
Shared Certificates for Neural
Network Verification

Marc Fischer1(B) , Christian Sprecher2,
Dimitar Iliev Dimitrov1 , Gagandeep Singh3 , and Martin Vechev1

1 ETH Zurich, Zürich, Switzerland
{marc.fischer,dimitar.iliev.dimitrov,martin.vechev}@inf.ethz.ch

2 Nostic Solutions AG, Freienbach, Switzerland
christian.sprecher@nostic.ch

3 University of Illinois at Urbana-Champaign & VMware Research, Champaign, USA
ggnds@illinois.edu

Abstract. Existing neural network verifiers compute a proof that each
input is handled correctly under a given perturbation by propagating
a symbolic abstraction of reachable values at each layer. This process
is repeated from scratch independently for each input (e.g., image) and
perturbation (e.g., rotation), leading to an expensive overall proof effort
when handling an entire dataset. In this work, we introduce a new
method for reducing this verification cost without losing precision based
on a key insight that abstractions obtained at intermediate layers for
different inputs and perturbations can overlap or contain each other.
Leveraging our insight, we introduce the general concept of shared certifi-
cates, enabling proof effort reuse across multiple inputs to reduce overall
verification costs. We perform an extensive experimental evaluation to
demonstrate the effectiveness of shared certificates in reducing the ver-
ification cost on a range of datasets and attack specifications on image
classifiers including the popular patch and geometric perturbations. We
release our implementation at https://github.com/eth-sri/proof-sharing.

Keywords: Neural Network Verification · Local Verification ·
Adversarial Robustness

1 Introduction

The success of neural networks across a wide range of application domains [21,30]
has led to their widespread application and study. Despite this success, neural
networks remain vulnerable to adversarial attacks [8,23] which raises concerns
over their trustworthiness in safety-critical settings such as autonomous driving
and medical devices. To overcome this barrier, formal verification of neural net-
works has been proposed as a key technology in the literature [39]. As a result,

M. Fischer and C. Sprecher—Equal contribution.
C. Sprecher—Work performed while at ETH Zurich.

c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 127–148, 2022.
https://doi.org/10.1007/978-3-031-13185-1_7

https://doi.org/10.5281/zenodo.6551368
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13185-1_7&domain=pdf
http://orcid.org/0000-0002-4157-1235
http://orcid.org/0000-0001-9813-0900
http://orcid.org/0000-0002-9299-2961
http://orcid.org/0000-0002-0054-9568
https://github.com/eth-sri/proof-sharing
https://doi.org/10.1007/978-3-031-13185-1_7

128 M. Fischer et al.

recent years have witnessed a growing interest in verifying critical safety proper-
ties of neural networks (e.g., fairness, robustness) [14,17,18,31,32,40,42] speci-
fied using pre and post conditions over network inputs and outputs respectively.
Conceptually, existing verifiers propagate sets of inputs in the precondition cap-
tured in symbolic form (e.g., convex sets) through the network, an expensive
process that produces over-approximations of all possible values at intermediate
layers. The final abstraction of the output can then be used to check postcondi-
tions. The key technical challenge all existing verifiers aim to address is speeding
up and scaling the certification process, i.e., faster and more efficient propagation
of symbolic shapes while reducing the overapproximation error.

This Work: Accelerating Certification via Proof Sharing. In this work, we pro-
pose a new, complementary method for accelerating neural network verification
based on the key observation that instead of treating each certification attempt
in isolation as existing verifiers do, we can reuse proof effort among multiple such
attempts, thus obtaining significant overall speed-ups without losing precision.
Figure 1 illustrates both, standard verification and the concept of proof sharing.

In standard verification an input region I1(x) (orange square) is propagated
from left to right, obtaining intermediate shapes at each intermediate layer (here
the goal is to verify all points in the input region are classified as “cat” by
the neural network N). We observe that the abstraction obtained for a new
region I2(x) (e.g., blue shapes) can be contained inside existing abstractions
from I1(x), an effect we term proof subsumption. This effect can be observed
both between abstractions obtained from different specifications (e.g., �∞ and
adversarial patches) for the same data point and between proofs for the same
property but different, yet semantically similar inputs. Building on this observa-
tion, we introduce the notion of proof sharing via templates. Proof sharing works
in two steps: first, we leverage abstractions from existing proofs in order to create
templates, and second, we augment the verifier with these templates, stopping
the expensive propagation at an intermediate layer as soon as the newly gen-
erated abstraction is included inside an existing template. Key technical ingre-
dients to the effectiveness of our approach are fast template generation and
inclusion checking techniques. We experimentally demonstrate that proof shar-
ing can achieve significant speed-ups in challenging scenarios including proving
robustness to adversarial patches [10] and geometric perturbations [3] across
different neural network architectures.

Main Contributions. Our key contributions are:

– An introduction and formalization of the concept of proof sharing in neural
network verification: the idea that some proofs capture others (Sect. 3).

– A general framework leveraging the above concept, enabling proof effort reuse
via proof templates (Sect. 4).

– A thorough experimental evaluation involving verification of neural network
robustness against challenging adversarial patch and geometric perturbations,
demonstrating that our methods can achieve proof match rates of up 95% as
well as provide non-trivial end-to-end certification speed-ups (Sect. 5).

Shared Certificates for Neural Network Verification 129

Fig. 1. Visualization of neural network verification. The input regions I1(x), I2(x) are
propagated layer by layer through a neural network N . The high-dimensional convex
shapes are visualized in 2d. While initially I1(x) and I2(x) only slightly overlap, at
layer k, N1:k(I2(x)) is fully contained in N1:k(I1(x)). (Color figure online)

2 Background

Here we formally introduce the necessary background for proof sharing.

Neural Network. A neural network N is a function N : Rdin → R
dout , commonly

built from individual layers N = NL ◦ NL−1 ◦ · · · ◦ N1. Throughout this text, we
consider feed-forward neural networks, where each layer Ni(x) = max(Ax+b, 0)
consists of an affine transformation (Ax + b) as well as a rectified linear unit
(ReLU), that applies the max with 0 elementwise. A neural network, classifying
inputs into c classes, outputs dout := c scores, one for each class, and assigns the
class with the highest score as the predicted one. While, as is common in the
neural network verification literature, we use image classification as a proxy task,
many other applications work analogously. Our approach also naturally extends
to other types of neural networks, if verifiers exist for these architectures. We
discuss the challenges and limitations of such generalizations in Sect. 4.5. In the
following, for k < L, we let N1:k denote the application of the first k layers and
Nk+1:L denote the last L − k layers respectively.

(Local) Neural Network Verification. Given a set of inputs and a postcondition
ψ, the goal of neural network verification is to prove that ψ holds over the output
of the neural network corresponding to the given set of inputs. In this work, we
focus on local verification, proving that ψ holds for the network output for a
given region I(x) ⊆ R

din formed around the input x. Formally, we state this as:

Problem 1 (Local neural network verification). For a region I(x) ⊆ R
din , neural

network N , and postcondition ψ, verify that ∀z ∈ I(x). N(z) |= ψ. We write
I(x) |= ψ if ∀z ∈ I(x). N(z) |= ψ.

Here, we restrict ourselves to verifiers based on abstract interpretation [11,14]
as they achieve state-of-the-art precision and scalability [31,32]. Further, many
other popular verifiers [38,42] can be formulated using abstract interpretation.
These verifiers propagate I(x) symbolically through the network N layer-by-layer
using abstract transformers, which overapproximate the effect of applying the

130 M. Fischer et al.

transformations defined in the different layers on symbolic shapes. The propaga-
tion yields an abstraction of the exact shape at each layer. The verifiers finally
check if the abstracted output implies ψ. This is showcased in Fig. 1, where the
input regions I1(x) and I2(x) are propagated layer-by-layer through N .

For a verifier V , we let V (I(x), N) denote the abstraction obtained after
the propagation of I(x) through the network N . We declutter notation by over-
loading N and writing N(I(x)) for the same if V is clear from context, i.e.,
V (I(x), N) = N(I(x)).

We consider robustness verification, where the goal is to prove that the net-
work classification does not change within an input region. A common input
region is the �∞-bounded additive noise, defined as Iε(x) := {z | ‖x−z‖∞ ≤ ε}.
Here, ε defines the size of the maximal perturbation to x. The postcondition ψ
denotes classification to the same class as x. Throughout this paper, we consider
different instantiations for I(x) but assume that ψ denotes classification invari-
ance (although other choices would work analogously). Due to this, we refer to
I(x) as input region and specification interchangeably. For example, in Fig. 1,
the goal is to verify that all points contained in N(I1(x)) are classified as “cat”.

3 Proof Sharing with Templates

Before introducing our framework for proof sharing, we further expand the moti-
vation example discussed in Fig. 1.

3.1 Motivation: Proof Subsumption

As stated earlier, we empirically observed that for many input regions Ii(x) and
Ij(x), the abstraction corresponding to one region at some intermediate layer k
contains that of another. Formally:

Definition 1 (Proof Subsumption). For specifications Ii(x), Ij(x), we say
that the proof of Ii(x) subsumes that of Ij(x) if at some layer k, N1:k(Ij(x)) ⊆
N1:k(Ii(x)), which we denote as Ij(x) ⊆N,k Ii(x).

18

21

Fig. 2. Example of an MNIST
image. I18,21

5×5 (x) signifies arbi-
trary change in the outlined area.

While not formally required, particularly
interesting are cases where proof subsump-
tion occurs despite Ii(x) 	⊆ Ij(x). This form
of proof subsumption is showcased in Fig. 1,
where I1(x) and I2(x) have only a small over-
lap, yet I2(x) ⊆N,k I1(x). For another exam-
ple, consider a neural network N trained as
a hand-written digit classifier for the MNIST
dataset [22] (example shown in Fig. 2) and the
following two specifications:

– �∞-bounded perturbations: all the pixels in an input image can arbitrarily be
changed independently by a small amount Iε(x) := {z | ‖x − z‖∞ ≤ ε},

Shared Certificates for Neural Network Verification 131

Table 1. Proof subsumption on a robust
MNIST classifier with 94 % accuracy. Verif. acc.
denotes the percentage of verifiable inputs from
the test set for �∞-perturbations (Iε).

ε
verif. acc.
for Iε [%]

Ii,j
2×2(x) ⊆N,k Iε(x) at layer k [%]

1 2 3 4 5

0.1 89.74 61.40 72.85 77.65 81.75 82.70

0.2 81.40 62.85 77.05 82.40 86.05 86.60

Fig. 3. The abstraction obtained
for Iε(x) (blue) contains that for
Ii,j
2×2(x) (orange) (projected to d =

2). (Color figure online)

– adversarial patches [10]. A p × p patch inside which the pixel intensity can
vary arbitrarily is placed on an image at coordinates (i, j), for which we write
Ii,j

p×p. We showcase a patch in Fig. 2 and formally define them in Sect. 4.3.

Clearly Ii,j
p×p(x) 	⊆ Iε(x) (unless ε = 1). In Table 1, we show that for a

classifier (5 layers with 100 neurons each) we indeed observe proof subsumption.
We report the accuracy, i.e., the rate of correct predictions on the unperturbed
test data, as well as the certified accuracy, i.e., the rate of samples x for which
the prediction is correct and I(x) |= ψ is verified, for Iε with ε = 0.1 and 0.2
over the whole test set. We also show the percentage of Ii,j

2×2(x) contained in
Iε(x) at layer k. To this end, we pick 1000 random x for which Iε(x) is verifiable
and sample 2 (i, j) pairs each. We utilize a Box domain verifier and a robustly
trained network [24]. Figure 3 shows a patch specification Ii,j

2×2(x) (in orange)
contained in the �∞ specification Iε (in blue) projected to 2 dimensions via PCA.

Reasons for Proof Subsumption. In Table 1, we observe that the rate of proof
subsumption increases with larger ε and k. These observations give an intuition
as to why we observe proof subsumption. First, as input regions pass through the
neural network, in each layer the abstractions become more imprecise. While this
fundamentally limits verification, it makes the subsumption of abstractions more
probable. This effect increases, when increasing ε for Iε. Second, and more funda-
mentally, while passing through the layers of a neural network, we observed that
semantically similar yet distinct image inputs, e.g., two similar-looking hand-
written digits, have activation vectors that grow closer in �2 norm as they pass
through the layers of the neural network [21,34]. This effect is a consequence of
the neural network distilling low-level information (e.g., individual pixel values)
into high-level concepts (e.g., the classes of digits). As specifications (and their
proofs) correspond to sets of concrete inputs, a similar effect may apply. We
conjecture that these two effects drive the observed proof subsumption.

3.2 Proof Sharing with Templates

Leveraging this insight, we introduce the idea of proof sharing via templates,
showcased in Fig. 4. We use an abstraction obtained from a robustness proof

132 M. Fischer et al.

Fig. 4. Conceptualization of proof sharing with templates. In (a) we create a verifiable
template T (black-dashed border) from specification N1:k(I1(x)). When verifying new
specifications I2, . . . , I5, shown in (b), we can shortcut the verification of all but I5 by
subsuming them in T .

N1:k(I1(x)) at layer k to create a template T . After ensuring that T is ver-
ifiable, it can be used to shortcut the verification of other regions, e.g., of
I2(x), . . . , I5(x). Formally we decompose proof sharing into two sub-problems:
(i) the generation of proof templates and (ii) the matching of abstractions cor-
responding to other properties to these templates. For simplicity, here we only
consider templates at a single layer k of the neural network and we show an
extension to multiple layers in Sect. 4.3.

Our goal is to construct a template T at layer k that implies the postcondition
and captures abstractions at layer k obtained from propagating several Ii(x).
As it is challenging to find a single T that captures abstractions corresponding
to many input regions, yet remains verifiable, we allow a set of templates T . We
state this formally as:

Problem 2 (Template Generation). For a given neural network N , input x and
set of specifications I1, . . . , Ir, layer k and a postcondition ψ, find a set of tem-
plates T with |T | ≤ m such that:

arg max
T

r∑

i=1

[
∨

T∈T
N1:k(Ii(x)) ⊆ T

]
(1)

s.t. ∀ T ∈ T . Nk+1:L(T) |= ψ.

Intuitively, Eq. (1) aims to find a set T of templates T at layer k, such that
the maximal amount (via the sum) of specifications I1, . . . , Ir is contained in
at least one template T (via the disjunction) while ensuring that the individual
T are still verifiable (via the constraint on the second line). As neural network
verification required by the constraints of Eq. (1), is NP-complete [17], comput-
ing an exact solution to Problem2 is computationally infeasible. Therefore, we
compute an approximate solution to Eq. (1). In general, Problem2 does not nec-
essarily require that the templates T are created from previous proofs. However,
building on proof subsumption, as discussed in Sect. 3.1, in Sect. 4 we will infer
the templates from previously obtained abstractions.

Shared Certificates for Neural Network Verification 133

To leverage proof sharing once the templates T are obtained, we need to be
able to match an abstraction S = N1:k(I(x)) verified using proof transfer to a
template in T :

Problem 3 (Template Matching). Given a set of templates T at layer k of a
neural network N , and a new input region I(x), determine whether there exists
a T ∈ T such that S ⊆ T , where S = N1:k(I(x)).

Together, Problems 2 and 3 outline a general framework for proof sharing,
permitting many instantiations. We note that Problems 2 and 3 present an inher-
ent precision vs. speed trade-off: Problem 3 can be solved most efficiently for
small values of m = |T | and simpler representations of T (allowing faster check-
ing of S ⊆ T) at the cost of lower proof matching rates. Alternatively, Eq. (1)
can be maximized by large m and T represented by complex abstractions, thus
attaining high precision but expensive template generation and matching.

Beyond Proof Sharing on the Same Input. In this section, we focused on proof
sharing for different specifications of the same input x. However, we observed
that proof sharing is even possible between specifications defined on different
inputs x and x′. To facilitate the use of templates in this setting, Eq. (1) in
Problem 2 can be adapted to consider an input distribution.

4 Efficient Verification via Proof Sharing

We now consider an instantiation of proof sharing where we are given an input
x and properties I1, . . . , Ir to verify. Our general approach, based on Problems 2
and 3, is shown in Algorithm1. In this section, we first discuss Algorithm 1 in
general. We then describe the possible choices of abstract domains and their
implications on the algorithm, followed by a discussion on template generation
for two different specific problems. Finally, we conclude the section with a dis-
cussion on the conditions for effective proof sharing verification.

In Algorithm 1, we first create the set of templates T (Line 1, discussed
shortly) and subsequently verify I1, . . . , Ir using T . Here, we consider two,
potentially identical, verifiers VT and VS , where VT is used to create the tem-
plates T and VS is used to propagate input regions up to the template layer k.
For each Ii we propagate it up to layer k (Line 4) to obtain S = N1:k(Ii(x)) and
check if we can match it to a template Tj ∈ T (Line 6) using an inclusion check.
If a match is found, then we conclude that N(Ii(x)) |= ψ and set the verifica-
tion output vi to True. If this is not the case (Line 11) we verify N(Ii(x)) |= ψ
directly by checking VS(S,Nk+1:L) |= ψ. If the template generation fails, we
revert to verifying Ii by applying VS in the usual way (omitted in Algorithm1).

Soundness. As long as the templates T are sound, this procedure is sound, i.e.
Algorithm 1 only returns vi = True if ∀z ∈ Ii(x). N(z) |= ψ holds. Formally:

Theorem 1. Algorithm 1 is sound if ∀ T ∈ T , z ∈ T. Nk+1:L(z) |= ψ and VS is
sound.

134 M. Fischer et al.

Algorithm 1: Neural Network Verifica-
tion Utilizing Proof Templates
Input: x, I1, . . . , Ir, k, ψ, verifiersVS , VT

Result: v1, . . . , vr indicating
vi := (N(Ii(x)) |= ψ)

1 T ←gen templates(x, N, k, ψ, VS , VT)
2 v1, . . . , vr ← False
3 for i ← 1 to r do
4 S ← VS(Ii(x), N1:k)
5 for Tj ∈ T do
6 if S ⊆ Tj then
7 vi ← True
8 break
9 end

10 end
11 if ¬vi then
12 vi ← (VS(S,Nk+1:L) |= ψ)
13 end
14 end
15 return v1, . . . , vr

This holds by the con-
struction of the algorithm:

Proof. For a given x and
Ii, Algorithm 1 only claims
vi = True if either the
check in (i) Line 6 or (ii)
Line 11 succeeds. Since VS is
sound, we know that ∀z ∈
Ii(x). N1:k(z) ∈ S. There-
fore in case (i) by our require-
ment on T as well as S ⊆
T it follows that ∀z ∈
Ii(x). N(z) |= ψ. In case (ii)
we execute Line 12 and the
same property holds due to
the soundness of VS .

Importantly, Theorem 1
shows that the generation
process of T does not affect
the overall soundness as long
as the set of templates T ful-
fills the condition in Theorem1. In particular, that means that when solving
Problem 2, it suffices to show the side condition (∀ T ∈ T . Nk+1:L(T) |= ψ)
holds, while heuristically approximating the actual optimization criteria. We let
VT denote the verifier used to ensure this property in gen templates.

Precision. We say a verifier V1 is more precise than another verifier V2 on N if
out of a set of specifications it can verify some that V2 can not.

Theorem 2. If VS(VS(Ii(x), N1:k), Nk+1:L) = VS(Ii(x), N), then Algorithm 1
is at least as precise as VS.

Proof. Since, even if the inclusion check in Line 6 fails, due to Line 12 we out-
put vi = VS(VS(Ii(x), N1:k), Nk+1:L) |= ψ (Line 12), which by our requirement
equals vi = VS(Ii(x), N) |= ψ. Therefore we have at least the precision of VS .

The required property holds for any verifier VS for which the abstractions
of all network layers depends only on the abstractions from previous layers and
is fulfilled for all verifiers considered in this paper. For verifiers VS that do not
fulfill the required property, potential losses in precision can be remedied (at
the cost of runtime) by using VS(Ii(x), N1:L) in Line 12. Interestingly, it is even
possible to increase the precision of Algorithm 1 over VS by creating templates
T that are verified with a more precise verifier VT . However, in this discussion,
we restrict ourselves to speed gains. We believe that obtaining precision gains
requires instantiating our framework with a significantly different approach than
that taken for improving speed which is the main focus of our work. We leave
this as an interesting item for future work.

Shared Certificates for Neural Network Verification 135

Run-Time. Here, we aim to characterize the run-time of Algorithm 1 as well as
its speed-up over conventional verification. For an input x, (keeping the other
parameters fixed), the expected run time is

tPS = tT + r(tS + t⊆ + (1 − ρ)tψ) (2)

where tT is the expected time required to generate the templates at Line 1, r is
the number of specifications to be verified, tS is the expected time to compute
S (Line 4), t⊆ is the time to check S ⊆ T for T ∈ T until a match is found (Line
5 to Line 10), ρ ∈ [0, 1] is the rate of specifications where a template is found and
tψ is the time required to check ψ on the network output corresponding to S (Line
12). This time is minimized if the individual expected run times tT , tS , tψ are
minimal and ρ is large (i.e., close to 1). Unfortunately, computing the template
match rate ρ analytically is challenging and requires global reasoning over the
neural network for all valid inputs, which are not clearly defined. However, our
empirical analysis (in Sect. 5) shows that ρ is higher when templates are created
at later layers (as in Sect. 3.1).

To determine the speed-up compared to a baseline standard verifier, we make
the simplifying assumption that there is a single verifier V = VS = VT that has
expected run-time ν for each layer. Thus, the expected run-time for the con-
ventional verifier is tBL = rLν. We have tT = λmLν, tS = kν, tψ = (L − k)ν,
t⊆ = ηm and ultimately tPS = (m + r(1 − ρ))Lν + rρkν + rηm for constants
λ ∈ R>0, which indicates the overhead in generating one template over just
verifying it, and η ∈ R>0 which denotes the time required to perform an inclu-
sion check for one template. As this phrasing shows, Algorithm 1 has the same
asymptotic runtime as the base verifier V . Further, this formulation allows us to
write our expected speed-up as tBL

tP S
= r

λm+ηrm/Lμ+rρk/L+r(1−ρ) . This speed-up
is maximized when k is small compared to L, i.e., templates are placed early in
the neural network, the matching rate ρ is close to 1, and m,λ, η are small, i.e.,
generation and matching are fast. Unfortunately, these requirements are at odds
with each other: as we show in Sect. 5, higher m leads to higher matching rate
ρ and ρ is naturally higher for templates later in the neural network (higher k).
Thus high speed-ups require careful hyper-parameter choices.

To showcase how we can achieve good templates as well as fast matching,
we next discuss the choice of the abstract domain to be used in the propagation
and the representation of the templates. Then we discuss the template genera-
tion procedure and instantiate it for the verification of robustness to adversarial
patches and geometric perturbations.

4.1 Choice of Abstract Domain

To solve Problems 2 and 3 in a way that minimizes the expected runtime and
maximizes the overall precision, the choice of abstract domain is crucial. Here we
briefly review common choices of abstract domains for neural network verification
and how they are suited to our problem. Geometrically these domains can be
thought of as a convex abstraction of the set of vectors representing reachable

136 M. Fischer et al.

values at each layer of the neural network. We say that an abstraction a1 is more
precise than another abstraction a2, if and only if a1 ⊆ a2, i.e., all points in a1

occur in a2. Similarly, we say that a domain is more precise than another if it
can express all abstractions in the other domain.

The Box (or Interval) domain [14,16,24] abstracts sets in d dimensions as
B = {a + diag(d)e | e ∈ [−1, 1]d} with center a ∈ R

d and width d ∈ R
d
≥0. The

Zonotope domain [14,15,24,31,40] uses relaxations Z of the form

Z = {a + Ae | e ∈ [−1, 1]q}, (3)

parametrized with a ∈ R
d and A ∈ R

d×q.

Table 2. Feasibility of S ⊆ T
for Box B, Zonotope Z (with
order reduction) and DP Poly-
hedra P .

T

B Z α(Z) P

S

B ✓ ✗ ✓ (✓)

Z ✓ ✗ ✓ ✗

P ✓ ✗ ✓ (✓)

A third common choice are (restricted) con-
vex Polyhedra P [12,32,42]. Here, we consider P
to be in the DeepPoly (DP) domain [32,42]. Gen-
erally, Boxes are less precise, i.e. certify fewer
properties, than Zonotopes or Polyhedra.

For efficient proof sharing, we require a fast
inclusion check S ⊆ T , which is challenging
in our context due to the high dimensional-
ity d of the intermediate neural network lay-
ers. While we point the interested reader to [29]
for a detailed discussion, we summarize the key
results in Table 2. There, ✓ denotes feasibility,
i.e. low polynomial runtime (usually 2d compar-
isons, sometimes with an additional matrix multiplication), ✗ denotes infeasibil-
ity, e.g. exponential run time. If T is a Box all checks are simple as it suffices
to compute the outer bounding box of S and compare the 2d constraints. If
T is a DP Polyhedra these checks require a linear program (LP) to be solved.
While the size of this LP permits a low theoretical time complexity, in case S
is a Box or DP Polyhedra, in practice, we consider calling an LP solver too
expensive (denoted as (✓)). For Zonotopes these checks are generally infeasible,
as they require enumeration of the faces or corners, which is computationally
expensive for large d and P . While Zonotopes can be encoded as Polyhedra
(but not necessarily DP Polyhedra) and the same LP inclusion check as for P
could be used, the resulting LP would require exponentially many variables due
to the previously mentioned enumeration. However, by placing constraints on
the matrix A in Eq. (3) these inclusion checks can be performed efficiently. The
mapping of a Zonotope to such a restricted Zonotope is called order reduction
via outer-approximation [19,29].

In particular, for a Zonotope Z we consider the order reduction αBox to its
outer bounding box (where A is diagonal) and note that other choices of α are
possible (e.g. the reduction to affine transformations of a hyperbox).

For a general Zonotope Z its outer bounding box Z ′ = αBox(Z) can be
easily obtained. The center of Z ′ is a, the center of Z. The width d ∈ R

d
≥0 is

given as di =
∑q

j=1 |Ai,j |. Z ′ is represented as either a Box or a Zonotope (with

Shared Certificates for Neural Network Verification 137

A = diag(d)). To check S ⊆ Z ′ for a general Zontope S it suffices to check
αBox(S) ⊆ Z ′ which reduces to the simple inclusion check for boxes.

Based on the above discussion we will use the Zonotope domain to represent
all abstractions, and use verifiers VS = VT that propagate these zonotopes using
the state-of-the-art DeepZ transformers [31]. To permit efficient inclusion checks
we apply αBox on the resulting zonotopes to obtain the Box templates T , which
we treat as a special case of Zonotopes.

4.2 Template Generation

We now discuss instantiations for gen templates in Algorithm 1. Recall from
Sect. 3.1 the idea of proof subsumption, i.e. that abstractions for some specifi-
cation contain abstractions for other specifications. Building on this, we relax
the Problem 2 in order to create m templates Tj from intermediate abstractions
N1:k(Îi(x)) for some Î1, . . . , Îm. Note that Îj are not necessarily directly related
to the specifications I1, . . . , Ir that we want to verify. For a chosen layer k, input
x, number of templates m and verifiers VS and VT we optimize

arg max
Î1,...,Îm

r∑

i=1

⎡

⎣
m∨

j=1

VS(Ii(x), N1:k) ⊆ Tj

⎤

⎦

where Tj = αBox(VT (Îj(x), N1:k))
s.t. VT (Tj , Nk+1:L) |= ψ for j ∈ 1, . . . ,m.

(4)

As originally in Problem2 (Eq. (1)) we aim to find a set of templates such
that the intermediate shapes at layer k for most of the r specifications are covered
by at least one template T . In contrast to Eq. (1), we tie Tj to the specifications
Îj . This alone does not make the problem easier to tackle. However, next, we
will discuss how to generate application-specific parametric Îj and solve Eq. (4)
by optimizing over their parameters, allowing us to solve template generation
much more efficiently than in Eq. (1).

4.3 Robustness to Adversarial Patches

We now instantiate the above scheme in order to verify the robustness of image
classifiers against adversarial patches [10]. Consider an attacker that is allowed
to arbitrarily change any p×p patch of the image, as showcased earlier in Fig. 2.
For such a patch over pixel positions ([i, i+p−1]×[j, j+p−1]), the corresponding
perturbation is

Ii,j
p×p(x) := {z ∈ [0, 1]h×w | zπC

i,j
= xπC

i,j
}

with πi,j =
{

(k, l) | k∈i,...,i+p−1
l∈j,...,j+p−1

}

where h and w denote the height and width of the input x. Here πi,j denotes
the parts of the image affected by the patch, and πC

i,j its complement, i.e., the

138 M. Fischer et al.

μ1

(a) �∞

μ1

μ2

(b) Center + Border

μ1 μ2

μ3 μ4

(c) 2x2 Grid

Fig. 5. Example splits μ for 10 × 10 pixels.

N1:k(Îi(x, εi))

Tk = αBox(N1:k(Îi(x, εi)))

βkTk

Fig. 6. Example Template. (Color
figure online)

unaffected part of the image. To prove robustness for an arbitrarily placed p × p
patch, however, one must consider the perturbation set Ip×p(x) := ∪i,jIi,j

p×p(x).
To prove robustness for Ip×p, existing approaches [10] separately verify

Ii,j
p×p(x) for all i ∈ {1, . . . , h − p + 1}, j ∈ {1, . . . , w − p + 1}. For example,

with p = 2 and a 28 × 28 MNIST image, this approach requires 729 individual
proofs. Because the different proofs for Ip×p share similarities, this is an ideal
candidate for proof sharing. We utilize Algorithm1 and check ∧ivi at the end to
speed up this process. For template generation, we solve Eq. (4) for m templates
with an input perturbation Îi per template.

We empirically found that (recall Table 1) setting Îi to an �∞ region Iεi

to work particularly well to capture a majority of patch perturbations Ii,j
p×p

at intermediate layers. Specifically, we found that setting εi to the maximally
verifiable value for this input to work particularly well.

To further increase the number of specifications contained in a set of tem-
plates T , we use m template perturbations of the form

Îi(x) := {z | ‖xμi
− zμi

‖∞ ≤ εi ∧ xμC
i

= zμC
i
},

where μi denotes a subset of pixels of the input image and μC
i its complement and

we maximize εi in a best-effort manner. In particular, we consider μ1, . . . , μm,
such that they partition the set of pixels in the image (e.g., in Fig. 5).

As noted earlier, this generation procedure needs to be fast, yet obtain T to
which many abstractions match in order to obtain speed-ups. Thus, we consider
small m, and fixed patterns μ1, . . . , μm. For each Îi, we aim to find the largest
εi which can still be verified in order to maximize the number of matches. Note
that for m = 1, this is equivalent to the �∞ input perturbation Iε with the
maximally verifiable ε for the given image.

Concretely, we can perform binary search over εi in order find a large εi,
still satisfying Nk+1:L(αBox(N1:k(Îi))) |= ψ. Verification with our chosen DeepZ
Zonotopes is not monotonous in εi due to the non-monotonic transformers used
for non-linearities (e.g., ReLU). This renders the application of binary search a
best-effort approximation. As we don’t require a formal maximum but rather
aim to solve a surrogate for Problem 2, this still works well in practice. Further
note that, applying αBox to templates introduces imprecision, i.e. VT might not
be able to prove properties over templates that it could without the application
of αBox. However, Theorem 2 (which only requires properties of VS) still applies.

Shared Certificates for Neural Network Verification 139

Algorithm 2: Online Template
Generation for Patches
Input: x, N, μ1, . . . , μm,K, ψ, VT

Result: T k for k ∈ K
1 T k ← {} for k ∈ K
2 for i ← 1 to m do
3 Îi(x, ε) := {z | ‖xμi

− zμi
‖ ≤ ε

4 ∧ xμC
i

= zμC
i
}

5 f(ε) := VT (Îi(x, ε), N) |= ψ
6 εi ← bin search(ε, f(ε))
7 for k ∈ K do
8 Tk ← αBox(VT (Îi(x, εi), N1:k))
9 g(βk) := VT (βTk, Nk+1:L) |= ψ

10 βk ← bin search(β, g(β))
11 T k ← T k ∪ {βkTk}
12 end
13 end
14 return T k for k ∈ K

Templates at Multiple Layers. We
can extend this approach to obtain
templates at multiple layers with-
out a large increase in computa-
tional cost. With templates at mul-
tiple layers, we first try to match
the propagated shape against the
earliest template layer and upon
failure propagate it further to the
next, where we again attempt
to match the template. In Algo-
rithm1, this means repeating the
block from Line 4 to Line 10 for
each template layer before going on
to the check on Line 11.

The full template generation
procedure is given in Algorithm2.
First, we perform a binary search
over εi (Line 6) to find the largest
εi, for which the specification is ver-
ifiable. Then for each layer k in the set of layers K at which we are creating
templates we create a box Tk from the Zonotope. As this Tk may not be ver-
ifiable, due to the imprecision added in αBox, we then perform another binary
search for the largest scaling factor βk (Line 10), which is applied to the matrix
A in Eq. (3). We denote this operation as βkTk. We show an example for a single
layer k in Fig. 6. The blue area outlines the Zonotope found via Line 6, which
is verifiable as it is fully on one side of the decision boundary (red, dashed).
After applying αBox (orange), however, is not (crosses the decision boundary).
By scaling it with βk the shape is verifiable again (green) and used as a template.

4.4 Geometric Robustness

Geometric robustness verification [3,13,28,32] aims to verify the robustness of
neural networks against geometric transformations such as image rotations or
translations. These transformations typically include an interpolation operation.
For example consider rotation Rγ of an image by γ ∈ Γ degrees for an interval Γ
(e.g., γ ∈ [−5, 5]), for which we consider the specification IΓ (x) := {Rγ(x) | γ ∈
Γ}. We note that, unlike �∞ and patch verification, the input regions for geo-
metric transformations are non-linear and have no closed-form solutions. Thus,
an overapproximation of the input region must be obtained [3]. For large Γ , the
approximate input region IΓ (x), can be too coarse resulting in imprecise veri-
fication. Hence, in order to assert ψ on IΓ , existing state-of-the-art approaches
[3], split Γ into r smaller ranges Γ1, . . . , Γr and then verify the resulting r spec-
ifications (IΓi

, ψ) for i ∈ 1, . . . , r. These smaller perturbations share similarities
facilitating proof sharing. We instantiate our approach similar to Sect. 4.3. A
key difference to Sect. 4.3 is that while x ∈ Ii,j

p×p(x) for all i, j in patches, here

140 M. Fischer et al.

in general x 	∈ IΓi
(x) for most i. Therefore, the individual perturbations Ii(x)

do not overlap. To account for this, we consider m templates and split Γ into m
equally sized chunks (unrelated to the r splits) obtaining the angles γ1, . . . , γm

at the center of each chunk. For m templates we then consider the perturbations
Îi := Iεi

(Rγi
(x)), denoting the �∞ perturbation of size εi around the γi degree

rotated x. To find the template we employ a procedure analogous to Algorithm 2.

4.5 Requirements for Proof Sharing

Now, we discuss the requirements on the neural network N such that proof
sharing via templates works well. For simplicity, we discuss simple per-dimension
box bounds propagation for VS and VT . However, similar arguments can be made
for more complex relational abstractions such as Zonotopes or Polyhedra.

In order for an abstraction S to match to a template T , we need to show
interval inclusion for each dimension. For a particular dimension i this can occur
in two ways: (i) when both S and T are just a point in that dimension and
these points coincide, e.g., aS

i = aT
i , or (ii) when aS

i ± dS
i ⊆ aT

i ± dT
i . While

particularly in ReLU networks, the first case can occur after a ReLU layer sets
values to zero, we focus our analysis here on the second case as it is more com-
mon. In this case, the width of T in that dimension dT

i must be sufficient to
cover S. Ignoring case (i) and letting supp(T) denote the dimensions in which
dT

i > 0, we can pose that supp(S) ⊆ supp(T) as a necessary condition for inclu-
sion. While it is in general hard to argue about the magnitudes of these values,
this approach still provides an intuition. When starting from input specifications
supp(I) 	⊆ supp(Î), supp(S) ⊆ supp(T) can only occur if during propagation
through the neural network N1:k the mass in supp(Î) can “spread out” suffi-
ciently to cover supp(S). In the fully connected neural networks that we discuss
here, the matrices of linear layers provide this possibility. However, in networks
that only read part of the input at a time such as recurrent neural networks,
or convolutional neural networks in which only locally neighboring inputs feed
into the respective output in the next layer, these connections do not necessarily
exist. This makes proof sharing hard until layers later in the neural network,
that regionally or globally pool information. As this increases the depth of the
layer k at which proof transfer can be applied, this also decreases the potential
speed-up of proof transfer. This could be alleviated by different ways of creating
templates, which we plan to investigate in the future.

5 Experimental Evaluation

We now experimentally evaluate the effectiveness of our algorithms from Sect. 4.

5.1 Experimental Setup

We consider the verification of robustness to adversarial patch attacks and geo-
metric transformations in Sect. 5.2 and Sect. 5.3, respectively. We define spec-
ifications on the first 100 test set images each from the MNIST [22] and the

Shared Certificates for Neural Network Verification 141

Table 3. Rate of Ii,j
2×2 matched to templates T for I2×2 patch verification for different

combinations of template layers k, 7 × 200 networks,using m = 1 template.

template at layer k 1 2 3 4 5 6 7 patch verif. [%]

MNIST 18.6 85.6 94.1 95.2 95.5 95.7 95.7 97.0

CIFAR 0.1 27.1 33.7 34.4 34.2 34.2 34.3 42.2

Table 4. Average verification time in seconds per image for I2×2 patches for different
combinations of template layers k, 7 × 200 networks,using m = 1 template.

Proof Sharing, template layer k

Baseline 1 2 3 4 1+3 2+3 2+4 2+3+4

MNIST 2.10 1.94 1.15 1.22 1.41 1.27 1.09 1.10 1.14

CIFAR 3.27 2.98 2.53 2.32 2.47 2.35 2.49 2.42 2.55

CIFAR-10 dataset [20] (“CIFAR”) as with repetitions and parameter variations
the overall runtime becomes high. We use DeepZ [31] as the baseline verifier as
well as for VS and VT [31]. Throughout this section, we evaluate proof sharing for
two networks on two common datasets: We use a seven layer neural network with
200 neurons per layer (“7× 200”) and a nine layer network with 500 neurons per
layer (“9× 500”) for both the MNIST[22] and CIFAR datasets [20], both uti-
lizing ReLU activations. These architectures are similar to the fully-connected
ones used in the ERAN and Mnistfc VNN-Comp categories [2].

For MNIST, we train 100 epochs, enumerating all patch locations for each
sample, and for CIFAR we train for 600 with 10 random patch locations, as out-
lined in [10] with interval training [16,24]. On MNIST the 7× 200 and the 9× 500
achieve a natural accuracy of 98.3% and 95.3% respectively. For CIFAR, these
values are 48.8% and 48.1% respectively. Our implementation utilizes PyTorch
[25] and is evaluated on Ubuntu 18.04 with an Intel Core i9-9900K CPU and 64
GB RAM. For all timing results, we provide the mean over three runs.

5.2 Robustness Against Adversarial Patches

For MNIST, containing 28 × 28 images, as outlined in Sect. 4.3, in order to
verify inputs to be robust against 2 × 2 patch perturbations, 729 individual
perturbations must be verified. Only if all are verified, the overall property can
be verified for a given image. Similarly, for CIFAR, containing 32 × 32 color
images, there are 961 individual perturbations (the patch is applied over all
color channels).

We now investigate the two main parameters of Algorithm 2: the masks
μ1, . . . , μm and the layers k ∈ K. We first study the impact of the layer k
used for creating the template. To this end, we consider the 7× 200 networks,

142 M. Fischer et al.

Table 5. I2×2 patch verification with templates at the 2nd & 3rd layer of the 7 × 200
networks for different masks.

Method/Mask m patch matched [%] t [s]

Baseline - - 2.14

L-infinity 1 94.1 1.11

Center + Border 2 94.6 1.41

2 × 2 Grid 4 95.0 3.49

Table 6. I2×2 patch verification with templates generated on the second and third
layer using the �∞-mask. Verification times are given for the baseline tBL and for
applying proof sharing tPS in seconds per image.

Dataset Net verif. acc. [%] tBL tPS patch mat. [%] patch verif. [%]

MNIST 7 × 200 81.0 2.10 1.10 94.1 97.0

9 × 500 66.0 2.70 1.32 93.0 95.3

CIFAR 7 × 200 29.0 3.28 2.45 33.7 42.2

9 × 500 28.0 5.48 4.48 34.2 46.2

use m = 1 (covering the whole image; equivalent to Îε). Table 3 shows the cor-
responding template matching rates, and the overall percentage of individual
patches that can be verified “patches verif.”. (The overall percentage of images
for which I2×2 is true is reported as “verif.” in Table 6.) Table 4 shows the cor-
responding verification times (including the template generation). We observe
that many template matches can already be made at the second or third layer.
As creating templates simultaneously at the second and third layer works well
for both datasets, we utilize templates at these layers in further experiments.

Next, we investigate the impact of the pixel masks μ1, . . . , μm. To this end,
we consider three different settings, as showcased in Fig. 5 earlier: (i) the full
image (�∞-mask as before; m = 1), (ii) “center + border” (m = 2), where we
consider the 6 × 6 center pixel as one group and all others as another, and (iii)
the 2 × 2 grid (m = 4) where we split the image into equally sized quarters.

As we can see in Table 5, for higher m more patches can be matched to the
templates, indicating that our optimization procedure is a good approximation
to Problem 2, which only considers the number of templates matched. Yet, for
m > 1 the increase in matching rate p does not offset the additional time in
template generation and matching. Thus, m = 1 results in a better trade-off.
This result highlights the trade-offs discussed throughout Sect. 3 and Sect. 4.
Based on this investigation we now, in Table 6, evaluate all networks and datasets
using m = 1 and template generation at layers 2 and 3. In all cases, we obtain a
speed up between 1.2 to 2× over the baseline verifier. Going from 2 × 2 to 3 × 3
patches speed ups remain around 1.6 and 1.3 for the two datasets respectively.

Shared Certificates for Neural Network Verification 143

Table 7. Speed-ups achievable in the setting of Table 3. tBL the baseline.

speedup at layer k

Layer k 1 2 3 4

realized tBL/tPS 1.08 1.83 1.72 1.49

optimal tBL/(tT + rtS + rt⊆) 3.75 2.51 1.92 1.56

optimal, no ⊆ tBL/(tT + rtS) 4.02 2.68 2.01 1.62

optimal, no gen T ., no ⊆ tBL/rtS 4.57 2.90 2.13 1.69

Comparison with Theoretically Achievable Speed-Up. Finally, we want to deter-
mine the maximal possible speed-up with proof sharing and see how much of this
potential is realized by our method. To this end we investigate the same setting
and network as in Table 3. We let tBL and tPS denote the runtime of the base
verifier without and with proof sharing respectively. Similar to the discussion
in Sect. 4 we can break down tPS into tT (template generation time), tS (time
to propagate one input to layer k), t⊆ (time to perform template matching)
and tψ (time to verify S if no match). Table 7 shows different ratios of these
quantities. For all, we assume a perfect matching rate at layer k and calculate
the achievable speed-up for patch verification on MNIST. Comparing the opti-
mal and realized results, we see that at layers 3 and 4 our template generation
algorithm, despite only approximately solving Problem2 achieves near-optimal
speed-up. By removing the time for template matching and template generation
we can see that, at deeper layers, speeding up t⊆ and tT only yield diminishing
returns.

5.3 Robustness Against Geometric Perturbations

For the verification of geometric perturbations, we take 100 images from the
MNIST dataset and the 7× 200 neural network from Sect. 5.2. In Table 8, we
consider an input region with ±2° rotation, ±10% contrast and ±1% brightness
change, inspired by [3]. To verify this region, similar to existing approaches [3],
we choose to split the rotation into r regions, each yielding a Box specification
over the input. Here we use m = 1, a single template, with the largest verifiable
ε found via binary search. We observe that as we increase r, the verification
rate increases, but also the speed ups. Proof sharing enables significant speed-up
between 1.6 to 2.9×.

Finally, we investigate the impact of the number of templates m. To this end,
we consider a setting with a large parameter space: ±40° rotation generated input
region with r = 200. In Table 9, we evaluate this for m templates obtained from
the �∞ input perturbation around m equally spaced rotations, where we apply
binary search to find εi tailored for each template. Again we observe that m > 1
allows more templates matches. However, in this setting the relative increase is
much larger than for patches, thus making m = 3 faster than m = 1.

144 M. Fischer et al.

Table 8. ±2° rotation, ±10% contrast and ±1% brightness change split into r per-
turbations on 100 MNIST images. Verification rate, rate of splits matched and verified
along with the run time of Zonotope tBL and proof sharing tPS .

r verif. [%] splits verif. [%] splits matched [%] tBL tPT

4 73.0 87.3 73.1 3.06 1.87

6 91.0 94.8 91.0 9.29 3.81

8 93.0 95.9 94.2 20.64 7.48

10 95.0 96.5 94.9 38.50 13.38

Table 9. ±40° rotation split into 200 perturbations evaluated on MNIST. The verifi-
cation rate is just 15 %, but 82.1 % of individual splits can be verified.

Method m splits matched [%] t [s]

Baseline - - 11.79

Proof Sharing 1 38.0 9.15

2 41.1 9.21

3 58.5 8.34

5.4 Discussion

We have shown that proof sharing can achieve speed-ups over conventional exe-
cution. While the speed-up analysis (see Sect. 4 and Table 7) put a ceiling on
what is achievable in particular settings, we are optimistic that proof sharing
can be an important tool for neural network robustness analysis. In particular,
as the size of certifiable neural networks continues to grow, the potential for
gains via proof sharing is equally growing. Further, the idea of proof effort reuse
can enable efficient verification of larger disjunctive specifications such as the
patch or geometric examples considered here. Besides the immediately useful
speed-ups, the concept of proof sharing is interesting in its own right and can
provide insights into the learning mechanisms of neural networks.

6 Related Work

Here, we briefly discuss conceptually related work:

Incremental Model Checking The field of model checking aims to show whether a
formalized model, e.g. of software or hardware, adheres to a specification. As neu-
ral network verification can also be cast as model checking, we review incremental
model checking techniques which utilize a similar idea to proof sharing: reuse
partial previous computations when checking new models or specifications. Proof
sharing has been applied for discovering and reusing lemmas when proving the-
orems for satisfiability [6], Linear Temporal Logic [7], and modal μ-calculus [33].

Shared Certificates for Neural Network Verification 145

Similarly, caching solvers [35] for Satisfiability Modulo Theories cache obtained
results or even the full models used to obtain the solution, with assignments for
all variables, allowing for faster verification of subsequent queries. For program
analysis tasks that deal with repeated similar inputs (e.g. individual commits
in a software project) can leverage partial results [41], constraints [36] precision
information [4,5] from previous runs.

Proof Sharing Between Networks. In neural network verification, some
approaches abstract the network to achieve speed-ups in verification. These sim-
plifications are constructed in a way that the proof can be adapted for the original
neural network [1,43]. Similarly, another family of approaches analyzes the dif-
ference between two closely related neural networks by utilizing their structural
similarity [26,27]. Such approaches can be used to reuse analysis results between
neural network modifications, e.g. fine-tuning [9,37].

In contrast to these works, we do not modify the neural network, but achieve
speed-ups rather by only considering the relaxations obtained in the proofs. [37]
additionally consider small changes to the input, however, these are much smaller
than the difference in specification we consider here.

7 Conclusion

We introduced the novel concept of proof sharing in the context of neural network
verification. We showed how to instantiate this concept, achieving speed-ups of
up to 2 to 3 x for patch verification and geometric verification. We believe that
the ideas introduced in this work can serve as a solid foundation for exploring
methods that effectively share proofs in neural network verification.

References

1. Ashok, P., Hashemi, V., Křet́ınský, J., Mohr, S.: DeepAbstract: neural network
abstraction for accelerating verification. In: Hung, D.V., Sokolsky, O. (eds.) ATVA
2020. LNCS, vol. 12302, pp. 92–107. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-59152-6 5

2. Bak, S., Liu, C., Johnson, T.T.: The second international verification of neural
networks competition. arXiv preprint abs/2109.00498 (2021)

3. Balunovic, M., Baader, M., Singh, G., Gehr, T., Vechev, M.T.: Certifying geometric
robustness of neural networks. In: Neural Information Processing Systems (NIPS)
(2019)

4. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: Symposium on the Foundations of Software
Engineering (SIGSOFT) (2013)

5. Beyer, D., Wendler, P.: Reuse of verification results - conditional model checking,
precision reuse, and verification witnesses. In: Bartocci, E., Ramakrishnan, C.R.
(eds.) SPIN 2013. LNCS, vol. 7976, pp. 1–17. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39176-7 1

https://doi.org/10.1007/978-3-030-59152-6_5
https://doi.org/10.1007/978-3-030-59152-6_5
https://doi.org/10.1007/978-3-642-39176-7_1
https://doi.org/10.1007/978-3-642-39176-7_1

146 M. Fischer et al.

6. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

7. Bradley, A.R., Somenzi, F., Hassan, Z., Zhang, Y.: An incremental approach to
model checking progress properties. In: International Conference on Formal Meth-
ods in Computer-Aided Design (FMCAD) (2011)

8. Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch. arXiv
preprint abs/1712.09665 (2017)

9. Cheng, C., Yan, R.: Continuous safety verification of neural networks. In: Design,
Automation and Test in Europe Conference and Exhibition (2021)

10. Chiang, P., Ni, R., Abdelkader, A., Zhu, C., Studer, C., Goldstein, T.: Certified
defenses for adversarial patches. In: Proceedings of International Conference on
Learning Representations (ICLR) (2020)

11. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of Principles of Programming Languages (POPL) (1977)

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of Principles of Programming Languages (POPL)
(1978)

13. Fischer, M., Baader, M., Vechev, M.T.: Certified defense to image transformations
via randomized smoothing. In: Neural Information Processing Systems (NIPS)
(2020)

14. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: Symposium on Security and Privacy (S&P) (2018)

15. Goubault, E., Putot, S.: A zonotopic framework for functional abstractions. Formal
Methods Syst. Des. 47(3), 302–360 (2016). https://doi.org/10.1007/s10703-015-
0238-z

16. Gowal, S., et al.: On the effectiveness of interval bound propagation for training
verifiably robust models. arXiv preprint abs/1810.12715 (2018)

17. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

18. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

19. Kopetzki, A., Schürmann, B., Althoff, M.: Methods for order reduction of zono-
topes. In: Conference on Decision and Control (CDC) (2017)

20. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Neural Information Processing Systems (NIPS)
(2012)

22. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network.
In: Neural Information Processing Systems (NIPS) (1989)

23. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: Proceedings of International Conference
on Learning Representations (ICLR) (2018)

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/s10703-015-0238-z
https://doi.org/10.1007/s10703-015-0238-z
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26

Shared Certificates for Neural Network Verification 147

24. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for
provably robust neural networks. In: Proceedings of International Conference on
Machine Learning (ICML), vol. 80 (2018)

25. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Neural Information Processing Systems (NIPS) (2019)

26. Paulsen, B., Wang, J., Wang, C.: RELUDIFF: differential verification of deep neu-
ral networks. In: International Conference on Software Engineering (ICSE) (2020)

27. Paulsen, B., Wang, J., Wang, J., Wang, C.: NEURODIFF: scalable differential
verification of neural networks using fine-grained approximation. In: Conference
on Automated Software Engineering (ASE) (2020)

28. Pei, K., Cao, Y., Yang, J., Jana, S.: Towards practical verification of machine learn-
ing: the case of computer vision systems. arXiv preprint abs/1712.01785 (2017)

29. Sadraddini, S., Tedrake, R.: Linear encodings for polytope containment problems.
In: Conference on Decision and Control (CDC) (2019)

30. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676) (2017)

31. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective
robustness certification. In: Neural Information Processing Systems (NIPS) (2018)

32. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3(POPL) (2019)

33. Sokolsky, O.V., Smolka, S.A.: Incremental model checking in the modal mu-
calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 351–363. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-58179-0 67

34. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of
International Conference on Learning Representations (ICLR) (2014)

35. Taljaard, J., Geldenhuys, J., Visser, W.: Constraint caching revisited. In: Lee, R.,
Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp.
251–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6 15

36. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: reducing, reusing and recycling
constraints in program analysis. In: Symposium on the Foundations of Software
Engineering (SIGSOFT) (2012)

37. Wei, T., Liu, C.: Online verification of deep neural networks under domain or
weight shift. arXiv preprint abs/2106.12732 (2021)

38. Weng, T., et al.: Towards fast computation of certified robustness for ReLu net-
works. In: Proceedings of International Conference on Machine Learning (ICML),
vol. 80 (2018)

39. Wing, J.M.: Trustworthy AI. Commun. ACM 64(10) (2021)
40. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the

convex outer adversarial polytope. In: Proceedings of International Conference on
Machine Learning (ICML), vol. 80 (2018)

41. Yang, G., Dwyer, M.B., Rothermel, G.: Regression model checking. In: Interna-
tional Conference on Software Maintenance (ICSM) (2009)

42. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network
robustness certification with general activation functions. In: Neural Information
Processing Systems (NIPS) (2018)

43. Zhong, Y., Ta, Q.-T., Luo, T., Zhang, F., Khoo, S.-C.: Scalable and modular
robustness analysis of deep neural networks. In: Oh, H. (ed.) APLAS 2021. LNCS,
vol. 13008, pp. 3–22. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
89051-3 1

https://doi.org/10.1007/3-540-58179-0_67
https://doi.org/10.1007/978-3-030-55754-6_15
https://doi.org/10.1007/978-3-030-89051-3_1
https://doi.org/10.1007/978-3-030-89051-3_1

148 M. Fischer et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Shared Certificates for Neural Network Verification
	1 Introduction
	2 Background
	3 Proof Sharing with Templates
	3.1 Motivation: Proof Subsumption
	3.2 Proof Sharing with Templates

	4 Efficient Verification via Proof Sharing
	4.1 Choice of Abstract Domain
	4.2 Template Generation
	4.3 Robustness to Adversarial Patches
	4.4 Geometric Robustness
	4.5 Requirements for Proof Sharing

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Robustness Against Adversarial Patches
	5.3 Robustness Against Geometric Perturbations
	5.4 Discussion

	6 Related Work
	7 Conclusion
	References

