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Complete veri�cation of deep neural networks (DNNs) can exactly determine whether the DNN satis�es

a desired trustworthy property (e.g., robustness, fairness) on an in�nite set of inputs or not. Despite the

tremendous progress to improve the scalability of complete veri�ers over the years on individual DNNs, they

are inherently ine�cient when a deployed DNN is updated to improve its inference speed or accuracy. The

ine�ciency is because the expensive veri�er needs to be run from scratch on the updated DNN. To improve

e�ciency, we propose a new, general framework for incremental and complete DNN veri�cation based on the

design of novel theory, data structure, and algorithms. Our contributions implemented in a tool named IVAN

yield an overall geometric mean speedup of 2.4x for verifying challenging MNIST and CIFAR10 classi�ers and

a geometric mean speedup of 3.8x for the ACAS-XU classi�ers over the state-of-the-art baselines.
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1 INTRODUCTION

Deep neural networks (DNNs) are being increasingly deployed for safety-critical applications in

many domains including autonomous driving [Bojarski et al. 2016], healthcare [Alvarez-Valle et al.

2020; Amato et al. 2013], and aviation [Julian et al. 2018]. However, the black-box construction,

vulnerability against adversarial changes to in-distribution inputs [Madry et al. 2017; Szegedy et al.

2014], and fragility against out-of-distribution data [Chen et al. 2022; Gokhale et al. 2021] is the

main hindrance to the trustworthy deployment of deep neural networks in real-world applications.

Recent years have witnessed increasing work on developing veri�ers for formally checking whether

the behavior of DNNs (see [Albarghouthi 2021; Urban and Miné 2021] for a survey) on an in�nite

set of inputs is trustworthy or not. For example, existing veri�ers can formally prove [Bak et al.

2020; Bunel et al. 2020b,a; Ehlers 2017; Gehr et al. 2018; Wang et al. 2018] that the in�nite number

of images obtained after varying the intensity of pixels in an original image by a small amount

will be classi�ed correctly. Veri�cation yields better insights into the trustworthiness of DNNs

than standard test-set accuracy measurements, which only check DNN performance on a �nite

number of inputs. The insights can be used for selecting the most trustworthy DNN for deployment
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among a set of DNNs trained for the same task. Existing veri�ers can be broadly classi�ed as either

complete or incomplete. Incomplete methods are more scalable but may fail to prove or disprove a

trustworthiness property [Gehr et al. 2018; Salman et al. 2019; Singh et al. 2019a, 2018, 2019b; Xu

et al. 2020; Zhang et al. 2018]. A complete veri�er always veri�es the property if the property holds

or otherwise returns a counterexample. Complete veri�cation methods are more desirable as they

are guaranteed to provide an exact answer for the veri�cation task [Anderson et al. 2020; Bak et al.

2020; Bunel et al. 2020b,a; Ehlers 2017; Ferrari et al. 2022; Fromherz et al. 2021; Gehr et al. 2018;

Palma et al. 2021; Wang et al. 2018, 2021; Zhang et al. 2022].

Limitation of Existing Works: The deployed DNNs are modi�ed for reasons such as approxi-

mation [Blalock et al. 2020; Gholami et al. 2021], �ne-tuning [Tajbakhsh et al. 2016], model repair

[Sotoudeh and Thakur 2019], or transfer learning [Weiss et al. 2016]. Various approximations such

as quantization, and pruning slightly perturb the DNN weights, and the updated DNN is used for

the same task [Gholami et al. 2021; Laurel et al. 2021; TFLite 2017]. Similarly, �ne-tuning can also

be performed to repair the network on buggy inputs while maintaining the accuracy on the original

training inputs [Fu and Li 2022]. Each time a new DNN is created, expensive complete veri�cation

needs to be performed to check whether it is trustworthy. A fundamental limitation of all existing

approaches for complete veri�cation of DNNs is that the veri�er needs to be run from scratch

end-to-end every time the network is even slightly modi�ed. As a result, developers still rely on test

set accuracy as the main metric for measuring the quality of a trained network. This limitation of

existing veri�ers restricts their applicability as a tool for evaluating the trustworthiness of DNNs.

This Work: Incremental and Complete Veri�cation of DNNs: In this work, we address the

fundamental limitation of existing complete veri�ers by presenting IVAN, the �rst general technique

for incremental and complete veri�cation of DNNs. An original network and its updated network

have similar behaviors on most of the inputs, therefore the proofs of property on these networks are

also related. IVAN accelerates the complete veri�cation of a trustworthy property on the updated

network by leveraging the proof of the same property on the original network. IVAN can be built

on top of any Branch and Bound (BaB) based method. The BaB veri�er recursively partitions the

veri�cation problem to gain precision. It is currently the dominant technology for constructing

complete veri�ers [Anderson et al. 2019; Bak et al. 2020; Bunel et al. 2020b,a; Ehlers 2017; Ferrari

et al. 2022; Fromherz et al. 2021; Palma et al. 2021; Wang et al. 2018, 2021; Zhang et al. 2022].

Challenges: Themain challenge in building an incremental veri�er on top of a non-incremental one

is to determine which information to pass on and how to e�ectively reuse this information. Formal

methods research has developed numerous techniques for incremental veri�cation of programs,

that reuse the proof from previous revisions for verifying the new revision of the program [Johnson

et al. 2013; Lakhnech et al. 2001; O’Hearn 2018; Stein et al. 2021]. However, often the program

commits are local changes that a�ect only a small part of the big program. In contrast, most DNN

updates result in weight perturbation across one or many layers of the network. This poses a

di�erent and more di�cult challenge than incremental program veri�cation. Additionally, DNN

complete veri�ers employ distinct heuristics for branching. A key challenge is to develop a generic

method that incrementally veri�es a network perturbed across multiple layers and is applicable to

multiple complete veri�cation methods, yet can provide signi�cant performance bene�ts.

Our Solution: IVAN computes a speci�cation tree – a novel tree data structure representing the

trace of BaB – from the execution of the complete veri�er on the original network. We design

new algorithms to re�ne the speci�cation tree to create a more compact tree. At a high level,

the re�nement involves reordering the branching decisions such that the decisions that worked

well in the original veri�cation are prioritized. Besides, it removes the branching decisions that

worked poorly in the original veri�cation by pruning nodes and edges in the speci�cation tree.

IVAN also improves the branching strategy in BaB for the updated network based on the observed
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Fig. 1. Workflow of IVAN from le� to right. �+�# takes the original network # , input specification q and

output specificationk . It is built on top of a BaB-based complete verifier that utilizes an analyzer � for the

bounding, and heuristic � for branching. IVAN refines a specification tree )#
5
, result of verifying # , to create

a compact tree )#0

0 and updated branching heuristic �Δ. IVAN performs faster verification of #0 exploiting

both )#0

0 and �Δ.

e�ectiveness of branching choices when verifying the original DNN. The compact speci�cation tree

and the improved branching strategy guide the BaB execution on the updated network to faster

veri�cation, compared to non-incremental veri�cation that starts from scratch. IVAN yields up to

43x speedup over the baseline based on state-of-the-art non-incremental veri�cation techniques

[Bunel et al. 2020b; Henriksen and Lomuscio 2021; Singh et al. 2018]. It achieves a geometric mean

speedup of 2.4x across challenging fully-connected and convolutional networks over the baseline.

IVAN is generic and can work with various common BaB branching strategies in the literature

(input splitting, ReLU splitting).

Main Contributions: The main contributions of this paper are:

• We present a novel, general framework for incremental and complete DNN veri�cation by

designing new algorithms and data structure that allows us to succinctly encode in�uential

branching strategies to perform e�cient incremental veri�cation of the updated network.

• We identify a class of network modi�cations that can be e�ciently veri�ed by our framework

by providing theoretical bounds on the amount of modi�cations.

• We implement our approach into a tool named IVAN and show its e�ectiveness over multiple

state-of-the-art complete veri�cation techniques, using distinct branching strategies (ReLU

splitting and input splitting), in incrementally verifying both local and global properties of

fully-connected and convolutional networks with ReLU activations trained on the popular

ACAS-XU, MNIST, and CIFAR10 datasets. Our results show that for MNIST and CIFAR10

classi�ers, using the ReLU splitting technique [Henriksen and Lomuscio 2021] IVAN yields a

geometric mean speedup of 2.4x over the state-of-the-art baseline [Bunel et al. 2020b; Ehlers

2017]. For ACAS-XU, using the input splitting technique IVAN achieves a geometric mean

speedup of 3.8x over Re�neZono [Singh et al. 2019c].

IVAN implementation is open-source, publicly available at https://github.com/uiuc-focal-lab/IVAN.

An extended version of this paper containing all the proofs and additional experiments is available

at https://arxiv.org/abs/2304.01874.
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Fig. 2. Example original network # and its perturbation #0 (blue weights). Each layer consists of a linear

function followed by the ReLU activation function.q is the input specification andk is the output specification.

2 OVERVIEW

Figure 1 illustrates the high-level idea behind the workings of IVAN. It takes as input the original

neural network# , the updated network#0 , a local or global input regionq , and the output property

k . The goal of IVAN is to check whether for all inputs in q , the outputs of networks # and #0

satisfyk . # and #0 have similar behaviors on the inputs in q , therefore the proofs of the property

on these networks are also related. IVAN accelerates the complete veri�cation of the property

(q,k ) on #0 by leveraging the proof of the same property on # .

Neural Network Veri�er: Popular veri�cation properties considered in the literature havek :=

�). ≥ 0, where � is a column vector and . = # (- ), for - ∈ q . Most state-of-the-art complete

veri�ers use BaB to solve this problem. These techniques use an analyzer that computes the linear

approximation of the network output . through a convex approximation of the problem domain.

This linear approximation of . is used to perform the bounding step to show for the lower bound

LB(�). ) that LB(�). ) ≥ 0. If the bounding step cannot prove the property, the veri�cation

problem is partitioned into subproblems using a branching heuristic � . The partitioning splits the

problem space allowing a more precise convex approximation of the split subproblems. This leads

to gains in the precision of LB computation. Various choices for the analyzer and the branching

strategies exist which represent di�erent trade-o�s between precision and speed.

IVAN leverages a speci�cation tree representation and novel algorithms to store and transfer the

proof of the property from # to #0 for accelerating the veri�cation on #0 . We show the workings

of �+�# through the following illustrative example.

2.1 Illustrative Example

We consider the two networks # and #0 with the same architecture as shown in Figure 2. Most

practical network updates result in network weight perturbations e.g., quantization, model repair,

and �ne-tuning. Network #0 is obtained by updating (perturbing the weights) of network # . These

networks apply ReLU activation at the end of each a�ne layer except for the �nal layer. The weights

for the a�ne layers are shown on the edges. We consider the veri�cation property (q,k ) such that

q = {(81, 82) : 81 ∈ [0, 1] ∧ 82 ∈ [0, 1]} and k = (>1 + 14 ≥ 0). Let R = {A1, A2, A3, A4} denote the set

of ReLUs in the considered architecture. R is a function of the architecture of the DNNs and is

common for both # and #0 .

Branch and Bound:We consider a complete veri�er that uses a sound analyzer � based on the

exact encoding of the a�ne layers and the common triangle linear relaxation [Bunel et al. 2020b,a;

Ehlers 2017] for over-approximating the non-linear ReLU function. If due to over-approximation of
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the ReLU function, the analyzer cannot prove or disprove the property, the veri�er partitions the

problem by splitting the problem domain. The analyzer is more precise if it separately analyzes the

split subproblems and merges the results. There are two main strategies for branching considered

in the literature, input splitting [Anderson et al. 2020; Wang et al. 2018], and ReLU splitting [Bunel

et al. 2020b,a; Ehlers 2017; Ferrari et al. 2022; Palma et al. 2021]. We show IVAN’s e�ectiveness on

both branching strategies in our evaluation (Section 6.1, Section 6.4). However, for this discussion,

we focus on ReLU splitting which is scalable for the veri�cation of high-dimensional inputs.

ReLU splitting: An unsolved problem is partitioned into two cases, where the cases assume the

input Ĝ8 to ReLU unit A8 satis�es the predicates Ĝ8 ≥ 0 and Ĝ8 < 0 respectively. Splitting a ReLU A8
eliminates the analyzer imprecision in the approximation of A8 . When we split all the ReLUs in R,

the analyzer is exact. Nevertheless, splitting all R is expensive as it requires 2 |R | analyzer bounding

calls. The state-of-the-art techniques use the heuristic function � to �nd the best ReLU to split at

each step, leading to considerably scalable complete veri�cation.

The branching function� scores the ReLUsR for branching at each unsolved problem to partition

the problem. If R ′ ⊆ R denotes the subset of ReLUs that are not split in the current subproblem,

then the veri�er computes A = argmaxR′ � to choose the A for the current split. � is a function of

the exact subproblem that it branches and hence depends on q ,k , the network, and the branching

assumptions made for the subproblem. However, for the purpose of this running example, we

consider a simple constant branching heuristic � that ranks � (A1) > � (A3) > � (A4) > � (A2)

independent of the subproblem and the network. This assumption is only for the illustration of our

idea, we show in the evaluation (Section 6) that IVAN can work with state-of-the-art branching

heuristics [Bunel et al. 2020b; Henriksen and Lomuscio 2021].

2.2 IVAN Algorithm

Speci�cation Tree: IVAN uses a rooted binary tree data structure to store the trace of splitting

decisions during BaB execution. A speci�cation split is a �ner speci�cation parameterized by the

subset of ReLUs in R. The root node is associated with the speci�cation (q,k ). All other nodes

represent the speci�cation splits obtained by splitting the problem domain recursively. Each internal

node in the tree has two children, the result of the branching of the associated speci�cation.

The split decision can be represented as a predicate. For a ReLU A8 with input Ĝ8 , let A
+
8 := (Ĝ8 ≥ 0)

and A−8 := (Ĝ8 < 0) denote the split decisions. A split of ReLU A8 at node = creates two children nodes

=; and =A , each encoding the new speci�cation splits. Each edge in the speci�cation tree represents

the split decision made at the branching step. An edge connects an internal node with its child

node, and we label it with the additional predicate that is assumed by the child subproblem. A split

of ReLU A at node = adds nodes =; and =A that are connected with edges labeled with predicates

A+8 and A−8 respectively. If i= = (q ′,k ) is the speci�cation split at =, then i=; = (q ′ ∧ A+,k ) and

i=A = (i ′ ∧ A−,k ). The names of the nodes have no relation to the networks or the property, they

are used for referencing a particular speci�cation. However, the edges of the tree are tied to the

network architecture through the labels. Although the speci�cation tree is created as a trace of

veri�cation of a particular network # , it is only a function of the ReLU units in the architecture of

# . This allows us to use the branching decisions in the speci�cation tree for guiding the veri�cation

of any updated network #0 that has the same architecture as # . We use LB# (=) to denote the

lower bound LB(�). ) obtained by the analyzer � on for the subproblem encoded by =, on the

network # .

Figure 3 demonstrates the steps of BaB execution on # . Each node represents the speci�cation

re�ned by BaB. We use function LB# (=) to denote the LB(�). ) = LB(>1 + 14) value obtained by

the analyzer � at node =. The speci�cation is veri�ed for the subproblem of = if the LB# (=) ≥ 0.

If LB# (=) < 0, the analyzer returns a counterexample (CE). The CE is a point in the convex
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Fig. 3. Steps in Branch and Bound algorithm for complete verification of # . The nodes are labeled with a

name and the LB# (=). The nodes in the specification tree are annotated with their specifications. The edges

are labeled with the branching predicates. Each step in BaB partitions unsolved specifications in )#
8 into

specification splits in )#
8+1. The proof is complete when all specification splits corresponding to the leaf nodes

are solved.

approximation of the problem domain and it may be possible that it is spurious, and does not belong

to the concrete problem domain. If the CE is not spurious, the speci�cation is disproved and the

proof halts. But, if the CE is spurious then the problem is unsolved, and it is further partitioned.

In the �rst step, for the speci�cation (q,k ) encoded by the root node =0, the analyzer computes

LB# (=0) = −7, which is insu�cient to prove the speci�cation. Further, the CE provided by the

analyzer is spurious, and thus the analyzer cannot solve the problem. The root node =0 speci�cation

(q,k ) is split by ReLU split of A1 chosen by the heuristic function� . Accordingly, in the speci�cation

tree, the node =0 is split into two nodes =1 and =2, with the speci�cation splits (q ∧ A+1 ,k ) and

(q ∧ A−1 ,k ) respectively. This procedure of recursively splitting the problem and correspondingly

updating the speci�cation tree continues until either all the speci�cations of the leaf nodes are

veri�ed, or a CE is found. In the �nal speci�cation tree ()#
3 in this case), the leaf nodes are

associated with the speci�cations that the analyzer could solve, and the internal nodes represent

the speci�cations that the analyzer could not solve for network # . For BaB starting from scratch,

each node in the speci�cation tree maps to a speci�cation that invoked an analyzer call in BaB

execution. Figure 3 presents that the veri�er successfully proves the property with a speci�cation

tree containing 9 nodes. Thus, the veri�cation invokes the analyzer 9 times and performs 4 nodes

branchings for computing LB.

Figure 4a presents the speci�cation tree for #0 at end of the verifying the property (q,k ).

Although the !�(�). ) computed by the analyzer for each node speci�cations is di�erent for #0

compared to # , the �nal speci�cation tree is identical for both networks. Our techniques in IVAN

are motivated by our observation that the �nal speci�cation tree for network # and its updated

version #0 have structural similarities. Moreover, we �nd that for a DNN update that perturbs the

network weight within a �xed bound, these trees are identical. We claim that there are two reasons

for this: (i) the speci�cations that are solved by the analyzer for # are solved by the analyzer for #0

(speci�cations of the leaf nodes of the speci�cation tree) and (ii) the speci�cations that are unsolved

by the analyzer for # are unsolved for #0 (speci�cations of the internal nodes of the speci�cation

tree). In Section 4.4, we provide theoretical bounds on the network perturbations such that these

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.
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(a) BaB specification tree for #0 . It requires 9

node boundings and 4 node branchings.

(b) BaB specification tree for #0 with reuse. It

requires 5 node boundings and 0 node branchings.

(c) BaB specification tree for #0 with reorder. It

requires 5 node boundings and 2 node branchings.

(d) BaB specification tree for #0 with IVAN. It

requires 3 node boundings and 0 node branchings.

Fig. 4. BaB specification tree for various techniques proposed for incremental verification.

claims hold true (Theorem 4). Nevertheless, for networks obtained by perturbation beyond the

theoretical bounds, the speci�cation trees are still similar if not identical. In our evaluation, we

observe this similarity for large networks with practical updates e.g., quantization (Section 6).

Reuse: We �rst introduce our concept of speci�cation tree reuse which uses )#
5
, the �nal tree

after verifying # , as the starting tree )#0

0 for the veri�cation of #0 . In contrast, the standard BaB

veri�cation starts with a single node tree that represents the unpartitioned initial speci�cation

(q,k ). In the reuse technique, IVAN starts BaB veri�cation of #0 from the leaves of )#0

0 =

)#
5
. For our running example, analyzer � successfully veri�es #0 speci�cations for all the leaf

nodes of the speci�cation tree )#0

0 (Figure 4b). We show that for any speci�cation tree (created

on the same network architecture), verifying the subproblem property on all the leaves of the

speci�cation tree is equivalent to verifying the main property (q,k ) (Lemma 1). Verifying the

property on #0 from scratch requires 9 analyzer calls and 4 node branchings. However, with the

reuse technique, we could prove the property with 5 analyzer calls corresponding to the leaves

of )#0

0 and without any node branching. Theorem 4 guarantees that the speci�cation of the leaf

nodes should be veri�ed on #0 by the analyzer if the network perturbations are lower than a

�xed bound. Although for larger perturbations, we may have to split leaves of )#0

0 further for

complete veri�cation, we empirically observe that the reuse technique is still e�ective to gain

speedup on most practical network perturbations.

Reorder: A split is more e�ective if it leads to fewer further subproblems that the veri�er has

to solve to prove the property. Finding the optimal split is expensive. Hence, the heuristic � is

used to estimate the e�ectiveness of a split, and to choose the split with the highest estimated

e�ectiveness. Often the estimates are imprecise and lead to ine�ective splits. We use LB# (=) to give

an approximation to quantifying the e�ectiveness of a split. We discuss this exact formulation of

the observed e�ectiveness scores �>1B in Section 4.3. Our second concept in IVAN is based on our
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Fig. 5. IVAN removes the ine�ective split A1 at =0 and construct a new specification tree )P.

insight that if a particular branching decision is e�ective for verifying # then it should be e�ective

for verifying #0 . Likewise, if a particular branching decision is ine�ective in the veri�cation of # , it

should be ine�ective in verifying #0 . Based on this insight, we use the observed e�ectiveness score

of splits in verifying # to modify the original branching heuristic � to an improved heuristic �Δ.

�Δ takes the weighted sum of original branching heuristic � and observed e�ectiveness scores on

# denoted by �>1B . We formulate the e�ectiveness of a split and �Δ in Section 4.3. For simplicity,

in the running example, we rerank the ReLUs based on the observed e�ectiveness of the splits as

�Δ (A4) > �Δ (A3) > �Δ (A2) > �Δ (A1). Figure 4c presents the speci�cation tree for verifying #
0 with

the updated branching heuristic �Δ that requires 5 analyzer calls and 2 node branchings. Reorder

technique starts from scratch with a di�erent branching order �Δ and it is incomparable in theory

to the reuse technique. In Section 6.2, we observe that reorder works better in most experiments.

BringingAll Together:Ourmain algorithm combines our novel concepts of speci�cation tree reuse

and reorder yielding larger speedups than possible with only reuse or reorder. Speci�cation tree

reuse and reorder are not completely orthogonal and thus combining them is not straightforward.

Since in reuse we start verifying #0 with the �nal speci�cation tree )#
5
, the splits are already

performed with the original order (A1, A4, A3, A2 in our example). Our augmented heuristic function

�Δ will have a limited e�ect if we reuse)#0

0 = )#
5
, since the existing tree branches may already be

su�cient to prove the property.

Constructing a Pruned Speci�cation Tree: It is di�cult to predict the structure of the tree with

augmented order. For instance, in our example, # is veri�ed with A1, A4, A3, A2 order and we have

)#
5

branched in that order. However, we cannot predict the �nal structure of the speci�cation tree

if branched with our augmented order A4, A3, A2, A1 without actually performing those splits from

scratch (as it was done in Figure 4c).

We solve this problem with our novel pruning operation that removes ine�ective splits from

)#
5

and constructs a new compact tree )P. Figure 5 shows the construction of pruned tree )P for

our running example. We remove the split A1 at =0 as it is less e�ective. Removing A1 from )#
3 also

eliminates the nodes =1 and =2. The subtrees rooted at =1 and =2 are the result of split A1. If we undo

the split A1 at node =0, then =0 should follow the branching decisions taken by one of its children.

For this, we can choose either the subtree of =0 or =1, and attach it to =0. We describe the exact

method of choosing which subtree to keep in Section 4.3. For this example, our approach chooses to

keep the subtree of node =2 and eliminates the subtree at node =1. The pruning procedure leads to

the discarding of entire subtrees creating a tree with fewer leaf nodes (leaf nodes =3, =4 are deleted

in the example along with internal nodes =1, =2). Consequently, we obtain a more compact tree

with only in�uential splits in the speci�cation tree.

We start the veri�cation of #0 from the leaf nodes of the pruned tree i.e. )#0

0 = )P. For our

running example speci�cation splits of all leaf nodes of )P are veri�ed by the analyzer and no

further splitting is needed. Figure 4d presents the �nal speci�cation tree in case we initialize the
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proof with the compact tree obtained from the IVAN algorithm. We show the time complexity of

incremental veri�cation in Section 4.2. For the running example, the incremental proof requires

only 3 analyzer calls and no branching calls, and it is a signi�cant reduction to the 9 analyzer calls

and 5 node branchings performed by the baseline starting from scratch.

3 PRELIMINARIES

In this section, we provide the necessary background on complete neural network veri�cation.

3.1 Neural Network Verification

Neural Networks Neural networks are functions # : R=0 → R=; . In this work, we focus on

layered neural networks obtained by a sequential composition of ; layers #1 : R
=0 → R#1 , . . . , #; :

R
=;−1 → R=; . Each layer #8 applies an a�ne function (convolution or linear function) followed by a

non-linear activation function to its input. The choices for non-linear activation functions are ReLU,

sigmoid, or tanh. '4!* (G) =<0G (0, G) is most commonly used activation function. In Section 4, we

focus on the most common BaB veri�ers that partition the problems using ReLU splitting in ReLU

networks. The 8-th layer of each network #8 : R
=8 −→ R=8+1 is de�ned as #8 (G) = ReLU (�8- + �8 )

where 8 ∈ [;].

At a high level, neural network veri�cation involves proving that all network outputs correspond-

ing to a chosen set of inputs satisfying the input speci�cation q satisfy a given logical propertyk .

We �rst de�ne the input and output speci�cations that we consider in this work:

Definition 1 (Input specification). For a neural network # : R=0 → R=; , qC is a connected

region and qC ⊆ R
=0 . Input speci�cation q : R=0 → {CAD4, 5 0;B4} is a predicate over the input

region qC .

Definition 2 (output specification). For a neural network with =; neurons in the output layer.

output speci�cationk : R=; → {CAD4, 5 0;B4} is a predicate over the output region.

The output propertyk could be any logical statement taking a truth value true or false. In our

paper, we focus on properties that can be expressed as Boolean expressions over linear forms. Most

DNN veri�cation works consider such properties.

k (. ) = (�). ≥ 0) (1)

We next de�ne the veri�cation problem solved by the veri�ers:

Definition 3 (Verification Problem). The neural network veri�cation problem for a neural

network # , an input speci�cation q and a logical propertyk is to prove whether ∀- ∈ qC . k (# (- )) =

true or provide a counterexample otherwise.

A complete veri�er always veri�es the property if it holds or returns a counterexample otherwise.

Formally, it can be de�ned as:

Definition 4 (Complete Verifier). A complete veri�er + for an input speci�cation q , a neural

network # , an output propertyk satis�es the following property:

+ (q,k, # ) = Veri�ed⇐⇒ ∀- ∈ qC .k (# (- )) = true

3.2 Branch and Bound for Verification

In this Section, we discuss the branch and bound techniques for complete veri�cation of DNNs. The

BaB approach in these techniques use a divide-and-conquer algorithm to compute the LB(�). ) for

proving (�). ≥ 0) (Eq. 1). We next discuss the bounding and branching steps in BaB techniques.
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Bounding: The bounding step uses an analyzer to �nd a lower bound LB(�). ). In complete

veri�ers, the analyzers are exact for linear functions (e.g., DeepZ [Singh et al. 2018], DeepPoly

[Singh et al. 2019b]). However, they over-approximate the non-linear activation function through a

convex over-approximation. We de�ne these sound analyzers as:

Definition 5 (Sound Analyzer). A sound analyzer� on an input speci�cation q , a DNN # , an

output propertyk returns Veri�ed, Unknown, or Counterexample. It satis�es the following properties:

�(q,k, # ) = Veri�ed =⇒ ∀- ∈ qC .k (# (- )) = true

�(q,k, # ) = Counterexample =⇒ ∃- ∈ qC .k (# (- )) = false

Branching: If the analyzer cannot prove a property, the BaB veri�er partitions the problem into

easier subproblems to improve analyzer precision. Algorithm 1 presents the pseudocode for the

BaB veri�cation. The algorithm maintains a*=B>;E43 list of problems that are currently not proved

or disproved. It initializes the list with the main veri�cation problem. Line 5 performs the bounding

step in the BaB algorithm using the analyzer �. For simplicity, we abuse the notation and use

�(?A>1, # ) for denoting the analyzer output instead of �(q,k, # ). Here, the ?A>1 encapsulates the

input and output speci�cations q,k . Line 13 partitions the unsolved problem into subproblems.

The algorithm halts when either the� �nds a counterexample on one of the subproblems or the list

of unsolved problems is empty. There are two common branching strategies for BaB veri�cation,

input splitting and ReLU splitting, which we describe next.

Algorithm 1 Branch and Bound

1: function BaB(#, ?A>1;4<)

2: *=B>;E43 ← [(?A>1;4<)]

3: while*=B>;E43 is not empty do

4: for ?A>1 ∈ *=B>;E43 do

5: BC0CDB [?A>1] = �(?A>1, # ) ⊲ Bounding step

6: for ?A>1 ∈ *=B>;E43 do

7: if BC0CDB [?A>1] = Veri�ed then

8: *=B>;E43.A4<>E4 (?A>1) ⊲ Remove veri�ed subproblems

9: if BC0CDB [?A>1] = Counterexample then

10: return Counterexample for ?A>1 ⊲ Return if a counterexample is found

11: if BC0CDB [?A>1] = Unknown then

12: *=B>;E43.A4<>E4 (?A>1)

13: [subprob1, subprob2] ← split(prob) ⊲ Branching step

14: *=B>;E43.8=B4AC (subprob1, subprob2)

15: return Veri�ed

Input Splitting: In input splitting, the input region qC for veri�cation is partitioned. The typical

choice is to cut a selected input dimension in half while the rest of the dimensions are unchanged.

The dimension to cut is decided by the branching strategy used. This technique is known to be X-

complete for any activation function [Anderson et al. 2019], but does not scale for high-dimensional

input space. In many computer vision tasks, the input is an image with 1000s of pixels. Thus, a high-

dimensional perturbation region on such input cannot be branched e�ciently for fast veri�cation.

ReLU Splitting: State-of-the-art techniques that focus on verifying DNNs with high-dimensional

input and ReLU activation, use ReLU splitting. We denote a ReLU unit for 8-th layer and 9-th index

as a function G8, 9 = max(Ĝ8, 9 , 0), where Ĝ8, 9 and G8, 9 are the pre-activation and post-activation values

respectively. The analyzer computes lower bounds ;1 and upper bounds D1 for each intermediate
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variable in the DNN. If ;1 (Ĝ8, 9 ) ≥ 0, then the ReLU unit simply acts as the identify function G8, 9 = Ĝ8, 9 .

If D1 (Ĝ8, 9 ) ≤ 0, then the ReLU unit operates as a constant function G8, 9 = 0. In both of these cases,

the ReLU unit is a linear function. However, if ;1 (Ĝ8, 9 ) < 0 < D1 (Ĝ8, 9 ), we cannot linearize the

ReLU function exactly. We call such ReLU units ambiguous ReLUs. In ReLU splitting, the unsolved

problem is partitioned into two subproblems such that one subproblem assumes Ĝ8, 9 < 0 and the

other assumes Ĝ8, 9 ≥ 0. This partition allows us to linearize the ReLU unit in both subproblems

leading to a boost in the overall precision of the analyzer. The heuristic used for selecting which

ReLU to split signi�cantly impacts the veri�er speed.

BaB for Other Activation Functions: BaB-based veri�cation can work with the most commonly

used activation functions (tanh, sigmoid, leaky ReLU).

(1) For piecewise linear activation functions such as leaky ReLU, activation splitting approaches

(e.g, ReLU splitting) can be used for complete veri�cation.

(2) For other activation functions (tanh, sigmoid), BaB with activation splitting cannot yield

complete veri�cation but can be used to improve the precision of sound and incomplete

veri�cation [Dutta et al. 2017; Müller et al. 2021].

(3) Although input splitting is less e�cient in the aforementioned cases for high dimensional

DNN inputs, it can be applied with any activation function (tanh, sigmoid, ReLU, leaky ReLU).

4 INCREMENTAL VERIFICATION

In this section, we describe our main technical contributions and the IVAN algorithm. We �rst

formally de�ne the speci�cation tree structure used for incremental veri�cation (Section 4.1). Next,

we formulate the problem of incremental veri�cation (Section 4.2). In Section 4.3, we illustrate the

techniques used in our algorithm. We characterize the e�ectiveness of our technique by computing

a class of networks for which our incremental veri�cation is e�ciently applicable in Section 4.4.

4.1 Specification Tree for BaB

IVAN uses the speci�cation tree to store the trace of splitting decisions that the BaB veri�er makes

on its execution. A speci�cation tree can be used for any BaB branching method (e.g, input splitting),

but without loss of generality, our discussion focuses on ReLU splitting. Let N denote the class of

networks with the same architecture, and let R denote the set of ReLUs in this architecture. The

speci�cation tree captures the ReLU splitting decisions and the split speci�cations in the execution

of BaB for a property (q,k ), where we de�ne (q,k ) := q → k .

For a ReLU A8 with input Ĝ8 , let A
+
8 := (Ĝ8 ≥ 0) and A−8 := (Ĝ8 < 0). We de�ne a split decision as:

Definition 6 (Split Decision). For a ReLU A ∈ R, a split decision is A ? ∈ {A+, A−} where A ? is

assigned the predicate A+ or A−.

A speci�cation split of (q,k ) is a speci�cation stronger than (q,k ) parameterized by the subset

of ReLUs in R and the corresponding split decisions. Formally,

Definition 7 (Specification Split). For a set of ReLUs R ′ = {A1, A2 . . . A: } ⊆ R, and ReLU split

decision A ?8 ∈ {A
−
8 , A
+
8 } for each A8 , the corresponding speci�cation split of (q,k ) is (q∧A

?
1∧A

?
2∧ . . . A

?
:
,k ).

Since ∅ ⊆ R, (q,k ) is a split speci�cation of itself. Let S denote the set of speci�cation splits that

can be obtained from (q,k ). Each node = in the tree encodes a speci�cation split in S. Each edge

in the speci�cation tree is labeled with a ReLU split decision A ?. Let Nodes() ) denote the nodes of

the tree ) and Leaves() ) denote the leaves of the tree ) .

Mapping Nodes to Speci�cation Splits: The speci�cation associated with the root node is (q,k ).

The function Children(=) maps a node= to either the pair of its children or ∅ if= has no children. If=;
and=A are the children of node= andi= = (q ′,k ) is the speci�cation split at=, theni=; = (q

′∧A+,k )
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and i=A = (i ′ ∧ A−,k ). For the speci�cations i=, i=; , i=A the following statement holds:

(i=; ∧ i=A ) ⇐⇒ i= (2)

This relationship implies that verifying the parent node speci�cation is equivalent to verifying the

two children node’s speci�cations. Formally, we can now de�ne the speci�cation tree as:

Definition 8 (specification tree). Given a set of ReLU R, a rooted full binary tree ) is a speci-

�cation tree, if for a node = ∈ Nodes() ), and nodes =; , =A ∈ Children(=), edge (=, =; ) is labeled with

predicate A+ and edge (=, =A ) is labeled with predicate A−, for A ∈ R.

Algorithm 2 Split operation

1: function Split(), =, A )

2: Input: Speci�cation tree ) , a leaf node = ∈

Leaves() ), a ReLU A ∈ R for splitting the node

3: Output: returns newly added nodes

4: =; ← Add_Child(=, A+)

5: =A ← Add_Child(=, A−)

6: return =; , =A

BaB uses a branching function � for choos-

ing the ReLU to split. We de�ne this branching

function in terms of the node = of the speci�-

cation tree as:

Definition 9 (Branching Heuristic).

Given a set of ReLU R, a network # , and a node

= in the speci�cation tree, if P ⊆ R denote the

set of ReLUs split in the path from the root node

of the speci�cation tree to = then the branching heuristic � (#,=, A ) computes a score ℎ ∈ R estimating

the e�ectiveness of ReLU A ∈ R/P for splitting the speci�cation (i=) of the node =.

We next state the split operation on a speci�cation tree. Algorithm 2 presents the steps in the

split operation.

• Split Operation: Every ReLU split adds two nodes to the speci�cation tree at a given leaf node =.

The BaB algorithm chooses the ReLU argmaxA ∈R/P � (#,=, A ) to split at node = using the heuristic

function.

4.2 Incremental Verification: Problem Formulation

Give a set of networks N with the same architecture with a set of ReLUs R, TN be the set of all

speci�cation trees de�ned over R. There exists a partial order (<) on TN through standard subgraph

relation. BaB execution on a network # ∈ N traces a sequence of trees )0,)1 . . .)5 ∈ TN such that

)8 < )8+1. It halts with the �nal tree)5 when it either veri�es the property or �nds a counterexample.

The construction of )8+1 from )8 depends on the branching function � (De�nition 9).

Incremental Veri�cation: The incremental veri�cation problem is to e�ciently reuse the infor-

mation from the execution of veri�cation of network # for the faster veri�cation of its updated

version #0 . Standard BaB for veri�cation of #0 starts with a single node tree while the incremental

veri�er starts with a tree )#0

0 ∈ TN that is not restricted to be a tree with a single node. We modify

the �nal speci�cation tree )#
5

from the veri�cation of # to construct )#0

0 . The branching heuristic

�Δ for incremental veri�cation is derived from the branching heuristic � based on the e�cacy

of various branching decisions made during the proof for # . Formally, the complete incremental

veri�er we propose is de�ned as:
Definition 10 (Complete and Incremental Verifier). A Complete and Incremental Veri�er

+Δ takes a neural network#0 , an input speci�cationq , an output propertyk , analyzer�, the branching

heuristic�Δ and the initial tree)#0

0 .+Δ (#
0, q,k,)#0

0 , �Δ) returns Veri�ed if #
0 satis�es the property

(q,k ), otherwise, it returns a Counterexample.

Algorithm 3 presents the incremental veri�er algorithm for verifying the perturbed network. It

takes �Δ and)#0

0 as input. It maintains a list of active nodes which are the nodes corresponding to

the speci�cations that are yet to be checked by the analyzer. It initializes the list of active nodes

with leaves of tree )#0

0 (line 2). The main loop runs until the active list is empty (line 3) or it
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Algorithm 3 Verifying Perturbed Network

Input: #0 , property (q ,k ), Initial speci�cation tree )#0

0 , branching heuristic �Δ

Output: Veri�edif the speci�cation (q ,k ) is veri�ed, otherwise a Counterexample

1: )#0

← Initialize )#0

as )#0

0

2: �2C8E4 = Leaves()#0

0 ) ⊲ Initialize active list as Leaves()#0

0 )

3: while �2C8E4 is not empty do

4: for = ∈ �2C8E4 do

5: BC0CDB [=] ← �(=) ⊲ Bounding step

6: for = ∈ �2C8E4 do

7: if BC0CDB [=] = Veri�ed then

8: �2C8E4.A4<>E4 (=) ⊲ Remove veri�ed nodes

9: if BC0CDB [=] = Counterexample then

10: �2C8E4.4<?C~ ()

11: return Counterexamplefor = ⊲ Return if a counterexample is found

12: if BC0CDB [=] = Unknown then

13: �2C8E4.A4<>E4 (=)

14: A2ℎ>B4= ← argmaxA ∈R �Δ (#,=, A ) ⊲ Use �Δ to choose the split ReLU

15: =; , =A ← Split ()#0

, =, A2ℎ>B4=) ⊲ Branching step

16: �2C8E4.8=B4AC (=; , =A )

17: return Veri�ed

discovers a counterexample (line 9). At each iteration, it runs the analyzer on each node in the

active list (line 5). The nodes that are Veri�ed are removed from the list (line 8), whereas the nodes

that result in Unknown are split. The new children are added to the active list (line 12).

Optimal Incremental Veri�cation: We de�ne the partial function TimeΔ : TN × TN ⇁ R,

TimeΔ ()
#0

0 ,)#0

5
) for a �xed complete incremental veri�er +Δ as the time taken by +Δ that starts

from )#0

0 and halts with the �nal tree )#0

5
. Timeℎ (�,�Δ) and TimeC ()

#
5
,)#0

0 ) are the time for

constructing�Δ fromH, and)#0

0 from)#
5

respectively.We pose the optimal incremental veri�cation

problem as an optimization problem of �nding the best �Δ,)
#0

0 such that the time of incremental

veri�cation is minimized. Formally, we state the problem as:

argmin
�Δ,)

#0

0

[

TimeΔ ()
#0

0 ,)#0

5 ) + Timeℎ (�,�Δ) + TimeC ()
#
5 ,)#0

0 )
]

(3)

The search space for )#0

0 is exponential in terms of R, and the search space for �Δ is in�nite.

Further, TimeΔ is a complicated function of �Δ,)
#0

0 that does not have a closed-form formulation.

As a result, it is not possible to �nd an optimal solution.

Simplifying Assumptions: To make the problem tractable we make a simplifying assumption that

for all networks with the same architecture, each branching and bounding step on each invocation

takes a constant time CH and CA respectively. We can now compute TimeΔ ()
#0

0 ,)#0

5
) as:

Theorem 1. (TimeΔ for incremental veri�cation). If the incremenatl veri�er +Δ halts with the �nal

tree )#0

5
, then TimeΔ ()

#0

0 ,)#0

5
) = (CA + CH) ·

(

|Nodes()#0

5
) | +

1−|Nodes()#
0

0 ) |

2

)

− CH · |Leaves()
#0

5
) |.

The proof of the theorem is in Appendix A.2.
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In this work, we focus on a class of algorithms for which the preprocessing times Timeℎ (�,�Δ)

and TimeC ()
#
5
,)#0

0 ) are << TimeΔ ()
#0

0 ,)#0

5
). Furthermore, we also focus on branching heuristics

used in practice where CH << CA. Equation 3 simpli�es to �nding�Δ and)#0

0 such that the following

expression TimeΔ ()
#0

0 ,)#0

5
) = CA ·

(

|Nodes()#0

5
) | +

1−|Nodes()#
0

0 ) |

2

)

is minimized. Rewriting and

ignoring the constant term we get

TimeΔ ()
#0

0 ,)#0

5 ) = CA ·

(

|Nodes()#0

5
) | − |Nodes()#0

0 ) |

2
+
|Nodes()#0

5
) |

2

)

(4)

4.3 IVAN Algorithm for Incremental Verification

We describe the novel components of our algorithm and present the full work�ow in Algorithm 5.

Our �rst technique called reuse focuses on minimizing |Nodes()#0

5
) | − |Nodes()#0

0 ) | in Equa-

tion 4. Our second reorder technique focuses on minimizing |Nodes()#0

5
) |. The �Δ,)

#0

0 obtained

by reuse and reorder are distinct. IVAN algorithm combines these distinct solutions, to reduce

TimeΔ ()
#0

0 ,)#0

5
).

Reuse: This technique is based on the observation that the BaB speci�cation trees should be similar

for small perturbations in the network. Accordingly, in the method, we use the �nal speci�cation

tree for# as the initial tree for the veri�cation of#0 i.e.)#0

0 = )#
5
, and keep the�Δ = � unchanged.

We formally characterize a set of networks obtained by small perturbation for which )#0

0 = )#
5

is

su�cient for verifying #0 without any further splitting in Section 4.4.

Reorder: Reorder technique focuses on improving the branching heuristic � such that it reduces

|Nodes()#0

5
) |, and )#0

0 is single node tree with =0 encoding the speci�cation (q,k ). If we start

)#0

0 = )#
5
, |Nodes()#0

5
) | is at least |Nodes()#

5
) |, and thus, we start )#0

0 from scratch allowing the

technique to minimize |Nodes()#0

5
) |. We create a branching function�Δ from� with the following

two changes. (i) The splits that worked e�ectively for the veri�cation of the # should be prioritized.

(ii) The splits that were not e�ective should be deprioritized. To formalize the e�ectiveness of

splits, we de�ne the LB# (=) as the lower bound computed by the analyzer � on the network #

for proving the property i= encoded by the node =. Further, using the function LB# we de�ne an

improvement function �# represents the e�ectiveness of a ReLU split at a speci�c node as:

�# (=, A ) = min(LB# (=A ) − LB# (=), LB# (=; ) − LB# (=)) (5)

where =; , =A ∈ Children(=) in the speci�cation tree )#
5
. We use �# to de�ne the observed e�ective-

ness �>1B (A ) from a split A on the entire speci�cation tree for # . It is de�ned as the mean of the

improvement over each node where split A was made. Let & ⊂ Nodes()#
5
) denote a set of nodes

where split A was made. Then,

�>1B (A ) =

∑

=∈& �# (=, A )

|& |
. (6)

Using the �>1B (A ) score we update the existing branching function as:

�Δ (=, A ) = U · � (=, A ) + (1 − U) · (�>1B (A ) − \ ). (7)

Here, we introduce two hyperparameters U and \ . The hyperparameter U ∈ [0, 1] controls the

importance given to the actual heuristic score and the observed improvement from the veri�cation

on # . If U = 1, then�Δ depends only on the original branching heuristic score. If U = 0, then it fully

relies on observed split scores. The hyperparameter \ ensures that our score positively changes

score for A that have �>1B (A ) > \ and negatively change scores for �>1B (A ) < \ .
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Constructing a Pruned Speci�cation Tree: The two reordering goals of prioritizing and depriori-

tizing e�ective and ine�ective splits are di�cult to combine with reuse. However, instead of starting

from scratch, we can construct a speci�cation tree )P from )#
5

excluding the ine�ective splits. For

= ∈ Nodes()#
5
), where ReLU A splits =, we denote the set of bad splits as the set B()#

5
) of the pairs

(=, A ) such that the improvement score �# (=, A ) ≤ \ . For (=, A ) ∈ B()#
5
) while constructing the

pruned tree our algorithm chooses a child =: of =. If a ReLU A: is split at =: in )#
5
, it performs a

split A: in the corresponding node in )P, and skips over the bad split A . The subtree corresponding

to the other child =:′ is eliminated and not added to our pruned tree. We choose =: such that:

=: = argmin
=D ∈Children(=)

LB# (=D) − LB# (=) (8)

We choose such =: over =:′ since LB# (=) is closer to LB# (=: ) than LB# (=:′). Further, combining

Equation 5 and 8, we can show (LB# (=: ) − LB# (=)) < \ , i.e. their di�erence is bounded. We

anticipate that on the omission of the split A , the subtree corresponding to =: is a better match to

the necessary branching decisions following = than =:′ .

Algorithm 4 presents the top-down construction of )P. The algorithm starts from the root of )#
5

and recursively traverses through the children constructing )P. It maintains a queue & of nodes yet

to be explored and a map" that maps nodes from the tree )#
5

to the corresponding new nodes in

)P. At a node =, if (=, A ) is not a bad split, it performs the split A at the corresponding mapping =̂.

Otherwise, if A: is the split at =: , it skips over A and performs the split of A: at =̂. The newly created

children from a split of =̂ are associated with children of =: using" . The children of =: are added

in the & and they are recursively processed in the next iteration for further constructing )P. )P is

still a speci�cation tree satisfying the De�nition 4.1 by construction. The speci�cations i= of a

node = in )P can be constructed using a path from the root to =.

Algorithm 4 Creating a Pruned Tree

Input: speci�cation tree )#0

5
, hyperparameter \

Output: Pruned tree )P

1: =root ← root of )#0

5
, =̂root ← copy of =root

2: )P ← Initialize a new tree with =̂root

3: & ← Initialize list with =root

4: " ← Initialize an empty map

5: " [=root] ← =̂root

6: while & is not empty do

7: = ← &.pop(); A ← split at node =; =̂ ← " [=]

8: if �# (=, A ) < \ then

9: =: ← argmin=: ∈Children(=) LB# (=: ) − LB# (=)

10: A: ← split at node =:
11: =; , =A ← =: .children; =̂; , =̂A ← Split ()P, =̂, A: )

12: " [=; ] ← =̂; ;" [=A ] ← =̂A

13: &.push(=; );&.push(=A )

14: else

15: =; , =A ← =.children; =̂; , =̂A ← Split ()P, =̂, A )

16: " [=; ] ← =̂; ;" [=A ] ← =̂A

17: &.push(=; );&.push(=A )

18: return )P

Algorithm 5 Incremental Veri�cation

Algorithm

Input: Original network # ,

Perturbed network #0 ,

property (q ,k ),

analyzer �,

branching heuristic � ,

hyperparameters

U and \ ,

incremental veri�er +Δ
Output: Veri�cation result for # and #0

1: resultN , )#
5
← + (#,q,k, � )

2: )#0

0 ← PrunedTree()#
5
, \ )

3: �Δ ← UpdateH(�,)#
5
, \, U)

4: resultN0 ← +Δ (#
0, q,k,)#0

0 , �Δ) ⊲

Incremental veri�cation step calls Algo-

rithm 3

5: return resultN , resultN0
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Main algorithm: Algorithm 5 presents IVAN’s main algorithm for incremental veri�cation that

combines all the aforementioned techniques. It takes as inputs the original network # , a perturbed

network #0 , input speci�cation q , and an output propertyk . It prunes the �nal tree )#
5

obtained

in the veri�cation of # and constructs )#0

0 (line 2). It computes the updated branching heuristic

�Δ using Equation 7 (line 3). It uses )#0

0 and �Δ for performing fast incremental veri�cation of

networks #0 (line 4).

We next state the following lemma that states - verifying the property (q,k ) is equivalent to

verifying the speci�cations for all the leaves.

Lemma 1. The speci�cations encoded by the leaf nodes of a speci�cation tree) maintain the following

invariance.
(

∧

=∈;40E4B () )

i=

)

⇐⇒ (q → k )

We next use the lemma to prove the soundness and completeness of our algorithm. All the proofs

are in Appendix A.2.

Theorem 2. (Soundness of Veri�cation Algorithm). If Algorithm 5 veri�es the property (q,k ) for the

network #0 , then the property must hold.

Theorem 3. (Completeness of Veri�cation Algorithm). If for the network #0 , the property (q,k )

holds then Algorithm 5 always terminates and produces Veri�ed as output.

Scope of IVAN: IVAN utilizes the speci�cation tree to store the trace of the BaB proof. The IVAN

algorithm enhances this tree by reusing and re�ning it to enable faster BaB proof of updated

networks. Our paper focuses on using IVAN to verify ReLU networks with BaB that implements

ReLU splitting. However, we expect that IVAN’s principles can be extended to networks with other

activation functions (tanh, sigmoid, leaky ReLU) for which BaB has been applied for veri�cation.

4.4 Network Perturbation Bounds

In this section, we formally characterize a class of perturbations on a network# where our proposed

"Reuse" technique attains maximum possible speed-up. Speci�cally, we focus on modi�cations

a�ecting only the last layer which represent many practical network perturbations (e.g, transfer

learning, �ne-tuning). The last layer modi�cation assumption is only for our theoretical results in

this section. Our experiments make no such assumption and consider perturbations applied across

the original network.

We leave the derivation of perturbation bounds corresponding to the full IVAN to future work as

it requires theoretically modeling the e�ect of arbitrary network perturbations on DNN output as

well as complex interactions between "Reuse" and "Reorder" techniques. Given a speci�cation tree

) and network architecture N , we identify a set of neural networks C) (N) such that any network

#0 ∈ C) (N) can be veri�ed by reusing ) .

We assume the weights are changed by the weight perturbationmatrix E. If#; = ReLU (�; ·-+�; )

then last layer of #0 is #0
;
= ReLU ((�; + E) · - + �; ).

Definition 11 (Last Layer Perturbed Network). Given a network # with architecture N ,

the set of last layer perturbed networks isM(#, X) ⊆ N , such that if #0 ∈ M(#, X) then (∀8 ∈

[; − 1]) · #8 = #0
8 , #; = ReLU (�; · - + �; ), #

0
;
= ReLU ((�; + E) · - + �; ) and ∥E∥� ≤ X . 1

We next compute the upper bound of X , for which if the property can be proved/disproved using

speci�cation tree ) in # then the same property can be proved/disproved in #0 using the same

) . Therefore, once we have the proof tree ) that veri�es the property in # we can reuse ) for

1 ∥ · ∥� denotes the Frobenius norm of a matrix
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Table 1. Models and the perturbation n used for the evaluation for incremental verification.

Model Architecture Dataset #Neurons Training Method n

ACAS-XU Networks 6 × 50 linear layers ACAS-XU 300 Standard [Julian et al. 2019] -

FCN-MNIST 2 × 256 linear layers MNIST 512 Standard 0.02

CONV-MNIST 2 Conv, 2 linear layers MNIST 9508 Certi�ed Robust [Balunovic and Vechev 2020] 0.1

CONV-CIFAR 2 Conv, 2 linear layers CIFAR10 4852 Empirical Robust [Dong et al. 2018] 2
255

CONV-CIFAR-WIDE 2 Conv, 2 linear layers CIFAR10 6244 Certi�ed Robust [Wong and Kolter 2018a] 4
255

CONV-CIFAR-DEEP 4 Conv, 2 linear layers CIFAR10 6756 Certi�ed Robust [Wong and Kolter 2018a] 4
255

verifying any perturbed network #0 ∈ M(#, X). Assuming the property (q,k ) and the analyzer �

are the same for any perturbed network #0 ∈ M(#, X) the upper bound of X only depends on #

and ) .

We next introduce some useful notations that help us explicitly compute the upper bound of X .

Given ) let F (#8 ,) ) be the over-approximated region computed by the analyzer � that contains

all feasible outputs #8 of the 8-th layer of the original network. Note F (#8 ,) ) depends on the q and

analyzer � but we omit them to simplify the notation. Let +T (#,) ) denote whether the property

(q,k ) can be verifed on network # with ) . Proof of Theorem 4 is presented in Section A.3

!�(F (#; ,) )) = min
. ∈ F(#; ,) )

C). (9)

+T (#,) ) = (!�(F (#; ,) )) ≥ 0) (10)

[ (#,) ) = max
. ∈F(#;−1,) )

∥. ∥2 (11)

Theorem 4. If X ≤
|!� (F(#; ,) )) |
∥C ∥2 ·[ (#,) )

then for any perturbed network #0 ∈ M(#, X) +T (#,) ) ⇐⇒

+T (#
0,) ).

The proof of the theorem is in Appendix A.3.

5 METHODOLOGY

Networks and Properties.We evaluate IVAN onmodels with various architectures that are trained

with di�erent training methods. Similar to most of the previous literature, we verify !∞-based local

robustness properties for MNIST and CIFAR10 networks and choose standard n values used for

evaluating complete veri�ers. For the veri�cation of global properties in Section 6.4 we use the

standard set of ACAS-XU properties that are part of the VNN-COMP benchmarks [Bak et al. 2021].

Table 1 presents the evaluated models and the choice of n for the local robustness properties.

Network Perturbation. Similar to previous works [Paulsen et al. 2020a; Ugare et al. 2022], we

use quantization to generate perturbed networks. Speci�cally, we use int8 and int16 post-training

quantizations. The quantization scheme has the form [TFLite 2017]: A = B (@ − I?). Here, @ is the

quantized value and A is the real value; B which is the scale and I? which is the zero point are the

parameters of quantization. Our experiments use symmetric quantization with I? = 0.

Baseline. We use the following baseline BaB veri�ers:

• For proving the local robustness properties, we use LP-based triangle relaxation for bounding

[Bunel et al. 2020b; Ehlers 2017], and we use the estimation based on coe�cients of the

zonotopes for choosing the ReLU splitting [Henriksen and Lomuscio 2021].

• For the veri�cation of ACAS-XU global properties, we use Re�neZono [Singh et al. 2019c].

Re�neZono uses DeepZ [Singh et al. 2018] analyzer with input splitting. This baseline is used

only for experiments in Section 6.4.

Experimental Setup.We use 64 cores of an AMD Ryzen Threadripper CPU with the main memory

of 128 GB running the Linux operating system. The code for our tool is written in Python. We use

the GUROBI [Gurobi Optimization, LLC 2018] solver for our LP-based analyzer.
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Hyperparameters. We use Optuna tuner [Akiba et al. 2019] for tuning the hyperparameters. We

present more details and sensitivity analysis of the hyperparameters in Section 6.3.

6 EXPERIMENTAL EVALUATION

We evaluate the e�ectiveness of IVAN in verifying the local robustness properties of the quantized

networks. We then analyze how various tool components contribute to the overall result. We further

show the sensitivity of speedup obtained by IVAN to the hyperparameters. We also stress-test

IVAN on large random perturbation to the network. Finally, we evaluate the e�ectiveness of IVAN

on global property veri�cation with input splitting.

6.1 E�ectiveness of IVAN

(a) FCN-MNIST with INT16 quantization (b) FCN-MNIST with INT8 quantization

Fig. 6. IVAN speedup for the verification of local robustness properties on FCN-MNIST .

Figure 6 presents the speedup obtained by IVAN on FCN-MNIST . The x-axis displays the time

taken by the baseline veri�er for the veri�cation in Seconds. The y-axis denotes the speedup

obtained by IVAN over the baseline on a speci�c veri�cation instance. Each cross in the plot shows

results for a speci�c veri�cation property. The vertical line denotes the timeout for the experiment

and the dashed line is to separate instances that have a speedup greater than 1x.

We observe that IVAN gets higher speedup on hard instances that take more time for veri�cation

on the baseline. IVAN has a small overhead for storing the speci�cation tree compared to the

baseline. For hard speci�cations that result in large speci�cation trees, this overhead is insigni�cant

compared to the improvement in the veri�cation time. Our techniques that reuse and re�ne the

tree focus on speeding up such hard speci�cations. However, for speci�cations that are easy to

prove with small speci�cation trees, we see a slight slowdown in veri�cation time. Since these easy

speci�cations are veri�ed quickly by both IVAN and the baseline, they are irrelevant in overall

veri�cation time over all the speci�cations. For instance, the box labeled by 22 in Figure 6a contains

all of the 83 cases with low (< 1.2G) speedup on int16 quantized network. Despite low speedup, all

of them take 16.27s to verify with IVAN. Whereas the case labeled by 21 alone takes 75.54s on the

baseline and 1.73s on IVAN, leading to a 43x speedup – caused by reducing BaB tree size from 345

nodes to 28 nodes on pruning, out of which only 14 leaf nodes are active and lead to analyzer calls.

We observe a similar pattern in the case of the int8 quantized network in Figure 6b. It shows

that the cases con�ned in box 23, despite having lower speedup, take relatively less time. The cases

included in box 24 in Figure 6b have a much higher impact on the overall veri�cation time. Box 23
includes the majority of the low-speedup 83 cases that take a total of 18.44s time for veri�cation

with IVAN.Whereas for 5 cases in box 24 with higher speedups, take 401 analyzer calls with baseline

and 118 analyzer calls with IVAN. Accordingly, solving them takes 130.6s with the baseline and

40.26s with IVAN, leading to a 3.3x speedup.
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(a) CONV-MNIST with INT16 quantization (b) CONV-MNIST with INT8 quantization

(c) CONV-CIFAR-WIDE with INT16 quant. (d) CONV-CIFAR-WIDE with INT8 quant.

Fig. 7. IVAN speedup for the verification of local robustness properties.

Figure 7 presents speedup for several other networks. IVAN is notably more e�ective on hard-to-

verify speci�cations that take more than 10s to verify using the baseline. It achieves 3.1x geomean

speedup on such cases. In many cases, we see more solved cases by IVAN over the baseline. For in-

stance, the box 25 in Figure 7a contains 2 cases that baseline does not solve within the timeout of 100s,

but IVAN solves them in 90.6s and 95.8s each. We show speedup vs. time plots for other networks

(CONV-CIFAR , CONV-CIFAR-DEEP ) and more statistics of our evaluation in Appendix A.1.

6.2 Overall Speedup

We observe no cases when the baseline veri�es the property and IVAN exceeds the timeout. We

cannot compute the speedup for the cases where the baseline exceeds the timeout. Therefore, we

compute the overall speedup over the set ( that denotes all the cases that are solved by the baseline

within the time limit. gB (2) and gIVAN (2) denote the time taken by baseline and IVAN on the case 2

respectively, then we compute the overall speedup as Sp =

∑

2∈( gB (2)
∑

2∈( gIVAN (2)
.

Table 2 presents the comparison of the contribution of each technique used in IVAN for each

model. Column +Solved in each case displays the number of extra veri�cation problems solved

by the technique in comparison to the baseline. Columns in IVAN[Reuse] present results on only

using the reuse technique. Columns in IVAN[Reorder] show results on using the reorder technique.

Columns in IVAN present the results on using all techniques from Section 4. Column Sp for each

technique demonstrates the overall speedup obtained compared to the baseline. We observe that in

most case combination of all techniques performs better than reuse and reordering. We see that

reorder performs better than reuse except for one case (FCN-MNIST on int8).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 185. Publication date: June 2023.



185:20 Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh

Table 2. Ablation study for overall speedup across all properties for di�erent techniques in IVAN.

Model Approximation IVAN[Reuse] IVAN[Reorder] IVAN

Sp +Solved Sp +Solved Sp +Solved

FCN-MNIST int16 2.51x 0 2.71x 0 4.43x 0

int8 1.07x 0 1.64x 0 2.02x 0

CONV-MNIST int16 1.62x 0 2.15x 0 3.09x 2

int8 1.27x 2 1.34x 3 1.71x 4

CONV-CIFAR int16 1.02x 0 1.57x 2 2.52x 2

int8 1.08x 0 1.53x 0 1.78x 0

CONV-CIFAR-WIDE int16 1.43x 1 1.51x 0 1.87x 2

int8 0.75x 0 1.62x 1 1.53x 2

CONV-CIFAR-DEEP int16 1.64x 0 2.29x 0 3.21x 0

int8 1.15x 0 1.13x 1 1.25x 1

6.3 Hyperparameter Sensitivity Analysis

(a) IVAN[Reorder] (b) IVAN

Fig. 8. Speedup for the combination of hyperparameter values on FCN-MNIST with int16 quantization.

Figure 8 plots the heatmap for IVAN speedup on various hyperparameter values. The x-axis

shows the hyperparameter U value and the y-axis shows the \ value. Each point in the greed is

annotated with the observed Sp on setting the corresponding hyperparameter values. Figure 8a

presents the plot for IVAN with on reorder technique. (U, \ ) = (0.25, 0.01) is the highest speedup

point. Choosing \ = 0 implies that are not deprioritizing the splitting decisions that did not work

well. In that case, we observe no speedup with reordering, showing the necessity of \ in our �Δ

formulation. Figure 8b presents the same plot for our main algorithm that also reuses the pruned

tree. We observe that the speedup is less sensitive to hyperparameter value changes in this plot.

This is expected since reordering starts from single node )#0

0 and purely relied on �Δ formulation

for the speedup. While our main technique also reuses the tree, even when \ = 0 it can get ∼2.5x

speedup.

6.4 Global Properties with Input Spli�ing

We show that IVAN is e�ective in speeding up the state-of-the-art veri�er Re�neZono [Singh

et al. 2019c] when verifying global properties. This baseline employs input splitting based on a

strong branching strategy. Figure 9 presents the speedup achieved by IVAN over this baseline.

Overall, IVAN achieves a 9.5x speedup in the int16 quantization case and a 3.1x speedup in the int8

quantization case. Previous work has observed that ACAS-XU properties take a large number of

splits with most analyzers. For the int16 case, the average value of |)#0

5
| with our baseline is 285.4.
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(a) ACAS-XU networks with INT16 quantization (b) ACAS-XU networks with INT8 quantization

Fig. 9. IVAN speedup for the verification of global ACAS-XU properties.

The baseline takes a total of 305s time for verifying cases that have large tree |)#0

5
| > 5. IVAN

veri�es those properties in 32s.

6.5 RandomWeight Perturbations

Table 3. IVAN speedup on uniform random weight per-

turbations

Weight perturbation

Model 2% 5% 10%

FCN-MNIST 1.65x 1.57x 0.87x

CONV-MNIST 1.97x 0.57x 0.57x

CONV-CIFAR 1.29x 1.09x 0.69x

CONV-CIFAR-WIDE 1.42x 1.08x 0.96x

CONV-CIFAR-DEEP 1.32x 1.06x 1.05x

In this experiment, we stress-test IVAN for in-

cremental veri�cation by applying uniform ran-

dom perturbation on the DNN weights. Here,

we perturbed each weight in the network by

2%, 5%, and 10%. Even the smallest of these per-

turbations (2%) to each of the weights already

induces larger overall changes in the network

than those caused by practical methods such as

quantization, pruning, and �ne-tuning that of-

ten non-uniformly a�ect speci�c layers of the

network. For each network and perturbation,

we run IVAN and the baseline to verify 100 properties and compute the average speedup of IVAN

over the baseline.

Table 3 presents the average speedups obtained by IVAN. Each row shows the IVAN speedup

under various weight perturbations for a particular network. We see that in most cases IVAN

speedup reduces as the perturbations to the weights increase. It is because the speci�cation tree for

the perturbed network is no longer similar to the one for the original network. If IVAN is used in

such cases, it uses suboptimal splits leading to higher veri�cation time.

7 RELATED WORK

Neural NetworkVeri�cation:Recent works introduced several techniques for verifying properties

of neural networks [Anderson et al. 2019, 2020; Bunel et al. 2020b; Ehlers 2017; Kabaha and Drachsler-

Cohen 2022; Katz et al. 2017b; Laurel et al. 2022; Tjeng et al. 2017; Wang et al. 2018, 2021; Yang

et al. 2022]. For BaB-based complete veri�cation, previous works used distinct strategies for ReLU

splitting. Ehlers [2017] and Katz et al. [2017a] used random ReLU selection for splitting. Wang et al.

[2018] computes scores based on gradient information to rank ambiguous ReLU nodes. Similarly,

Bunel et al. [2020b] compute scores based on a formula based on the estimation equations in [Wong

and Kolter 2018b]. Henriksen and Lomuscio [2021] use coe�cients of zonotopes for these scores.

Incremental Neural Network Veri�cation: Fischer et al. [2022] presented the concept of sharing

certi�cates between speci�cations. They reuse the proof for !∞ speci�cation computed with abstract

interpretation-based analyzers based on the notion of proof templates, for faster veri�cation of

patch and geometric perturbations. Ugare et al. [2022] showed that the reusing of proof is possible
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between networks. It uses a similar concept of network adaptable proof templates. It is limited to

certain properties (patch, geometric, !0) and works with abstract interpretation-based incomplete

veri�ers. Wei and Liu [2021] considers incremental incomplete veri�cation of relatively small

DNNs with last-layer perturbation. All of these works cannot handle incremental and complete

veri�cation of diverse speci�cations, which is the focus of our work

Di�erential Neural Network Veri�cation: ReluDi� [Paulsen et al. 2020a] presented the concept

of di�erential neural network veri�cation. The follow-up work of [Paulsen et al. 2020b] made it

more scalable. ReluDi� can be used for bounding the di�erence in the output of an original network

and a perturbed network corresponding to an input region. ReluDi� uses input splitting to perform

complete di�erential veri�cation. Our method is complementary to ReluDi� and can be used to

speed up the complete di�erential veri�cation with multiple perturbed networks, performing it

incrementally. Cheng and Yan [2020] reuse previous interval analysis results for the veri�cation of

the fully-connected networks where the speci�cations are only de�ned over the last linear layer of

an updated network. In contrast, IVAN performs end-to-end veri�cation and operates on a more

general class of networks, speci�cations, and perturbations.

Warm Starting Mixed Integer Linear Programming (MILP) Solvers: State-of-the-art MILP

solvers such as GUROBI [Gurobi Optimization, LLC 2018] and CPLEX [Cplex 2009] support warm

starting that can accelerate the optimization performance. MILP can warm start based on initial

solutions that are close to the optimal solution. This allows MILP solvers to avoid exploring paths

that do not improve on the provided initial solution and can help the solver to converge faster. The

exact implementation details of these closed-sourced commercial solvers are unavailable. Regardless,

our experiments with MILP warm starting of GUROBI for incremental DNN veri�cation showed

insigni�cant speedup.

Incremental Program Veri�cation: Incremental veri�cation has improved the scalability of

traditional program veri�cation to an industrial scale [Johnson et al. 2013; Lakhnech et al. 2001;

O’Hearn 2018; Stein et al. 2021]. Incremental program analysis tasks reuse partial results [Yang et al.

2009], constraints [Visser et al. 2012] and precision information [Beyer et al. 2013] from previous

runs for faster analysis of individual commits. Frequently, the changes made by the program are

limited to a small portion of the overall program (and its analysis requires signi�cant attention

to the impact on control �ow). whereas DNN updates typically alter the weights of multiple

layers throughout the network (but with no impact on control �ow). Therefore, incremental DNN

veri�cation presents a distinct challenge compared to the incremental veri�cation of programs.

Incremental SMT Solvers:Modern SMT solvers such as Z3 [De Moura and Bjørner 2008] and

CVC5 [Barbosa et al. 2022] during constraint solving learn lemmas, which are later reused to solve

similar problems. The incrementality of these solvers is restricted to the addition or deletion of

constraints. They do not consider reuse in cases when the constraints are perturbed as in our case.

8 CONCLUSION

Current complete approaches for DNN veri�cation re-run the veri�cation every time the network

is modi�ed. In this paper, we presented IVAN, the �rst general, incremental, and complete DNN

veri�er. IVAN captures the trace of the BaB-based complete veri�cation through the speci�cation

tree. We evaluated our IVAN on combinations of networks, properties, and updates. IVAN achieves

up to 43x speedup and geometric mean speedup of 2.4x in verifying DNN properties.
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