrolling,

i.e., an encoding of the system over multi-

ple steps. For example, as shown in Fig. 5,

suppose in the first step node v4 is sched-

uled; then, in the second step, the graph is

updated with one removed node. A naïve

encoding would re-encode the entire neu-

ral network for step 2 and invoke the

single-step engine on this widened neu-

ral network to check whether p
1
@2 ≥ p

5
@2 and p

5
@2 ≥ p

1
@2 are respectively feasible under

the additional constraint that p
4
@1 ≥ p

1
@1. A naïve encoding that introduces a fresh encoding

of the network for each time step quickly becomes intractable. On the other hand, an incomplete

encoding that ignores the previous time steps and only encodes the current step can find spurious

counter-examples.

Fig. 6. Example of the proof-transfer encoding of the same
two steps as in Fig. 5.

In order to obtain an efficient encod-

ing that still tracks all constraints across

time steps, we propose building a meta-

network that captures the incremental

changes in the network structure across

time steps and reusing the parts that do not

change. We refer to this graph as a proof-

transfer network. Fig. 6 shows the construc-

tion of the proof-transfer network for the

same two steps as in Fig. 5. In particular,

the removal of v4 only affects nodes in the

bottom job (i.e., v5) and the message pass-

ing steps for the other three nodes remain unchanged. This means that at each time step, we can

reuse the GNN encoding for all but one job DAG (a disconnected component of the input graph),

which results in significantly slower growth in the size of the encoding as the time step increases.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:9

3 PRELIMINARIES
3.1 Graphs and Graph Neural Networks

Definition 3.1 (Graph). We define a graph𝐺 with 𝑁 nodes as a tuple (𝐴,𝑋) where 𝐴 is an 𝑁 × 𝑁
adjacency matrix and 𝑋 is the set of node attributes. There is an edge from node v𝑖 to v𝑗 if 𝐴𝑖 𝑗 = 1.

The neighborhood of a node v𝑖 is defined as 𝑁 (v𝑖) = {v𝑗 |𝐴𝑖 𝑗 = 1}. The node attributes X ∈ R𝑁×𝑑

make up a node feature matrix with 𝑥𝑖 ∈ R𝑑 representing the feature vector of a node 𝑣𝑖 . The input

to a GNN is a graph𝐺 = (𝐴,𝑋). In the case of job scheduling, an input graph can be disjoint, which

is useful for modeling collections of jobs.

Graph Convolutional Networks. Graph Neural Networks (GNNs) [Duvenaud et al. 2015; Kipf and

Welling 2017; Niepert et al. 2016] are a class of deep neural networks for supervised learning on

graphs. They have been successfully employed for node, edge, and graph classification in a variety

of real-world applications including recommender systems [Ying et al. 2018], protein prediction

[Fout et al. 2017], and malware detection [Wang et al. 2019]. We focus on an important and widely

used subset of GNNs called spatial graph convolutional networks (GCN) [Wu et al. 2020b]. Given

an input graph, a GCN generates an embedding e𝑖 ∈ R𝑑 for each node v𝑖 by aggregating its own

features x𝑖 and all nodes reachable from v𝑖 through a sequence of message passing steps. In each

message passing step, a node vwhose neighbors have aggregated messages from all of their children

computes its own embedding as:

e𝑖 = 𝑔

[∑
𝑣𝑗 ∈𝑁 (𝑣𝑖)

𝑓 (e𝑗)
]
+ x𝑖

where 𝑓 (·) and 𝑔(·) are feed-forward neural networks.
1
In practice, message passing is performed

for a fixed number of rounds: in the first round, message-passing steps are performed on a pre-

selected initial set of nodes, and in a subsequent round, message-passing steps are performed on

neighbors of the nodes that participated in the previous round.

A distinct characteristic of GCNs compared to previous GNN architectures is that there are no

cyclic mutual dependencies in message passing, i.e., a GCN can be unrolled. However, unlike the

neural networks targeted by existing verifiers, the networks obtained from unrolling are much

deeper (100+ layers in practice). Furthermore, the unrolled networks are not simple feed-forward

networks but also contain complex residual connections. For simplicity, we assume that the unrolling

results in a feed-forward network for the rest of this paper unless specified otherwise. Our approach

for handling residual connections is described in Sec. 4.4.

Node regression/classification with GCN. The embeddings e𝑖 after message passing can subse-

quently be used for different graph analytics tasks. We focus on node prediction tasks where the

goal is to predict on nodes indexed by a set Θ. Note that Θ might not include all the nodes in the

input graph, as for a scheduler some of the nodes may not be eligible for scheduling at a given time

step due to sequential dependencies. The prediction p𝑖 for a node v𝑖 is computed by feeding the

node embedding e𝑖 into a feed-forward network h. We allow the flexibility to augment the input to

h with an additional non-linear embedding z, computed from the node features and embeddings

via a summary network s: z = s({(x𝑖 , e𝑖), v𝑖 ∈ 𝐺}). In short, p𝑖 := h(e𝑖 , s({(x𝑖 , e𝑖), v𝑖 ∈ 𝐺})).

3.2 Verification of GNNs
We consider verifying a specification 𝜙 over a GNN 𝐹 , where 𝜙 has the form 𝜙𝑖𝑛 → 𝜙𝑜𝑢𝑡 . The

pre-condition 𝜙𝑖𝑛 defines a set of inputs to 𝐹 , and the specification states that for each input

1
This definition of message passing covers common forms of GCNs as seen in [Defferrard et al. 2016; Khalil et al. 2017; Kipf

and Welling 2017].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:10 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

point satisfying 𝜙𝑖𝑛 , the post-condition 𝜙𝑜𝑢𝑡 must hold. In this work, we limit the form of 𝜙𝑖𝑛 to

describing a set of inputs where the graph structure is constant and the node features are defined by

a conjunction of linear constraints. Formally, given an input graph𝐺 = (𝐴,𝑋) and a GNN 𝐹 (m, h, s)
with message-passing componentm parameterized by 𝑔 and 𝑓 , prediction network h, and summary

network s, the concrete behavior of 𝐹 can be expressed with the following set of constraints (x𝑖 ’s,

e𝑖 ’s, z, and p𝑖 ’s are interpreted as real-valued variables):

𝑀 :=

𝜙𝑖𝑛 (x1, . . . , x𝑁)
e1, . . . , e𝑁 = m({x𝑖 , 𝑖 ∈ [1, 𝑁]}, 𝐴)
z = s({x𝑖 , e𝑖 | v𝑖 ∈ 𝐺})∧
𝑖∈Θ p𝑖 = h(e𝑖 , z)

(1)

:= 𝑀𝑖𝑛

We use 𝑀𝑖𝑛 to denote all outputs before the prediction network h is applied. This will be used

when we define the node abstraction scheme in Sec. 5. The verification problem is to check

whether𝑀 → 𝜙𝑜𝑢𝑡 is valid, or equivalently, whether𝑀 ∧ ¬𝜙𝑜𝑢𝑡 is unsatisfiable. Under the latter
interpretation, the verification problem is to show that under the constraints𝑀 , the “bad”states

described by ¬𝜙𝑜𝑢𝑡 cannot be reached.

Single-step post conditions. We support single-step post conditions of the form 𝜙𝑠𝑖𝑚𝑝 :=
∨
𝑗 𝜓 𝑗 (𝑃),

where𝜓 𝑗 (𝑃) is an atomic linear constraint over the output variables, i.e., (∑ℓ∈[1,𝑁] 𝑎ℓ ·pℓ) ⊲⊳ 𝑏, where
𝑎ℓ and 𝑏 are constants and ⊲⊳∈ {=, <, ≤}. We refer to this as a simple post condition because the

“bad” states can be described as a conjunction of linear constraints, and checking 𝜙𝑠𝑖𝑚𝑝 amounts to

showing that𝑀 ∧∧
𝑗 ¬𝜓 𝑗 (𝑃). Moreover, we support richer post conditions that state that multiple

simple post conditions must hold simultaneously: 𝜙𝑐𝑜𝑚𝑝𝑙𝑒𝑥 =
∧
𝑖 𝜙

𝑖
𝑠𝑖𝑚𝑝 . We describe our novel

abstraction to efficiently handle such post conditions in Sec. 5.

3.3 GNN-based job scheduling
As a proof of concept, we focus on verifying the state-of-the-art GNN-based job scheduler, Dec-

ima [Mao et al. 2019]. Formally, the input to the scheduler is a graph 𝐺 with 𝐾 disconnected

components𝐺1, . . . ,𝐺𝐾 , representing the current state of the cluster. Each disconnected component

𝐺𝑘 is a job DAG. The output of Decima is a single score p𝑖 for each frontier node v𝑖 . We use

front(𝐺) to denote the frontier nodes. The node to schedule next is argmax
v𝑖 ∈front(𝐺) p𝑖 . Our

goal is to reason about Decima not only in the single-step setting, but also in the multi-step setting.

which we describe next.

Multi-step setting. We consider a setting with an initial state𝐺 = (𝐴,𝑋), a GNN-based scheduler 𝐹 ,
and a cluster environment T (𝐺, v) ↦→ 𝐺 ′

, which takes the current state𝐺 and a node v ∈ front(𝐺),
and outputs a new state𝐺 ′

representing the new state after v is scheduled. We restrict T to perform

two types of graph updates: 1) removal/addition of nodes; and 2) affine transformations of features

of existing nodes: 𝑥 ′𝑖 ↦→ 𝐴𝒙 𝒊 + 𝒃 . This precisely captures the actual cluster environment for a wide

range of initial states. For simplicity, we only consider static job profiles with no new incoming

jobs (i.e., only node removal and no node addition). Given𝐺 , 𝐹 , and T , we refer to a finite sequence

of scheduling decisions 𝐹 (𝐺), 𝐹 (T (𝐺, 𝐹 (𝐺))), . . . as a trace.

Multi-step post conditions. We consider multi-step post conditions defined in terms of trace

reachability. The post condition 𝜙𝑜𝑢𝑡 is of the form unreach(𝑇) where 𝑇 is a finite set of finite

traces of possibly different lengths. The specification states that none of the traces in 𝑇 are feasible

if the initial state satisfies 𝜙𝑖𝑛 . As we will see in Sec. 7, this form of specifications allows us to

specify meaningful multi-step properties for the job-scheduler.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:11

4 FORWARD-BACKWARD ANALYSIS

Algorithm 1 Forward-Backward Analysis.

1: Input: neural network 𝑓 and specification 𝜙𝑖𝑛 → 𝜙𝑜𝑢𝑡
2: Output: HOLD/VIOLATED/UNKNOWN
3: function forwardBackwardAnalysis(𝜙)

4: a
(1) , . . . , a(L) ↦→ ⊤, a’(1) , . . . , a’(L) ↦→ ⊤

5: while ¬ stopCondition() do
6: a

(1) , . . . , a(L) ↦→ forward(𝑓 , {𝑎ℓ }, {𝑎′ℓ }, 𝜙𝑖𝑛)
7: if 𝑇

cond
(𝑎𝐿,¬𝜙𝑜𝑢𝑡) = ⊥ then

8: return HOLD
9: 𝑏𝑜𝑢𝑛𝑑𝑠 ↦→ []
10: for ℓ = 𝐾,𝐾 − 1, . . . , 2 do
11: 𝑏𝑜𝑢𝑛𝑑𝑠 [ℓ] ↦→ computeBounds(𝑓 , ℓ, {𝑎ℓ }, {𝑎′ℓ }, 𝜙𝑜𝑢𝑡)
12: a’

ℓ ↦→ 𝑇
cond

(aℓ , (𝑥 (ℓ) ∈ 𝑏𝑜𝑢𝑛𝑑𝑠 [ℓ])) ⊓ a’
ℓ

13: if a’ℓ = ⊥ then
14: return HOLD
15: return checkSat(𝜙𝑖𝑛 ∧ (

ℓ∈[1,𝐿]

∧(𝜑 (ℓ)
non-linear

∧ 𝜑 (ℓ)
linear

)) ∧ ¬𝜙𝑜𝑢𝑡)

In this section, we describe our

forward-backward abstraction re-

finement framework in more for-

mal terms. We consider an 𝐿-

layer feed-forward neural network

𝑓 : R𝑛0 → R𝑛𝐿 , where 𝑛0 and 𝑛𝐿
are the number of input and out-

put neurons respectively. For an

input 𝑥 , we use 𝑓ℓ (𝑥) and 𝑓ℓ :𝐿 (𝑥)
respectively to denote the network

output at an intermediate layer ℓ

and all layers between 𝑙 and 𝐿. We

consider the affine and the non-

linear activation layers as separate.

As illustrated in Sec. 2, our key in-

sight is to iteratively refine the ab-

straction obtained from a forward

abstract interpretation with an LP-based backward pass and vice-versa. Alg. 1 shows the pseudocode

for our framework. Next we describe each step in greater detail and prove soundness properties.

4.1 Forward abstract interpretation
The forward analysis in our framework is generic as it can be instantiated with any sub-polyhedral

domain including the popular domains for neural network verification such as Boxes [Wang et al.

2018b], Zonotope [Gehr et al. 2018; Singh et al. 2018a], DeepPoly [Singh et al. 2019b], or Polyhedra

[Singh et al. 2017]. We use A𝑛 to denote an abstract element overapproximating the concrete

values of 𝑛 numerical variables. We require that the abstract domain is equipped with the following

components:

• A concretization function 𝛾𝑛 : A𝑛 → P(R𝑛) that computes the set of concrete points from

R𝑛 represented by an abstract element 𝑎 ∈ A𝑛 .
• A bottom element ⊥ ∈ A𝑛 such that 𝛾𝑛 (⊥) = ∅.
• A sound abstraction function 𝛼𝑛 : P(R𝑛) → A𝑛 that computes an abstract element over-

approximating a region 𝜙𝑖𝑛 ∈ P(R𝑛) provided as input to the neural network. We have

𝜙𝑖𝑛 ⊆ 𝛾𝑛 (𝛼𝑛 (𝜙𝑖𝑛)) for all 𝜙𝑖𝑛 ∈ P(R𝑛). Note that we do not require 𝛼𝑛 to compute the

smallest abstraction for 𝜙𝑖𝑛 , however, the input regions considered in our experiments can

be exactly abstracted with common domains such as DeepPoly and Zonotope.

• A bounding box function 𝜄𝑛 : A𝑛 → R𝑛 × R𝑛 , where 𝛾𝑛 (𝑎) ⊆
∏
𝑖 [𝑐𝑖 , 𝑑𝑖] for (𝒄, 𝒅) = 𝜄𝑛 (𝑎) for

all 𝑎 ∈ A𝑛 .
• A sound conditional transformer𝑇cond (𝑎,𝐶) that for each 𝑎 ∈ A𝑛 and set of linear constraints
𝐶 defined over 𝑛 real variables satisfies 𝛾𝑛 (𝑇cond (𝑎,𝐶)) ⊆ 𝛾𝑛 (𝑎), i.e., the conditional output
does not contain more points than the input 𝑎.

• A sound abstract transformer 𝑇 #

of
: A𝑚 → A𝑛 for each layerwise operation 𝑜 : R𝑚 → R𝑛 (e.g.,

affine, non-linear activations, etc.) in the neural network.

• A sound meet transformer ⊓ for each 𝑎, 𝑎′ ∈ A𝑛 satisfying 𝛾𝑛 (𝑎⊓𝑎′) ⊆ 𝛾𝑛 (𝑎) and 𝛾𝑛 (𝑎⊓𝑎′) ⊆
𝛾𝑛 (𝑎′).

Our framework associates an abstract element 𝑎ℓ from the forward pass and an element 𝑎′ℓ from
the backward pass with each layer ℓ . Both elements are constructed such that they individually

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:12 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

overapproximate the set of concrete values at layer ℓ with respect to 𝜙𝑖𝑛 ∧ ¬𝜙𝑜𝑢𝑡 at each iteration

of the while loop in Alg. 1. Initially, all elements are ⊤.

Constructing forward transformers. The forward pass shown at Line 6 in Alg. 1 first constructs

an abstraction of the input region 𝑎1 = 𝛼𝑛0 (𝜙𝑖𝑛). We propagate 𝑎1 through the different layers of

the network via a novel construction that creates new higher order abstract transformers 𝑇 #

ofb
from

existing 𝑇 #

of
for each operation 𝑜 . For a layer ℓ , the construction of 𝑇 #

ofb
takes 𝑇 #

of
and the abstract

elements 𝑎ℓ−1, 𝑎′ℓ−1 at layer ℓ − 1 as inputs. Its output is the new forward abstract element at layer

ℓ :

𝑎ℓ = 𝑇 #

ofb
(𝑇 #

of
, 𝑎ℓ−1, 𝑎′ℓ−1) = 𝑇 #

of
(𝑎ℓ−1) ⊓𝑇 #

of
(𝑎′ℓ−1) (2)

We next prove the soundness of our construction.

Theorem 4.1. 𝑇 #

ofb
is a sound abstract transformer, that is, given an input that includes all concrete

values at layer 𝑙 − 1 with respect to 𝜙𝑖𝑛 ∧ ¬𝜙𝑜𝑢𝑡 , the transformer’s output includes all concrete values

possible at layer 𝑙 with respect to 𝜙𝑖𝑛 ∧ ¬𝜙𝑜𝑢𝑡 .
Proof. Let 𝑆 ℓ−1 and 𝑆 ℓ respectively be the set of concrete values at layer ℓ−1 and ℓ with respect to

𝜙𝑖𝑛 ∧¬𝜙𝑜𝑢𝑡 . For sound abstractions 𝑎ℓ−1, 𝑎′ℓ−1 , we have 𝑆 ℓ−1 ⊆ 𝛾𝑛 (𝑎ℓ−1) and 𝑆 ℓ−1 ⊆ 𝛾𝑛 (𝑎′ℓ−1). Since
𝑇 #

of
is sound, 𝑆 ℓ ⊆ 𝛾𝑛 (𝑇 #

of
(𝑎ℓ−1)) and 𝑆 ℓ ⊆ 𝛾𝑛 (𝑇 #

of
(𝑎′ℓ−1)). Thus 𝑆 ℓ ⊆ 𝛾𝑛 (𝑇 #

of
(𝑎ℓ−1))∩𝛾𝑛 (𝑇 #

of
(𝑎′ℓ−1)) ⊆

𝛾𝑛 (𝑇 #

of
(𝑎ℓ−1) ⊓𝑇 #

of
(𝑎′ℓ−1)) = 𝛾𝑛 (𝑇 #

ofb
(𝑇 #

of
, 𝑎ℓ−1, 𝑎′ℓ−1)) □

Corollary 4.2. The output of 𝑇 #

ofb
is included in the output of 𝑇 #

of
for inputs soundly abstracting

the concrete values with respect to 𝜙𝑖𝑛 ∧ ¬𝜙𝑜𝑢𝑡 . That is, the output of 𝑇 #

ofb
is at least as precise as 𝑇 #

of
.

(2) invokes the original transformer 𝑇 #

of
twice along with the ⊓ transformer. For most popular

domains, ⊓ is asymptotically cheaper than forward, therefore the asymptotic cost of 𝑇 #

ofb
is same

as 𝑇 #

of
. Since 𝑇 #

ofb
obtained for each layer is sound, the forward propagation produces 𝛾𝑛𝐿 (𝑎𝐿) ⊇

𝑓 (𝜙𝑖𝑛) ⊇ 𝑓 (𝜙𝑖𝑛) ∧ ¬𝜙𝑜𝑢𝑡 at the output layer. In this section, we assume that the set of bad outputs

¬𝜙𝑜𝑢𝑡 can be described as a conjunction of linear constraints. In the next section, we will consider a

more general class of ¬𝜙𝑜𝑢𝑡 containing disjunctions also. For our restriction here, we can compute

𝑇cond (𝑎𝐿,¬𝜙𝑜𝑢𝑡), and if it is equal to ⊥, we have proved that the specification must hold since

𝛾𝑛𝐿 (𝑇cond (𝑎𝐿,¬𝜙𝑜𝑢𝑡)) ⊇ 𝑓 (𝜙𝑖𝑛) ∧ ¬𝜙𝑜𝑢𝑡 (Line 7 in Alg. 1).

4.2 Backward abstract interpretation
The forward propagation ignores the post condition 𝜙𝑜𝑢𝑡 during the construction of the abstract

element 𝑎𝐿 . A refinement of the abstraction can be obtained by taking 𝜙𝑜𝑢𝑡 into consideration. The

backward pass shown at Line 10 in Alg. 1 is designed to accomplish this refinement.

The backward pass first updates the backward element at the output layer 𝑎′
𝐿
= 𝑇cond (𝑎𝐿,¬𝜙𝑜𝑢𝑡)⊓

𝑎′
𝐿
. It can be seen that this update is sound. The backward pass at a non-output layer 𝑘 performs

two steps. First, we use Linear Programming (LP) to compute refined lower and upper bounds

𝒄ℓ , 𝒅ℓ , taking into consideration both 𝜙𝑜𝑢𝑡 and a linear overapproximation of the network behavior

from layer ℓ to the output layer with respect to 𝜙𝑖𝑛 ∧ ¬𝜙𝑜𝑢𝑡 . We then refine the backward abstract

element using the domain conditional transformer 𝑇cond and the linear constraints 𝑐ℓ𝑖 ≤ 𝑥 ℓ𝑖 ≤ 𝑑ℓ𝑖 for
each neuron 𝑥 ℓ𝑖 in layer ℓ > 1, i.e., we compute

𝑎′ℓ = 𝑇cond (𝑎ℓ , (
∧
𝑖

𝑐𝑖 ≤ 𝑥 ℓ𝑖 ≤ 𝑑𝑖)) ⊓ 𝑎′ℓ . (3)

We now describe our linear encoding of the network for computing the refined interval bounds

𝒄ℓ , 𝒅ℓ of the neurons in layer ℓ . We start with an empty set of constraints and iteratively collect linear

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:13

constraints 𝜑𝑘 (𝒙𝒌−1, 𝒙𝒌) overapproximating the network behavior with respect to 𝜙𝑖𝑛 ∧ ¬𝜙𝑜𝑢𝑡 for
each layer 𝑘 > ℓ . If 𝑘 is an affine layer, then we add constraints of the form 𝑥𝑘 = 𝐴𝑘−1𝒙𝑘−1 + 𝑏𝑘−1,
where 𝐴𝑘−1, 𝑏𝑘−1 ∈ R are the learned weights and biases respectively of the affine layer. If 𝑘 is an

activation layer, then we add the constraints from a linear approximation [Singh et al. 2019b] of

the layerwise activation 𝒙𝑘 = 𝜎 (𝒙𝑘−1). The linear approximation can be obtained directly using

the corresponding domain transformer 𝑇 #

of
or a more precise relaxation based on the constraints

from the forward abstract element. If 𝑘 is the output layer, then we add the constraint ¬𝜙𝑜𝑢𝑡 to
our encoding. For each 𝑘 , we also add the constraints 𝐶𝑘 obtained from the bounding box 𝜄𝑛 of the

abstract element 𝑎𝑘 at layer 𝑘 .

Let 𝜑 ℓ denote the conjunction of constraints collected above. To obtain the refined lower and

upper bounds for layer ℓ with𝑚 neurons, we need to solve the following two LPs for each neuron

𝑥 ℓ𝑖 :

𝑐ℓ𝑖 = min

𝒙ℓ ,...,𝒙𝑳

s.t. 𝜑ℓ

𝑥 ℓ𝑖 , 𝑑
ℓ
𝑖 = max

𝒙ℓ ,...,𝒙𝑳

s.t. 𝜑ℓ

𝑥 ℓ𝑖 (4)

While we refine all neurons in the backward step to gain maximum precision, it is possible to

tune the cost and the precision of the backward pass by selectively refining only a subset of the

neurons. Note that we do not refine the backward element at the input layer, and it is always ⊤
which preserves soundness.

Theorem 4.3. For each layer ℓ , the refined bounds 𝒄ℓ , 𝒅ℓ computed by the LP overapproximate the

network output with respect to 𝜙𝑖𝑛 ∧ ¬𝜙𝑜𝑢𝑡 .

Proof. We show that the constraints in the LP overapproximate the network behavior from layer

ℓ to the output which guarantees the soundness of the refined bounds. The proof is by induction.

For the base case, the LP constraints at the output layer satisfy ¬𝜙𝑜𝑢𝑡 ∧𝐶𝐿 ⊇ 𝑓 (𝜙𝑖𝑛) ∧¬𝜙𝑜𝑢𝑡 . For the
inductive step, suppose

𝑘∈[ℓ+𝑢+1,𝐿]

∧(𝜑𝑘 (𝒙𝒌−1, 𝒙𝒌) ∧𝐶𝑘) ⊇ 𝑓ℓ+𝑢+1:𝐿 (𝜙𝑖𝑛) ∧ ¬𝜙𝑜𝑢𝑡 holds with 𝑢 ≥ 0. For the

layer ℓ +𝑢, the LP will add the conjunction satisfying 𝜑𝑘 (𝒙ℓ+𝒖−1, 𝒙 (ℓ+𝒖)) ∧𝐶ℓ+𝑢 ⊇ 𝑓ℓ+𝑢:ℓ+𝑢+1 (𝜙𝑖𝑛) ∧
¬𝜙𝑜𝑢𝑡 (since both the box constraints from 𝐶ℓ+𝑢 and the constraints from 𝜑𝑘 (𝒙 (ℓ+𝒖−1) , 𝒙 (ℓ+𝒖))
overapproximate 𝑓ℓ+𝑢:ℓ+𝑢+1 (𝜙𝑖𝑛)). Therefore,

𝑘∈[ℓ+𝑢,𝐿]

∧(𝜑𝑘 (𝒙𝒌−1, 𝒙𝒌) ∧𝐶𝑘) ⊇ 𝑓ℓ+𝑢:𝐿 (𝜙𝑖𝑛) ∧ ¬𝜙𝑜𝑢𝑡 and the

induction holds. □

Since the bounds computed by the LP are sound, the update (3) is sound at each intermediate

layer ℓ . Therefore the backward pass computes a sound approximation at each iteration of the

while loop of Alg. 1. Due to the soundness of the backward pass, if we find that a backward element

at a layer ℓ > 1 became ⊥ after applying (3), then we can soundly return HOLD (Line 13 of Alg. 1).

Theorem 4.4. For a layer ℓ , let 𝑎′ℓ and 𝑎′ℓ
new

be the backward abstract elements before and after

the refinement respectively. Then, 𝛾𝑛 (𝑎′ℓnew) ⊆ 𝛾𝑛 (𝑎′ℓ) holds, i.e., the backward pass does not make the

backward abstraction less precise.

Proof. Follows from the definition of 𝑇cond and ⊓. □

Corollary 4.5. Let 𝑞 be the total number of neurons in the network 𝑓 , then the complexity of

computing (4) for all neurons in layers 1 < 𝑘 ≤ 𝐾 is 𝑂 (𝑞 · 𝐿𝑃 (𝑝, 𝑞)) where 𝐿𝑃 (𝑝, 𝑞) is the cost of
solving an LP with 𝑝 constraints defined over 𝑞 variables.

4.3 Iterative forward-backward refinement
We perform an iterative refinement procedure in Alg. 1 by repeatedly performing forward and

backward analysis till a stopping criteria is met. Each forward-backward pass results in elements

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:14 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

at least as precise as in previous iterations due to Theorem 4.4 and (2). For arbitrary choices of

abstract elements and transformers allowed by our framework, the forward-backward analysis is

not guaranteed to converge to a fixed point: another iteration of the while loop does not refine the

analysis results. In practice, for piecewise-linear activations like Leaky ReLU used in Decima, we

terminate the analysis when a refinement round does not fix the phase of any activations. This is

usually achieved within 6 iterations.

If, after the forward-backward analysis has finished, no abstract element has been refined to⊥, we
resort to a non-linear encoding of the network outputs

ℓ∈[1,𝐿]

∧
𝜑 ℓ
non-linear

combinedwith linear constraints

ℓ∈[1,𝐿]

∧
𝜑 ℓ
linear

from our final abstract elements. For example, we use a MILP encoding for piecewise

linear activations such as Leaky ReLU used in Decima which results in complete verification: the

property is satisfied if and only if the set of constraints 𝜙𝑖𝑛 ∧ (
ℓ∈[1,𝐿]

∧(𝜑 ℓ
non-linear

∧ 𝜑 ℓ
linear

)) ∧ ¬𝜙𝑜𝑢𝑡 is
unsatisfiable. The non-linear solver benefits in speed from a reduction in the search area/branches

due to the precise constraints added from our refined abstraction.

Theorem 4.6. Alg. 1 is sound, i.e., 𝜙𝑖𝑛 ∧ ¬𝜙𝑜𝑢𝑡 is unsatisfiable when the algorithm returns HOLD.

Proof. The individual steps in Alg. 1 are sound. □

4.4 Handling GNN architectures.
GNNs often contain residual connections due to message passing. In those cases, we still need to

make sure that when performing abstraction refinement for a certain layer 𝑘 , we have already

refined all subsequent layers that take 𝑘’s outputs as inputs. To obtain this refinement order, we

first construct a DAG from the neural network architecture where each node represents a layer

and an edge exists from layer 𝑘 to layer ℓ if the output of the former feeds into the latter. Drawing

inspirations from data-flow analysis [Aho et al. 2007], the backward abstraction refinement is

conducted in post-order.

5 NODE ABSTRACTION FOR GNN VERIFICATION.
Alg. 1 is our core algorithm for verifying a single step property 𝜙𝑖𝑛 → 𝜙𝑜𝑢𝑡 where ¬𝜙𝑜𝑢𝑡 is of the
form

∧
Σ𝑎𝑖 ·p𝑖 ⊲⊳ 𝑐𝑖 (i.e., a conjunction of linear constraints over the output layer) for a feed-forward

neural network. However, only allowing this form of bad outputs is restrictive as in practice the bad

outputs specified in many properties (e.g., robustness, strategy-proofness) are disjunctive sets. In

particular, the output property often specifies that a subset of output neurons Θ all satisfy certain

simple post-condition 𝜙 , i.e.,

𝜙𝑜𝑢𝑡 :=
∧
p𝑖 ∈Θ

𝜙 (p𝑖) (5)

Existing works often handle this type of post condition by considering each disjunct individually:

we can use Alg. 1 (or any procedure that can handle simple post-conditions) to check whether

𝜙𝑖𝑛 → 𝜙 (p𝑖) holds for each output variable p𝑖 . The original property holds if the solver returns

HOLD every time, and is violated if the solver returns VIOLATED for one of the disjuncts. However,
this strategy could be inefficient when the number of disjuncts is large. Instead, in this section, we

describe a general procedure to efficiently handle post conditions of this form tailored for node

prediction/classification tasks in GNNs. We believe our contributions for verification presented here

can be adapted to handle GNN application domains other than job-scheduling such as recommender

systems and malware detection.

Our key insight is that each score 𝑠𝑖 is computed by applying the same transformation to the

node embedding e𝑖 , p𝒊 := h(e𝑖 , s({x𝑖 , e𝑖 | v𝑖 ∈ 𝐺})). Therefore, to simultaneously reason about

the GNN’s output for a group of nodes {v𝑖 |𝑖 ∈ Θ}, it is natural to consider an abstraction that

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:15

treats {e𝑖 , 𝑖 ∈ Θ} as an equivalence class. Given a set of constraints𝑀 as defined in (1) that exactly

captures the concrete behaviors of the GNN with respect to 𝜙𝑖𝑛 , we can construct an abstraction

𝑀 by mapping each constraint “p𝑖 = h(e𝑖 , z)” to “p
′ = h(e′, z) ∧ 𝐼 (e′)”, where e′ and p

′
are free

real-valued variables and 𝐼 is an invariant which we will describe next:

𝑀 :=

{
𝑀𝑖𝑛 (defined in (1))

p
′ = h(e′, z) ∧ 𝐼 (e′)

Definition 5.1 (Soundness). We say𝑀 is a sound abstraction of𝑀 with respect to a simple output

property 𝜙 , if

𝑀 → 𝜙 (p′) =⇒ 𝑀 →
∧
𝑖∈Θ

𝜙 (p𝑖).

By definition, given a sound abstraction, we can prove the original property by proving a simple

specification on𝑀 .

Lemma 5.2. if𝑀𝑖𝑛 → 𝐼 (e𝑖) for each 𝑖 ∈ Θ, then𝑀 instantiated with 𝐼 is sound.

Proof. Suppose 𝑀 → 𝜙 (p′). It follows that ∀ e, 𝑀𝑖𝑛 ∧ 𝐼 (e) → 𝜙 (h(e, z)). For each 𝑖 ∈ Θ, we
can instantiate e with e𝑖 and get 𝑀𝑖𝑛 ∧ 𝐼 (e𝑖) → 𝜙 (h(e𝑖 , z)). Since 𝑀𝑖𝑛 → 𝐼 (e𝑖), we have 𝑀𝑖𝑛 →
𝜙 (h(e𝑖 , z)). This is equivalent to𝑀𝑖𝑛 ∧ (p𝑖 = h(e𝑖 , z)) → 𝜙 (p𝑖). Notice that𝑀𝑖𝑛 ∧ (p𝑖 = h(e𝑖 , z)) is
a subset of constraints in𝑀 . Therefore,𝑀 → 𝜙 (p𝑖). □

Algorithm 2 Node abstraction with iterative refinement.

1: Input: a message passing component 𝑚, a summary
component s and a prediction component h, and a spec-
ification 𝜙 : 𝜙𝑖𝑛 → ∧

𝑖∈Θ 𝜙 (p𝑖)
2: Output: HOLD/VIOLATED/UNKNOWN
3: function checkWithNodeAbtraction(𝑚, s, h, 𝜙)

4: 𝐴,𝐶 ↦→ Θ, ∅
5: while 𝐶 ≠ Θ do
6: 𝑎𝑒1 , . . . , 𝑎𝑒𝑁 ↦→ forward(𝑀,𝜙𝑖𝑛)
7: 𝐼 ↦→ getConvexRelaxation(𝑎𝑒1 , . . . , 𝑎𝑒𝑁)
8: 𝑀 ↦→ createAbstraction(𝜙𝑖𝑛,𝑚, s, h, 𝐼)
9: 𝑟 ↦→ forwardBackwardAnalysis(𝑀,𝜙 (p′))
10: if 𝑟 = HOLD then
11: 𝐶 ↦→ 𝐶 ∪𝐴
12: 𝐴 ↦→ ∅
13: else
14: 𝑎𝑒𝑘 ↦→ pickNodeFromAbstraction(𝐴)
15: 𝐴 ↦→ 𝐴 \ {𝑘}
16: 𝑡 ↦→ forwardBackwardAnalysis(𝐹, 𝜙𝑖𝑛 → 𝜙 (p𝑘))
17: if 𝑡 = HOLD then
18: 𝐶 ↦→ 𝐶 ∪ {𝑘}
19: else
20: return t

21: return HOLD

Node abstractions. While the choice

of 𝐼 is flexible as long as it yields a

sound abstraction, there is a trade-off

controlled by 𝐼 between the difficulty

of proving 𝑀 → 𝜙 (p′) and the like-

lihood that this property holds. For

example, the weakest invariant is ⊤,
which leaves e

′
unconstrained, mak-

ing it less likely that 𝜙 (𝑝 ′) holds. On
the other hand, the strongest invari-

ant is

∨
𝑖∈Θ e

′ = e𝑖 , which just moves

the disjunction in the output property

to be over e
′
and does not reduce the

computational complexity.

A general recipe for constructing

𝐼 relies on the forward abstract inter-

pretation. After performing the for-

ward analysis on GNN 𝐹 with pre-

condition𝜙𝑖𝑛 using the abstract trans-

formers𝑇 #

𝑔 , for each e𝑖 , we can obtain

a (typically) convex region 𝜓𝑖 from

the abstract element 𝑎𝑒𝑖 such that𝜓𝑖
over-approximates the values 𝑒𝑖 can

take under the pre-condition 𝜙𝑖𝑛 , or

in other words,𝑀𝑖𝑛 → 𝜓𝑖 (𝑒𝑖). Next, we can compute a convex relaxation of the union of the convex

regions and use that as our invariant 𝐼 , i.e., 𝐼 = conv(⋃𝑖∈Θ𝜓𝑖). In practice, we take 𝜓𝑖 to be the

tightest intervals of e𝑖 , and let 𝐼 be the join of those intervals.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:16 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

Theorem 5.3. If 𝑀𝑖𝑛 → 𝜓𝑖 (e𝑖) for each 𝑖 ∈ Θ, then the abstraction 𝑀 instantiated by 𝐼 =

conv(⋃𝑖∈Θ𝜓𝑖) is sound.

Proof. For any e𝑖 where 𝑖 ∈ Θ, by the definition of convex approximation 𝜓𝑖 (e𝑖) → 𝐼 (e𝑖).
Therefore𝑀𝑖𝑛 → 𝐼 (e𝑖) and by Lemma 5.2 the statement holds. □

Note that𝑀 can be viewed as the concrete semantics of a GNN 𝐹 with an augmented input e
′

and one output p
′
. Under this view, checking𝑀 → 𝜙 (p′) is equivalent to checking the specification

𝜙𝑖𝑛 (x1, . . . , x𝑁) ∧ 𝐼 (e′) → 𝜙 (p′) on 𝐹 .

Iterative refinement of node abstraction. If𝑀 → 𝜙 (p′) is proved, then the original property also

holds. Otherwise we cannot conclude that the original property is violated. In that case, we can

obtain a refinement of the over-approximation by considering fewer nodes in the abstraction. This

yields an iterative refinement procedure as described in Alg. 2. We maintain two sets of indices:

𝐴 is the set of node indices treated as equivalent in the abstraction and a node index 𝑖 ∈ 𝐶 if

𝜙𝑖𝑛 → 𝜙 (p𝑖) has been proved. Given a specification of the form described in Eq. (5), we start by

creating an abstract network 𝐹 ′ that treats all nodes in the disjuncts as equivalent. If the simple

property 𝜙𝑖𝑛 → 𝜙p′ can be proved on F’, then we add all node indices in the equivalence class

𝐶 . If we fail to prove the property, we refine the abstraction by considering fewer nodes in the

abstraction. In particular, we heuristically pick one node (Line 13) to remove from𝐴. In practice, we

pick the node whose removal results in the largest decrease in the volume of the convex relaxation

𝐼 . In the next iteration, we obtain a different abstract network 𝐹 ′ that abstracts over fewer nodes.

Theorem 5.4. If 𝑀 is a sound abstraction of 𝑀 and forwardBackwardAnalysis is sound and

complete, then Alg. 2 is sound and complete.

Proof. If the specification can be violated, then 𝑟 at Line 9 must always equal VIOLATED and each
iteration picks and checks a different conjunct (Lines 14-16). Since forwardBackwardAnalysis

is sound and complete, it must return VIOLATED for one conjunct. Now suppose the specification

holds. Since the relaxation is sound and forwardBackwardAnalysis is sound and complete, 𝐶

must only contain indices corresponding to conjuncts that hold. Moreover, each iteration must

increase the size of 𝐶 (Lines 11 and 18). Since Θ is finite, the algorithm will return HOLD in finite

number of steps. □

6 REASONING OVER TRACES
So far we have introduced a verification engine in Alg. 2 for single-step properties with pre-condition

𝜙𝑖𝑛 that can be expressed as a conjunction of linear constraints on the input node features and

post condition 𝜙𝑜𝑢𝑡 of the form described in (5). Building upon this engine, we now develop an

analysis to reason about the system behavior across multiple time steps. In this setting, we want to

prove that bad traces from a set 𝑇 are not feasible starting from any state satisfying 𝜙𝑖𝑛 that can be

expressed as a conjunction of linear constraints on the input node features. Next, we develop a

baseline algorithm that iterates over traces and performs early punning of safe traces. Then, we

discuss the precision and performance trade-off in this procedure and describe an efficient encoding

of the system across multiple steps that still preserves completeness.

Multi-step verification with trace enumeration. We first present a multi-step verification procedure

in Alg. 3 and then describe our optimizations for improving its speed. At a high-level, the algorithm

searches for an initial state in 𝜙𝑖𝑛 that would result in a trace 𝑡 ∈ 𝑇 by trying to compute all possible

traces starting from 𝜙𝑖𝑛 . The progress of the search is tracked by a stack (initialized with an emptry

trace nil) containing the set of (partial) traces that need to be explored.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:17

During the search, we pick a partial trace 𝑡 (Line 6) from the stack and check whether it

matches any traces in 𝑇 (Line 7). There is a match between two traces if they have the same

length and the same action sequence. There are three outcomes of our check. If there is a match

(MATCH), then the search terminates as we have found a (potential) violation of the property, and

we return either VIOLATED or UNKNOWN depending on whether the encoding and the base solver

(getPossibleActions) is complete. Otherwise, if no trace in 𝑇 has 𝑡 as a prefix, then the check

returns NOMATCH. In this case, we can conclude any trace with prefix 𝑡 is not in 𝑇 and move on to

analyze another trace. If this check is inconclusive (i.e., no trace in 𝑇 is equal to 𝑡 , but some traces

have 𝑡 as prefix), then we must expand this trace to determine whether there is a potential property

violation. That is, we need to compute the possible next actions of the GNN agent conditioned on

the initial state 𝜙𝑖𝑛 , the transition system T , and the current trace 𝑡 (Line 10-18).

Algorithm 3Multi-step verification via trace enumera-

tion.

1: Input: a message passing component𝑚, a summary
component s, a prediction component h, an initial
state 𝐺0, a transition system T , and a specification
𝜙 : 𝜙𝑖𝑛 → unreach(𝑇)

2: Output: HOLD/VIOLATED/UNKNOWN
3: function checkWithTraceEnumeration(𝑚, 𝑓 , 𝑔,𝐺0, 𝜙)

4: 𝑠𝑡𝑎𝑐𝑘 ↦→ {nil}
5: while ¬𝑠𝑡𝑎𝑐𝑘.empty() do
6: 𝑡 ↦→ 𝑠𝑡𝑎𝑐𝑘.pop()
7: 𝑟 ↦→ match(𝑡,𝑇)
8: if 𝑟 = MATCH then return VIOLATED/UNKNOWN
9: else if 𝑟 = NOMATCH then continue
10: else𝑀,𝐺, 𝑘 ↦→ 𝜙𝑖𝑛,𝐺0, 0

11: for v𝑖 in 𝑡 do
12: 𝑀 ↦→ 𝑀 ∧ encodeNetwork(𝑚, h, s,𝐺)
13: 𝑀 ↦→ 𝑀 ∧ encodeAction(𝑀, v𝑖)
14: 𝑀 ↦→ 𝑀 ∧ encodeFeatureUpdates(T ,𝐺, v𝑖)
15: 𝐺,𝑘 ↦→ T (𝐺, v𝑖), 𝑘 + 1

16: 𝑀 ↦→ 𝑀 ∧ encodeNetwork(𝑚, h, s,𝐺)
17: Θ ↦→ candidate(𝐺)
18: 𝑄 ↦→ getPossibleActions(𝑀,Θ)
19: 𝑠𝑡𝑎𝑐𝑘 ↦→ 𝑠𝑡𝑎𝑐𝑘 ∪ {𝑡 :: v𝑖 | v𝑖 ∈ 𝑄}
20: return HOLD
21: function getPossibleActions(𝑀,Θ,𝐺)
22: 𝑄 ↦→ {}, 𝜙 (v) ↦→ (∨𝑗 ∈Θ v𝑗 ≥ v)
23: for 𝐽 ∈ 𝐺 do
24: 𝜙𝑜𝑢𝑡 ↦→

∧
v𝑖 ∈𝐽∩Θ 𝜙 (v ↦→ v𝑖)

25: 𝑄 ↦→ 𝑄 ∪ checkWithNodeAbstraction
′(𝑀,𝜙𝑜𝑢𝑡)

26: return Q

Note that an exact encoding of the

transition system up to 𝑡 (Lines 11-15) in-

volves the precise encoding of 1) the net-

work at each time step (Line 12); 2) the

action taken at each time step (Line 13);

and 3) the updates of the feature vec-

tors (Line 14).An incomplete encoding

can be achieved by ignoring the first two

components. This amounts to ignoring

the previous trace and only encoding

the network at the current step. We ex-

plore the runtime-precision trade-off of

the complete encoding in our experimen-

tal section. The algorithm returns HOLD
if no traces from 𝑇 are matched during

the enumeration. Notice that 𝑇 is only

used in the MATCH function for checking

whether the current trace we are explor-

ing is a “bad” trace. Therefore, in prac-

tice, instead of providing𝑇 as a concrete

set of traces, it is sufficient and relatively

easier to provide an implementation of

the MATCH function corresponding to the
property.

The getPossibleActions method at

Line 18 can build on top of any single-

step verification engine including, in

particular, the procedure introduced in

Sec. 5. One instantiation tailored to

GNN-based job schedulers is described

in Alg. 3. Our goal is to check whether

an action v indexed by a set Θ can be scheduled. This can be formulated as checking whether the

post-condition that v is not the maximum (Line 22) holds. We use the techniques introduced in

Sec. 5 to reason about candidate actions belonging to the same job DAG simultaneously. This is

based on the observation that candidate actions corresponding to the same job often have similar

verification results. Note that here we use a slightly modified version of Alg. 2 where instead of

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:18 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

returning HOLD/VIOLATED/UNKNOWN we return all disjuncts in the post condition that does not hold.

This amounts to modifying Line 20 in Alg. 3 to continue the search instead of returning.

Theorem 6.1. Alg. 3 terminates if 𝑇 has finite length traces.

Proof. Let 𝐾 be the maximum number of possible actions at a given time step and 𝑅 be the

longest trace length in 𝑇 . In the worst case, there are a finite number of traces (𝐾𝑅) to check. This

is because the algorithm: (a) does not check the same trace twice (this can be proved by induction

on the length of the partial trace 𝑡); and (b) does not expand any 𝑡 whose prefix does not match a

trace in 𝑇 (Line 9 of Algorithm 3). □

Theorem 6.2 (Soundness). If the encodings (Lines 12,13,14, 16) and getPossibleActions are

sound, then Alg. 3 is sound.

Proof. The assumptions guarantee that 𝑄 is a super-set of the actual feasible actions. By induc-

tion on the length of the trace added to 𝑠𝑡𝑎𝑐𝑘 , we can prove that the traces added to 𝑠𝑡𝑎𝑐𝑘 are a

super-set of the actual reachable set of traces. Therefore, if no trace added to the stack matches any

trace in 𝑇 , no actual reachable trace can match any trace in 𝑇 . □

Proof-transfer encoding. In general, if there are changes in node features or graph structures, the

message passing would result in different node embeddings. A naïve complete encoding would re-

encode message-passing (and subsequent GNN components) for every step. This quickly becomes

too expensive as the number of time steps increases. However, taking a closer look at the message

passing scheme, we observe that the effect of the graph structure/feature updates on the message

passing is local to the disconnected component where the updates occur. This means that we only

need to re-encode disconnected components of the graphs that are updated. In the case of Decima,

we observe that between every scheduling event (invokation of the GNN agent), only a small subset

of the job DAGs are updated. This results in significant savings in the length of the encoding and

runtime as demonstrated by our experimental results.

7 SPECIFICATIONS FOR JOB SCHEDULER
In this section we define the properties we verify for GNN-based schedulers like Decima. We

emphasize that our framework allows the user to specify a rich set of verification properties. Here,

we focus on two formulations of the strategy-proofness properties to demonstrate the capabilities

of our method. We choose to study strategy-proofness as it is not only important in practice but

also representative of the general form of specifications that our framework can handle.

Strategy-proofness is a desirable property of schedulers that intuitively means: “a user cannot

benefit by mis-representing their need.” For example, we expect that the user cannot get their

jobs scheduled earlier by requiring more resources for them. If this basic property does not hold,

malicious users can mislead the system into stalling all but their jobs. Interestingly, this property

holds for simple schedulers such as FIFO (first-in-first-out) and CMMF (Constrained Max-Min

Fairness) [Shenker and Stoica 2013]. However, due to the non-interpretable nature of the GNN-based

scheduler, strategy-proofness cannot be guaranteed by construction.

Definition 7.1 (Single-step strategy-proofness). Given an initial job profile 𝐺 = (𝐴,𝑋) containing
K jobs𝐺1, . . . ,𝐺𝐾 , suppose the scheduler picks a node from job𝐺𝑘 . For each node feature vector x𝒊 ,
let x𝑖𝑑 and x𝑖𝑡 denote the entries of estimated total duration and the number of tasks, respectively.

Let 𝐺𝑎 ∈ 𝐺 be a job other than 𝐺𝑘 (e.g., the job of an adversarial user). Let 𝐶 and 𝐶𝑎 denote the

frontier nodes in 𝐺 and 𝐺𝑎 , respectively. The job scheduler is strategy-proof with respect to 𝐺 and

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:19

𝐺𝑎 , where 𝑎 ≠ 𝑘 , if ∀𝐺 ′ = (𝐴,𝑋 ′), ∧
v𝑖 ∈𝐶𝑎

(x′
𝑖𝑑

∈ [x𝑖𝑑 , 𝛼𝑑 x𝑖𝑑]

∧ x
′
𝑖𝑡 ∈ [x𝑖𝑡 , 𝛼𝑡 x𝑖𝑡]

∧
x
′
𝑖𝑑

x
′
𝑖𝑡

≥ x𝑖𝑑

x𝑖𝑡

)

→
∧
v𝑖 ∈𝐶𝑎

(
¬
(∧
v𝑗 ∈𝐶\𝐶𝑎

p
′
𝑖 > p

′
𝑗

))
:= 𝜙

𝑠𝑝

𝑖𝑛
(𝑋 ′)

where 𝛼𝑑 and 𝛼𝑡 are scalars (> 1).

Intuitively, the pre-condition specifies that the owner of the adversarial job𝐺𝑎 can increase all

the features related to job utilization as well as the average task duration (implied by the third

constraint) in the frontier nodes of their job. The 𝛼 parameters define the level of perturbation that

the adversary is allowed. The post condition states that none of the frontier nodes in 𝐺𝑎 can be

scheduled, thus implying strategy-proofness. Note that the inner constraint in the post condition∧
𝑗 ∈𝐶\𝐶𝑎

p𝑖 > p𝑗 is a simple post condition (by De Morgan’s law), thus the post condition has

the form described in Eq. 5. Also note that the strategy-proofness property is very different from

the adversarial robustness property [Szegedy et al. 2013], which states that the neural network’s

decision does not change in response to small perturbation in the input feature. In contrast, strategy-

proofness allows the network’s decision to change as we increase the input features of 𝐺𝑎 . The

property holds as long as no node from𝐺𝑎 is scheduled next (i.e., the malicious user cannot benefit).

Definition 7.2 (𝑇 -step strategy-proofness). Given a concrete initial job profile 𝐺 = (𝐴,𝑋) contain-
ing K jobs𝐺1, . . . ,𝐺𝐾 , let𝐺𝑎 ∈ 𝐺 be a job that is not scheduled within 𝑇 steps starting from𝐺 . The

job scheduler is 𝑇 -step strategy-proof with respect to 𝐺 and 𝐺𝑎 , where 𝑎 ≠ 𝑘 , if ∀𝐺 ′ = (𝐴,𝑋 ′),

𝜙
𝑠𝑝

𝑖𝑛
(𝑋 ′) → unreach({𝑡 | |𝑡 | ≤ 𝑇 ∧ (∃ v ∈ 𝐶𝑎, 𝑠 .𝑡 . v ∈ 𝑡)})

The pre-condition is the same as in Def. 7.1. Intuitively, the property states that for a job 𝐺𝑎 that

is not scheduled in 𝑇 step in the original trace starting from 𝐺 , the owner of the job cannot get the

job to be scheduled earlier by lying about the amount of work in the job. Note that when𝑇 is equal

to 1, the definition is equivalent to the single-step strategy-proofness property in Def. 7.1.

Without a verification engine, we could only obtain empirical guarantees about both properties

by checking a finite number of job profiles within the range specified by the pre-condition. However,

our framework allows us to check all job profiles in that range, thus obtaining formal guarantees.

Local vs. global properties. Similar to previous work in neural network verification, the strategy-

proofness properties here are defined locally, i.e., with respect to concrete initial job profiles. It

is possible to define and verify a global version of the strategy-proofness property, for a set of

initial job profiles with the same graph structure using our framework. However, checking this

property requires a second copy of the GNN-encoding, thus doubling the size of the verification

problem. Taking a step even further, it is possible to verify that the strategy-proofness holds for all

job profiles with less than 𝑁 nodes, by checking the property with our verification engine for each

unique job profile with less than 𝑁 nodes (there are finitely many of them). Abstraction techniques

for reasoning about job profiles with different graph structures as a whole are likely needed to

improve the verification time. We leave the verification of global properties as future work.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:20 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

8 EXPERIMENTAL EVALUATION
We implemented the proposed techniques in a framework called vegas and performed an experi-

mental evaluation by using vegas to check whether the single and multi-step strategy-proofness

properties as described in the previous section hold on Decima [Mao et al. 2019]—a state-of-the-art

GNN-based job scheduler. There are other GNN-based schedulers available (e.g., [Park et al. 2021;

Sun et al. 2021]). We choose Decima as the representative as it is by far the most popular and

influential. We note that our techniques are general and applicable to other GNN-based schedulers

and properties as discussed above. Feedback from vegas can be used by the system developer to

adjust their schedulers to balance different user expectations.

8.1 Implementation
Our implementation of vegas is three-fold, including:

(1) A GNN-based scheduler module that takes the graph structure of the job profile and the

architecture of the GNN agent, and converts them into an internal representation of a feed-

forward neural network (with residual connections) with the node features as inputs and

node predictions as outputs. As the front-end of vegas, the module also contains API calls to

define pre-conditions and post-conditions of the forms described in Subsecs. 3.2 and 3.3.

(2) A single-step verification engine which contains a generic implementation of the algo-

rithms introduced in Secs. 4 and 5. For forward-backward analysis, we use DeepPoly as the

abstract domain, and use the linear approximation proposed in [Ehlers 2017] extended to

Leaky ReLU for the LP encoding. It is worth noting that unlike the original DeepPoly imple-

mentation [Singh et al. 2019b], our forward-backward analysis handles feed-forward neural

networks with arbitrary residual connections. This generality is needed even for verifying

different properties of the same GNN because the graph structures of the initial state affect

the order of message passing and yield neural networks with different architectures. The

node-abstraction implementation applies to GNN-based node prediction models generally.

(3) Amulti-step verification engine that contains an implementation of the trace enumeration

procedure described in Sec. 6, which repeatedly invokes the single-step verification engine.

We support both complete and incomplete multi-step encodings.

8.2 Experimental setup
We use the same GNN-architecture and training configurations as introduced in the original

work [Mao et al. 2019], and obtain similar performance results as in the original work. The trained

network has Leaky ReLU as activation function. Unlike the traditional neural network verification

setting, where the neural network size (e.g., number of activations) is fixed, the GNN size depends

on the sizes of the input graphs, which we specify later. All experiments are run on a cluster

equipped with Intel Xeon E5-2637 v4 CPUs running Ubuntu 16.04. Each benchmark is run with 32

threads and 128GB memory. For single-step verification, each benchmark run is given a 1-hour

wall-clock timeout. For multi-step verification, the wall-clock timeout is set to 2 hours.

8.3 Single-step verification
We first evaluate vegas on single-step verification benchmarks. The main question we pose here is:

Does vegas scale to large GNN-based schedulers? To answer this question, we perform an extensive

evaluation of all the techniques we proposed. Our results demonstrate a significant performance

gain over baselines based on state-of-the-art verifiers.

Benchmarks. We evaluate our proposed techniques on verifying the single-step strategy-

proofness property as introduced in Sec. 7. The scalars 𝛼 ’s (see Def. 7.1) are set to 20, meaning

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:21

the owner of the adversarial job can increase the estimated total duration and number of tasks

by at most 20 times for any frontier nodes in the job. We consider job profiles that contain either

5 or 10 jobs, which yields a median of 5845 and 10997 activations (Leaky ReLU) in the encoding

respectively. After unrolling, the network has 140 layers (treating affine and activation as separate

layers). We heuristically select job profile and adversarial jobs (𝐺𝑎’s) from Decima’s test beds that

would likely result in challenging verification benchmarks following the steps below:

• Sample initial job states with 5 and 10 jobs from Decima’s native test bed
2
using random

seeds 0-24.

• For each of the initial job states, we run the simulation environment until 1/3 of the nodes

are scheduled. At each step, we rank the jobs by the sum of the scores of the frontier nodes

in decreasing order. We record steps where the total scores of frontier nodes in the top job

and that in the second top job are close (<0.9).

• We use strategy-proofness properties defined on states corresponding to those steps as the

benchmarks for single step verification with 𝐺𝑎 being the second top job because these are

vulnerable states that make for challenging verification benchmarks.

The resulting initial job profiles are sparse graphs, with each job containing on average 9.2 ± 4.2

nodes and 8.5 ± 4.4 edges.

Configurations. To evaluate our proposed techniques, we consider 4 different configurations: 1) F
first tries to solve the problemwith forward abstract interpretation and falls back to a complete MILP

encoding with DeepPoly bounds via the Gurobi optimizer; 2) F+B1 performs the forward-backward

analysis for one iteration (forward, backward, and forward again) and falls back to Gurobi; 3)

F+BC is the same as F+B1 except that it performs the forward-backward analysis repeatedly until

the stopping condition described in Sec. 4 is met, and 4) A+F+BC runs Alg. 2 on top of F+BC. We

note that F is equivalent to ERAN [Singh et al. 2019b] with its optimal configuration for complete

verification. We did not compare with off-the-shelf verification tools [De Palma et al. 2021; Katz

et al. 2019; Müller et al. 2021a; Singh et al. 2019a; Wang et al. 2021b], because to our knowledge

none can handle the complex architecture of GNNs without significant implementation overhead.

We first evaluate the first three configurations on the full benchmark set. The result is shown in

Tab. 1. We observe that the two configurations that perform the forward-backward analysis solve

significantly more benchmarks than F, which only performs a forward pass, with a gain of 77%

and 8% of solved instances for graphs with 5 jobs and 10 jobs, respectively. On the other hand, we

observe an incremental gain from performing the forward-backward analysis for 1 iteration to

performing it to convergence. While we solve 5 more benchmarks, performing forward-backward

analysis until the stopping condition might lead to a non-negligible runtime overhead. For example,

the average time to solve a 10-job benchmark increases from 206 seconds to 324 seconds (i.e., an

overhead of 2 minutes).

Table 1. Instances solved by different configurations and their runtime (in seconds) on solved instances (i.e.,
runtime for timed-out instances is not included).

jobs (# bench.) F F+B1 F+BC

Solved Time Solved Time Solved Time
5 (66) 26 32742 46 31147 49 38080
10 (232) 207 45662 224 46201 226 73295

2
https://github.com/hongzimao/decima-sim/

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

https://github.com/hongzimao/decima-sim/

162:22 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

Fig. 7. Cactus plot of the three configurations on
the full benchmark set.

Fig. 8. Runtime of A+F+BC and F+BC on benchmarks
with at least 4 disjuncts.

The cactus plot in Fig. 7 sheds more light on the pay-off of the abstraction refinement scheme.

While F can solve certain easy instances faster than F+B1 and F+BC, the benefit of the proposed
forward-backward analysis becomes evident once the time limit surpasses 100 seconds. On the

other hand, F+BC starts to overtake F+B1 when the time limit is above 1000 seconds. To further

compare the long-term behaviors of F+B1 and F+BC, we run them on the unsolved benchmarks

in Tab. 1 (there are 23 of them) using a longer timeout (2 hours). F+B1 is able to solve 1 of the 23

benchmarks while F+BC is able to solve 4. Based on these results, we recommend to use F+BC when

computational resources are not a concern.

Among the 298 verification queries, 257 are proved, 20 are disproved (with counter-examples),

and 28 are unknown. This suggests that the current version of Decima is not always strategy-

proof, and adjustments in the training algorithm are potentially needed to guarantee it without

compromising performance too much.

To evaluate the node abstraction scheme, we focus on the subset of benchmarks where there are

at least 4 frontier nodes in the adversarial job. This means that the number of disjuncts is at least 4.

We run A+F+BC on this subset of benchmarks and compare it with F+BC. As shown in Tab. 2, while

only 1 more instance is solved due to the node abstraction, the runtime is reduced significantly. In

particular, while both configurations solve the same number of 10-job benchmarks within the time

limit, A+F+BC solves them with a runtime reduction of 51.2%. These results clearly demonstrate

that using abstract nodes leads to significant computational saving if there are multiple frontier

nodes available for scheduling.

Table 2. Instances solved by different configurations and their runtime (in seconds) on solved instances.

jobs (# bench.) F+BC A+F+BC

Solved Time Solved Time
5 (26) 18 20600 19 13112
10 (66) 66 33061 66 16028

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:23

The scatter plot in Fig. 8 shows the concrete run time of the two configurations on the benchmarks.

The node abstraction scheme brings around 2-4x speed-up in a majority of the cases. We notice

there are two cases where the verification time is not improved (or even becomes worse). In those

cases, the attempts in Alg. 2 to reason about multiple disjuncts simultaneously keep failing, and

most disjuncts end up being analyzed individually. This suggests that additional performance gain

could be potentially achieved if a more sophisticated heuristic to pick which node to remove from

the equivalence class (see Sec. 5) is used.

8.4 Evaluating forward-backward analysis in isolation
In this section, we further evaluate the effectiveness of the forward-backward analysis as a stand-

alone technique. In particular, we pose two research questions:

(1) Is the forward-backward analysis effective as a stand-alone technique (without falling back

to a complete solver)? [Yes]

(2) Is the forward-backward analysis useful on other verification benchmarks such as adversarial

robustness properties on image classifiers? [Yes]

Benchmarks. We consider the same initial job profiles as described in Sec. 8.3. The specification

is also the same except that the scalars 𝛼 ’s are set to 8 instead of 20. We choose this value of 𝛼

because for larger values abstract interpretation alone usually fails to prove the property without

invoking the complete solver and for smaller values (<1.5) forward abstract interpretation alone

can prove most properties. Additionally, we train two classifiers, MNIST1 and MNIST2, on the MNIST

dataset [LeCun and Cortes 2010]. Both are PGD-trained, fully-connected feed-forward, and using

Leaky ReLU activations. MNIST1 has 5 hidden layers with 100 neurons per layer. MNIST2 has 8
hidden layers with 100 neurons per layer. We consider standard local 𝑙∞ adversarial robustness

properties on the first 100 correctly classified test images. The perturbation bound is set to 0.02

(the inputs are normalized between 0 and 1).

Configurations. We consider three configurations, F’, F+B1’, and F+BC’, which are the same as

their counterparts in Sec. 8.3, except that the former do not fall back to complete solvers and instead

return UNKNOWN if abstraction interpretation fails to prove the property.

Table 3. Instances solved by different configurations and their runtime (in seconds) on solved instances (i.e.,
runtime for timed-out instances is not included).

Benchmark (#) F’ F+B1’ F+BC’

Solved Time Solved Time Solved Time
SP 5 jobs (66) 0 0 22 259 25 440
SP 10 jobs (232) 0 0 83 3195 94 4815

MNIST1 (100) 31 29 52 72 56 135
MNIST2 (100) 24 37 43 100 46 175

Experiments. The evaluation results of the three configurations on the aforementioned bench-

marks are shown in Table 3. On the verification queries over GNNs, forward abstract interpretation

alone (F’) is not able to solve any benchmarks, while the two configurations that perform backward

abstraction refinement can solve a significant number of the benchmarks. This shows the benefits

of forward-backward analysis as a stand-alone technique in improving verification precision and

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:24 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

scalability. It is also worth noting that the effect of performing forward- and backward- analyses

multiple times is more evident in this setting, where F+BC’ solves 13.3% (
25+94
22+83) more than F+B1’.

On the adversarial robustness benchmarks, the forward-backward analysis also significantly

boosts the verification precision. In particular, F+BC’ solves 85% more than F’. This confirms that

the forward-backward abstract interpretation can be useful beyond GNN verification.

8.5 Multi-step verification
We now turn to multi-step verification. Here we ask:

(1) Complete vs incomplete encodings. Is a complete encoding crucial to proving verification

queries (due to imprecision of an incomplete encoding)? [Yes]

(2) Does the proof-transfer encoding speed up complete verification? [Yes]

Benchmarks. We evaluate our proposed techniques on verifying the 𝑇 -step strategy-proofness

as introduced in Sec. 7. We choose 𝑇 = 5, which requires enumeration of all possible traces of

length 5, and 𝛼 = 10. Initial job profiles are heuristically selected following the steps below with

the rationale of identifying challenging benchmarks:

• Sample initial job states with 5 jobs from Decima’s native test bed using random seeds 0-99.

• For each initial job state, we run the simulation environment until 1/3 of the nodes are

scheduled. At each step, if the score of the top node in the second top job is close to that of the

top node in the top job (< 0.9), we use the single-step verification engine to check whether

from the pre-condition of the multi-step strategy-proofness properties, the scheduler can

choose multiple nodes as the next action.

• For each step 𝑡 satisfying this condition, we add the job state at 𝑡 , 𝑡 − 2, and 𝑡 − 4 to the

multi-step benchmarks. The resulting benchmarks are guaranteed to have multiple possible

traces from the initial set, thus making for more challenging benchmarks.

Fig. 9. The number of visited traces by I and C+PT

Experiment. We first evaluate

the performance of the three con-

figurations on the task of trace

enumeration for 5 steps starting

from the pre-conditions specified

in strategy-proofness.

Configurations. We consider

three configurations of Alg. 3: 1)

I does a sound but incomplete

encoding of the state as described

in Sec. 6; 2) C encodes the states
and the state transitions precisely

with a naïve unrolling; 3) C+PT
also encodes the states and the

state transitions precisely but

with the proof-transfer encoding

described in Sec. 6.

We found that I and C+PT both terminate on all benchmarks within 2 hours, while C timed out

on 15 of the 55 benchmarks. The average runtime of I, C+PT, and C are respectively 350, 1129, and

3582 seconds (treating timed out instances as having runtime 7200 seconds). To understand these

results, we recall that all three configurations are based on trace enumeration and pruning. Both C

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:25

and C+PT encode the system precisely and therefore do not explore spurious (unrealizable) traces.

However, as our experiment shows, the proof-transfer encoding results in significant speedup.

Fig. 9 shows the number of enumerated traces by I and C+PT on each benchmark. While C+PT
enumerates the exact set of feasible traces, I enumerates a super-set of feasible traces due to its

incomplete encoding. We observe that I includes spurious (i.e., infeasible) traces on 30 out of the

55 benchmarks. The difference in the number of visited traces can get quite large. For instance, for

a certain initial condition (bottom right of Fig. 9), there are only two feasible traces but I visits

a total of 203 traces. The results emphasize the importance of a precise encoding, as exploring a

large number of spurious traces can be computationally prohibitive and might prevent a solver

from proving properties, as we see next.

We now turn to verifying the multi-step strategy-proofness properties. To understand whether a

precise encoding has benefits over an incomplete encoding, we focus on the 30 initial states where

there is a difference in the enumerated traces between the complete and incomplete encodings. The

result is shown in Tab. 4. Due to the incomplete nature of I, not only is it unable to generate actual

counter-examples, it also proves less properties than a complete procedure like C+PT. In contrast,

C+PT solved all queries, and is able to prove 3 more specifications than I. This illustrates the benefit
of a complete encoding.

Table 4. I vs. C+PT on the multi-step strategy-proofness benchmarks. We show the number of instances that
are proved and disproved respectively, as well as the runtime (s) on solved instances.

Prop. (# bench.) I C+PT

Proved Disproved Time Proved Disproved Time
SP (30) 19 0 14704 22 8 46099

9 RELATEDWORK
Most state-of-the-art neural network verifiers perform forward analysis, but a combination with

backward analysis is under-explored. [Urban et al. 2020] proposes a procedure specific to fairness

properties which uses a forward pre-analysis to partition the input region and a post-condition

guided backward analysis to prove the properties for all activation patterns in the input region. [Yang

et al. 2021] proposes a fundamentally different abstraction-refinement loop where the backward

analysis iteratively refines the pre-condition for DeepPoly analysis. In contrast, we develop a

general framework for forward-backward analysis on neural networks that can be instantiated

with different abstract domains and prove theoretical results about soundness, monotonicity, and

computational complexity of the framework. We also validate our approaches on more complex

benchmarks compared with the aforementioned work. Related to abstraction refinement, [Lyu

et al. 2020; Ryou et al. 2021] use the post condition to refine the choice of slopes in forward over-

approximations but do not consider the post condition as a hard constraint. [Singh et al. 2019c]

combines forward abstract interpretation with MILP/LP solving for refinement but only considers

the pre-condition, and the refinement is due to the precision gain of the MILP/LP solving.

Verification of RL-driven systems have also gained increasing attention recently [Amir et al.

2021; Sun et al. 2019]. Most recently, [Amir et al. 2021] explores the general use of techniques such

as k-induction and invariant inference in those settings while treating the verification procedure as

a black box. In contrast, we focus on a challenging and interesting setting of verifying GNN-based

job schedulers, where the neural network architecture is more complex and much larger. This

motivates the development of a set of new techniques to improve solver’s scalability.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:26 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

The verification of Graph Neural Networks is an important yet under-explored topic. Previous

work on GNN-verification focuses on structural perturbations [Bojchevski and Günnemann 2019;

Wang et al. 2021a] and robustness properties. In contrast, we focus on a rich set of properties

emerging from the scheduling domain. [Wang et al. 2021a] uses random smoothing and therefore

gives probabilistic guarantees. On the other hand, [Bojchevski and Günnemann 2019] consider

a finite perturbation space (adding/removing finite number of edges) while we focus on infinite

perturbation sets defined as linear constraints over the node features.

10 CONCLUSION AND FUTUREWORK
In this work, we proposed the first verification framework for GNN-based job schedulers. This

setting poses unique challenges due to deeper network architecture and richer specifications

compared to those handled by existing neural network verifiers. We considered both single-step

and multi-step verification and designed general methods for both that leverage abstractions,

refinements, solvers, and proof transfer to experimentally achieve significantly better precision and

speed than baselines. We believe that vegas can be used by system developers to check whether

different user expectations are met and make adjustments if needed. vegas can also be potentially

integrated in the training loop of the GNN-based scheduler to guarantee by construction properties

specified by the system designer. Similar approaches have been used to create stable neural network

controllers in the robotics domain [Dai et al. 2021]. We also believe that the verification benchmarks

used in the experiments, which are different from the canonical adversarial robustness queries,

would in themselves be a valuable contribution to the research community. Our benchmarks and

system are publicly available [Wu et al. 2022a].

We also note that our proposed techniques have different levels of generality. The forward-

backward analysis applies to any feed-forward/convolutional/residual neural networks and any

abstraction satisfying the conditions in Sec. 4. The node abstraction scheme is generalizable to

GNN-based node prediction tasks. The multi-step verification procedure is specific to job-scheduling

but could potentially be extended to other RL-driven systems. Exploring the general effectiveness

of the proposed techniques would be an interesting direction for future work. There are multiple

other promising future directions. First, there is still room to improve the performance of vegas:
e.g., using more precise abstraction domains or devising a specialized complete procedure that

better leverages the problem structure. Second, it would be interesting to evaluate global properties

of the GNN-scheduler, which (as discussed in Sec. 7) presents additional research challenges.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feedback, and Guy Katz for some early

discussion on forward-backward analysis. This work was conducted while the first author was an

intern at VMWare Research. It was also partially supported by NSF (RINGS #2148583 and NSF-BSF

#1814369).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

162:27

REFERENCES
Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. 2007. Compilers: principles, techniques, & tools. Pearson

Education India.

Guy Amir, Michael Schapira, and Guy Katz. 2021. Towards Scalable Verification of Deep Reinforcement Learning. In 2021

Formal Methods in Computer-Aided Design (FMCAD). 193–203.

Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri. 2019. Optimization and Abstraction: A Synergistic

Approach for Analyzing Neural Network Robustness. In Proc. Programming Language Design and Implementation (PLDI).

731–744.

Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Taylor T Johnson. 2020. Improved geometric path enumeration for

verifying ReLU neural networks. In International Conference on Computer Aided Verification. Springer, 66–96.

Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The datacenter as a computer: An introduction to the design of

warehouse-scale machines. Synthesis lectures on computer architecture 8, 3 (2013), 1–154.

Aleksandar Bojchevski and Stephan Günnemann. 2019. Certifiable robustness to graph perturbations. arXiv preprint

arXiv:1910.14356 (2019).

Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. 2019. Cnn-cert: An efficient framework for

certifying robustness of convolutional neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 33. 3240–3247.

Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth Misener. 2020. Efficient verification of

relu-based neural networks via dependency analysis. In Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 34. 3291–3299.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Pushmeet Kohli, P Torr, and P Mudigonda. 2020. Branch and bound for piecewise

linear neural network verification. Journal of Machine Learning Research 21, 2020 (2020).

Rudy R Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan K Mudigonda. 2018. A Unified View of Piecewise

Linear Neural Network Verification. In Advances in Neural Information Processing Systems, S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Curran Associates, Inc. https://proceedings.

neurips.cc/paper/2018/file/be53d253d6bc3258a8160556dda3e9b2-Paper.pdf

Hongkai Dai, Benoit Landry, Lujie Yang, Marco Pavone, and Russ Tedrake. 2021. Lyapunov-stable neural-network control.

arXiv preprint arXiv:2109.14152 (2021).

Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip HS Torr, and M Pawan Kumar. 2021. Scaling the convex

barrier with active sets. arXiv preprint arXiv:2101.05844 (2021).

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with fast

localized spectral filtering. Advances in neural information processing systems 29 (2016).

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018. Output Range Analysis for Deep

Feedforward Neural Networks. In NASA Formal Methods - 10th International Symposium, NFM 2018, Newport News, VA,

USA, April 17-19, 2018, Proceedings.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-

Guzik, and Ryan P. Adams. 2015. Convolutional Networks on Graphs for Learning Molecular Fingerprints. In Proc.

Advances in Neural Information Processing Systems (NeurIPS), Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi

Sugiyama, and Roman Garnett (Eds.). 2224–2232.

Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural networks. In International Symposium

on Automated Technology for Verification and Analysis. Springer, 269–286.

Matteo Fischetti and Jason Jo. 2017. Deep Neural Networks as 0-1 Mixed Integer Linear Programs: A Feasibility Study. CoRR

abs/1712.06174 (2017).

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein Interface Prediction using Graph Convolutional

Networks. In Proc. Advances in Neural Information Processing Systems (NeurIPS). 6530–6539.

Aymeric Fromherz, Klas Leino, Matt Fredrikson, Bryan Parno, and Corina Păsăreanu. 2020. Fast geometric projections for

local robustness certification. arXiv preprint arXiv:2002.04742 (2020).

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin T. Vechev. 2018.

AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation. In 2018 IEEE Symposium on

Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA. 3–18. https://doi.org/10.1109/

SP.2018.00058

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica. 2011. Dominant re-

source fairness: Fair allocation of multiple resource types. In 8th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 11).

Patrick Henriksen and Alessio Lomuscio. 2021. DEEPSPLIT: An efficient splitting method for neural network verification

via indirect effect analysis. In Proceedings of the 30th international joint conference on artificial intelligence (IJCAI21). To

Appear. ijcai. org.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

https://proceedings.neurips.cc/paper/2018/file/be53d253d6bc3258a8160556dda3e9b2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/be53d253d6bc3258a8160556dda3e9b2-Paper.pdf
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058

162:28 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety Verification of Deep Neural Networks. In CAV.

Kirthevasan Kandasamy, Gur-Eyal Sela, Joseph E Gonzalez, Michael I Jordan, and Ion Stoica. 2020. Online learning demands

in max-min fairness. arXiv preprint arXiv:2012.08648 (2020).

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. 2017. Reluplex: An Efficient SMT Solver for Verifying Deep

Neural Networks. In Proc. 29th Int. Conf. on Computer Aided Verification (CAV). 97–117.

Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor,

Haoze Wu, Aleksandar Zeljić, et al. 2019. The marabou framework for verification and analysis of deep neural networks.

In International Conference on Computer Aided Verification. 443–452.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017. Learning combinatorial optimization algorithms

over graphs. Advances in neural information processing systems 30 (2017).

Haitham Khedr, James Ferlez, and Yasser Shoukry. 2020. PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier.

arXiv preprint arXiv:2006.10864 (2020).

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In Proc.

International Conference on Learning Representations, (ICLR). OpenReview.net.

Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/. (2010).

http://yann.lecun.com/exdb/mnist/

Jingyue Lu and M Pawan Kumar. 2019. Neural network branching for neural network verification. arXiv preprint

arXiv:1912.01329 (2019).

Zhaoyang Lyu, Ching-Yun Ko, Zhifeng Kong, Ngai Wong, Dahua Lin, and Luca Daniel. 2020. Fastened crown: Tightened

neural network robustness certificates. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 5037–5044.

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad Alizadeh. 2019. Learn-

ing scheduling algorithms for data processing clusters. In Proceedings of the ACM Special Interest Group on Data

Communication. 270–288.

Christoph Müller, François Serre, Gagandeep Singh, Markus Püschel, and Martin Vechev. 2021b. Scaling Polyhedral Neural

Network Verification on GPUs. Proceedings of Machine Learning and Systems 3 (2021).

Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev. 2021a. Precise Multi-Neuron

Abstractions for Neural Network Certification. arXiv preprint arXiv:2103.03638 (2021).

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning Convolutional Neural Networks for Graphs. In

Proc. International Conference on Machine Learning, ICML, Vol. 48. 2014–2023.

Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, and Jinkyoo Park. 2021. Learning to schedule job-shop

problems: representation and policy learning using graph neural network and reinforcement learning. International

Journal of Production Research 59, 11 (2021), 3360–3377.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Semidefinite relaxations for certifying robustness to adversarial

examples. arXiv preprint arXiv:1811.01057 (2018).

Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, Andrei Dan, and Martin Vechev. 2021. Scalable Polyhedral

Verification of Recurrent Neural Networks. In International Conference on Computer Aided Verification. Springer, 225–248.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. 2019. A Convex Relaxation Barrier to

Tight Robustness Verification of Neural Networks. In Advances in Neural Information Processing Systems, H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https:

//proceedings.neurips.cc/paper/2019/file/246a3c5544feb054f3ea718f61adfa16-Paper.pdf

Ali Ghodsi Matei Zaharia Scott Shenker and Ion Stoica. 2013. Choosy: Max-Min Fair Sharing for Datacenter Jobs with

Constraints. (2013).

Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin Vechev. 2019a. Beyond the single neuron convex barrier

for neural network certification. Advances in Neural Information Processing Systems 32 (2019), 15098–15109.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. 2018a. Fast and effective robustness

certification. Advances in Neural Information Processing Systems 31 (2018), 10802–10813.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019b. An abstract domain for certifying neural

networks. Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–30.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019c. Boosting Robustness Certification of Neural

Networks. In International Conference on Learning Representations.

Gagandeep Singh, Markus Püschel, and Martin Vechev. 2017. Fast polyhedra abstract domain. In Proceedings of the 44th

ACM SIGPLAN Symposium on Principles of Programming Languages. ACM New York, NY, USA, 46–59.

Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2018b. A practical construction for decomposing numerical

abstract domains. Proc. ACM Program. Lang. 2, POPL (2018), 55:1–55:28.

Penghao Sun, Zehua Guo, Junchao Wang, Junfei Li, Julong Lan, and Yuxiang Hu. 2021. Deepweave: Accelerating job com-

pletion time with deep reinforcement learning-based coflow scheduling. In Proceedings of the Twenty-Ninth International

Conference on International Joint Conferences on Artificial Intelligence. 3314–3320.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

http://yann.lecun.com/exdb/mnist/
https://proceedings.neurips.cc/paper/2019/file/246a3c5544feb054f3ea718f61adfa16-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/246a3c5544feb054f3ea718f61adfa16-Paper.pdf

162:29

Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. 2019. Formal verification of neural network controlled autonomous

systems. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control. 147–156.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2013.

Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013).

Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, KRUNAL KISHOR PATEL, and Juan Pablo Vielma.

2020. The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron Relaxations for Neural Network Verifi-

cation. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,

and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 21675–21686. https://proceedings.neurips.cc/paper/2020/file/

f6c2a0c4b566bc99d596e58638e342b0-Paper.pdf

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. 2019. Evaluating Robustness of Neural Networks with Mixed Integer

Programming. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,

2019. OpenReview.net. https://openreview.net/forum?id=HyGIdiRqtm

Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T Johnson. 2020. Verification of deep convolutional neural

networks using imagestars. In International Conference on Computer Aided Verification. Springer, 18–42.

Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. 2020. Perfectly parallel fairness certification of

neural networks. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–30.

Joseph A Vincent and Mac Schwager. 2020. Reachable Polyhedral Marching (RPM): A Safety Verification Algorithm for

Robotic Systems with Deep Neural Network Components. arXiv preprint arXiv:2011.11609 (2020).

Binghui Wang, Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. 2021a. Certified robustness of graph neural networks

against adversarial structural perturbation. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &

Data Mining. 1645–1653.

Shen Wang, Zhengzhang Chen, Xiao Yu, Ding Li, Jingchao Ni, Lu-An Tang, Jiaping Gui, Zhichun Li, Haifeng Chen, and

Philip S. Yu. 2019. Heterogeneous Graph Matching Networks for Unknown Malware Detection. In Proc. International

Joint Conference on Artificial Intelligence, (IJCAI). 3762–3770.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018a. Efficient Formal Safety Analysis of Neural

Networks. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing

Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada. 6369–6379. http://papers.nips.cc/paper/7873-efficient-

formal-safety-analysis-of-neural-networks

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018b. Formal Security Analysis of Neural

Networks using Symbolic Intervals. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,

August 15-17, 2018. 1599–1614. https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2021b. Beta-crown: Efficient

bound propagation with per-neuron split constraints for complete and incomplete neural network verification. arXiv

preprint arXiv:2103.06624 (2021).

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning, and Inderjit Dhillon. 2018.

Towards fast computation of certified robustness for relu networks. In International Conference on Machine Learning.

PMLR, 5276–5285.

Eric Wong and Zico Kolter. 2018. Provable defenses against adversarial examples via the convex outer adversarial polytope.

In International Conference on Machine Learning. PMLR, 5286–5295.

Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh. 2022a. Artifact for Paper Scalable

Verification of GNN- Based Job Schedulers. https://doi.org/10.5281/zenodo.7080246

Haoze Wu, Alex Ozdemir, Aleksandar Zeljić, Kyle Julian, Ahmed Irfan, Divya Gopinath, Sadjad Fouladi, Guy Katz, Corina

Pasareanu, and Clark Barrett. 2020a. Parallelization techniques for verifying neural networks. In 2020 Formal Methods in

Computer Aided Design (FMCAD). IEEE, 128–137.

Haoze Wu, Aleksandar Zeljić, Guy Katz, and Clark Barrett. 2022b. Efficient Neural Network Analysis with Sum-of-

Infeasibilities. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,

143–163.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. 2020b. A comprehensive survey

on graph neural networks. IEEE transactions on neural networks and learning systems 32, 1 (2020), 4–24.

Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. 2018. Output reachable set estimation and verification for

multilayer neural networks. IEEE transactions on neural networks and learning systems 29, 11 (2018), 5777–5783.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. 2020. Fast and complete:

Enabling complete neural network verification with rapid and massively parallel incomplete verifiers. arXiv preprint

arXiv:2011.13824 (2020).

Pengfei Yang, Renjue Li, Jianlin Li, Cheng-Chao Huang, Jingyi Wang, Jun Sun, Bai Xue, and Lijun Zhang. 2021. Improving

neural network verification through spurious region guided refinement. Tools and Algorithms for the Construction and

Analysis of Systems 12651 (2021), 389.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

https://proceedings.neurips.cc/paper/2020/file/f6c2a0c4b566bc99d596e58638e342b0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f6c2a0c4b566bc99d596e58638e342b0-Paper.pdf
https://openreview.net/forum?id=HyGIdiRqtm
http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks
http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://doi.org/10.5281/zenodo.7080246

162:30 Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh

Rex Ying, RuiningHe, Kaifeng Chen, Pong Eksombatchai,William L. Hamilton, and Jure Leskovec. 2018. Graph Convolutional

Neural Networks for Web-Scale Recommender Systems. In Proc. ACM SIGKDD Knowledge Discovery & Data Mining,

KDD. ACM, 974–983.

Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker, and Ion Stoica. 2010. Delay

scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In Proceedings of the 5th European

conference on Computer systems. 265–278.

Tom Zelazny, Haoze Wu, Clark Barrett, and Guy Katz. 2022. On Optimizing Back-Substitution Methods for Neural Network

Verification. arXiv preprint arXiv:2208.07669 (2022).

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. 2018. Efficient Neural Network Robustness

Certification with General Activation Functions. In Advances in Neural Information Processing Systems, S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Curran Associates, Inc. https:

//proceedings.neurips.cc/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 162. Publication date: October 2022.

https://proceedings.neurips.cc/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf

	Abstract
	1 Introduction
	2 Overview
	2.1 Verification Workflow
	2.2 Forward-backward abstraction refinement
	2.3 Node abstraction with iterative refinement
	2.4 Beyond single-step verification

	3 Preliminaries
	3.1 Graphs and Graph Neural Networks
	3.2 Verification of GNNs
	3.3 GNN-based job scheduling

	4 Forward-backward analysis
	4.1 Forward abstract interpretation
	4.2 Backward abstract interpretation
	4.3 Iterative forward-backward refinement
	4.4 Handling GNN architectures.

	5 Node abstraction for GNN verification.
	6 Reasoning over traces
	7 Specifications for job scheduler
	8 Experimental Evaluation
	8.1 Implementation
	8.2 Experimental setup
	8.3 Single-step verification
	8.4 Evaluating forward-backward analysis in isolation
	8.5 Multi-step verification

	9 Related Work
	10 Conclusion and future work
	References

