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ABSTRACT
Deep neural networks (DNNs) now dominate the AI land-
scape and have shown impressive performance in diverse
application domains, including vision, natural language pro-
cessing (NLP), and healthcare. However, both public and
private entities have been increasingly expressing significant
concern about the potential of state-of-the-art AI models to
cause societal and financial harm. This lack of trust arises
from their black-box construction and vulnerability against
natural and adversarial noise.
As a result, researchers have spent considerable time devel-
oping automated methods for building safe and trustworthy
DNNs. Abstract interpretation has emerged as the most
popular framework for efficiently analyzing realistic DNNs
among the various approaches. However, due to fundamen-
tal differences in the computational structure (e.g., high
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nonlinearity) of DNNs compared to traditional programs,
developing efficient DNN analyzers has required tackling
significantly different research challenges than encountered
for programs.
In this monograph, we describe state-of-the-art approaches
based on abstract interpretation for analyzing DNNs. These
approaches include the design of new abstract domains, syn-
thesis of novel abstract transformers, abstraction refinement,
and incremental analysis. We will discuss how the analysis
results can be used to: (i) formally check whether a trained
DNN satisfies desired output and gradient-based safety prop-
erties, (ii) guide the model updates during training towards
satisfying safety properties, and (iii) reliably explain and
interpret the black-box workings of DNNs.



1
Introduction

Deep neural networks (DNNs) are currently the dominant technology
in artificial intelligence (AI) and have shown impressive performance in
diverse applications, including autonomous driving, medical diagnosis,
text generation, and logical reasoning. However, they lack transparency
due to their black-box construction and are vulnerable to environmental
and adversarial noise. These issues have caused concerns about their
safety and trust when deployed in the real world. Although standard
training optimizes the model’s accuracy, it does not take into account
desirable safety properties such as robustness (the DNN should behave
similarly for similar inputs), fairness (the DNN output should not
depend too much on some legally protected attribute, such as gender or
race), and monotonicity (if the inputs are partially ordered, so should be
the outputs). As a result, state-of-the-art models remain untrustworthy.
Building trust in DNNs is essential to realizing their vast potential to
positively transform society and the economy and is one of the grand
challenges in computer science today.

252



1.1. Safety-informed DNN Deployment Cycle 253

1.1 Safety-informed DNN Deployment Cycle

Figure 1.1 presents a general safety-informed pipeline for DNN devel-
opment, applicable to any application domain. Safety, accuracy, and
efficiency can often conflict with each other. DNN accuracy improves
with model size but that increases the inference cost. Similarly, models
maximizing safety can have reduced accuracy. For example, a DNN
classifier that always predicts the same class for all inputs is robust but
has very low accuracy. As a result, it may not be possible to obtain
DNNs that optimize all three objectives simultaneously. Depending on
the target application, a developer may prioritize accuracy over trust or
vice-versa. The goal of safety-informed DNN development is to ensure
a sufficient balance between accuracy, safety, and efficiency.

Figure 1.1: Development pipeline for building accurate, trustworthy, and efficient
DNNs. Verification is used for testing model trustworthiness (green diamond).

In this pipeline, first, representative training data for the target
application is collected and a DNN is trained to maximize its accuracy
on test inputs from the training distribution. Next, a domain expert
creates (manually or algorithmically) a set of formal safety specifications
(e.g., robustness, fairness) characterizing the expected DNN behavior
in different real-world scenarios. The set of inputs covered by these
specifications can be infinite.

The expert then checks whether the model meets the safety stan-
dards. Since DNNs may not satisfy all the specifications, the standards
can require that at least a significant fraction of all specifications be
satisfied for trustworthiness. If the model meets the criteria, then the
DNN is considered fit for deployment. Otherwise, it is iteratively re-
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paired (e.g., by fine-tuning) until we obtain the desired balance between
accuracy, safety, and efficiency.

During deployment, the DNN inputs are monitored for distribution
shifts, i.e., the inputs are not from the training distribution. If the
runtime system detects a distribution shift, it reports representative
samples to the domain experts. They then design new specifications,
and the model undergoes another round of repair (or full retraining).
How formal methods can help. For checking that the model satis-
fies safety specifications, the standard practice is to evaluate the DNN
behavior on a finite set of inputs satisfying the specifications. How-
ever, this cannot guarantee safe and trustworthy DNN behavior on all
specification inputs. The unseen set can be huge and contain inputs
often seen during real-world deployment. To address these limitations,
there is growing work on checking the safety of DNN models and inter-
preting their behavior, on an infinite set of unseen inputs from safety
specifications using formal methods, which provides a more reliable
metric for measuring a model’s safety than standard empirical methods.
For example, a repaired DNN preserving the original test set accuracy
and efficiency but satisfying the trustworthy specifications more often
is a better model than the unrepaired one as it is less likely to show
undesirable behavior during real-world deployment. Formal methods
can also be used during training to guide the model to satisfy desirable
safety and trustworthiness properties. The models trained this way are
more likely to satisfy safety specifications than those without.

This monograph presents a comprehensive treatment of the tech-
niques that guarantee the safety of DNNs by formally modeling the
behavior of modern DNNs and efficiently computing with abstractions
that represent those behaviors. Our main focus will be on approaches
that leverage a general framework for automated analysis of program-
ming languages called abstract interpretation, the most successful formal
methods for automatically reasoning about DNNs. We emphasize that
the knowledge of the topics covered in this monograph is necessary not
only for computer scientists but for practitioners from all areas building
DNN-based applications, e.g., natural sciences, aerospace, finance, etc.

Next, we describe how safety and trustworthy properties can be
formally specified for DNNs, then we will discuss the key ideas and design
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considerations in developing abstract interpretation based methods for
the formal verification and training of DNNs. We will also discuss how
abstract interpretation enables reliable explanations and interpretations
of DNNs as well as analysis of differentiable programs.

1.2 Formal Specifications for DNNs

Mathematically, we model a trained DNN as a pure function f . Its input
x can be images, text, videos, sensor measurements, or other data. We
denote the output of the DNN as f(x), which can be a classification of
the input into one of the predefined classes, the regression that estimates
a continuous value, or the set of tokens generated by a language model.
We denote gradients of f as f ′(x).

For a trained DNN f , a developer specifies the property of interest
using two formulas: (1) the precondition φ, which specifies the set of
inputs on which the DNN should not misbehave and (2) the postcondition
ψ, which specifies safe and trustworthy behaviors of the DNN for the
given inputs. These behaviors are typically constraints on the DNN’s
outputs or its gradients. The preconditions and postconditions are
domain-dependent and usually designed by DNN developers.A tool
for DNN verification (a verifier) aims to automatically check if the
postcondition on the DNN’s outputs and/or gradients is satisfied for all
inputs specified by the precondition.

A property specification is a tuple (φ,ψ), where φ is the precon-
dition and ψ is the postcondition. Both formulas φ and ψ typically
represent an infinite number of inputs/outputs. We denote the set of
the results of the evaluations of the DNN on all inputs described by the
precondition φ as f(φ) = {f(x) | x ∈ φ}. Similarly, we denote the set
of all gradients as f ′(φ). The verifier then checks for the inclusion of
the set of possible executions of the DNN into the set of outputs that
satisfy the postcondition, i.e., f(ϕ) ⊆ ψ (or f ′(ϕ) ⊆ ψ) holds. Single
execution specifications, as shown in Figure 1.2, require that each DNN
output f(x) where x ∈ φ must independently satisfy ψ. Relational
specifications require reasoning about multiple related executions of the
same or different DNNs. As we will show in Section 3, a general way to
represent and compute with φ and ψ in these settings is as disjunctions
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(a) Verified

(b) Counterexample

Figure 1.2: Single execution specifications require that the DNN output for each
input from φ must independently satisfy ψ.

of convex polyhedra within the framework of abstract interpretation. φ
and ψ can also define distributions leading to probabilistic specifications.
Local and global properties. The set of specifications for DNNs
can be broadly classified as local or global. The precondition φ for local
properties defines a local neighborhood around a sample input from the
test set. For example, given a test image correctly classified as a car by
a DNN, the commonly used local robustness property specifies that if
the original image was classified as a car, then all images generated by
rotating the original image within ±d degrees are also classified as a
car. We present many local properties in Sections 3.1 and 3.2.

In contrast, global properties are not defined with respect to a
specific test input. Verifying global properties yields stronger safety
guarantees compared to local properties, however, global properties
are difficult to formulate for popular domains, such as vision and NLP,
where the individual features processed by the DNN have no clear
semantic meaning. While verifying local properties is not ideal, the local
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verification results enable testing the safety of the model on an infinite
set of unseen inputs, not possible with standard methods. We present
several concrete global properties in Section 3.1.

1.3 Verifying Specifications over DNNs

DNN verification can be seen as an instance of program verification, since
one can write a DNN as a program, i.e., there is a direct translation
from the mathematical representation of the DNN as a function f

into a side-effect free program. However, since it is well-known that
program verification is undecidable (one cannot prove the correctness of
an arbitrary program with respect to an arbitrary property of interest),
DNN verification is also undecidable in general. Certain DNN verification
problems, such as robustness verification of feedforward networks with
ReLU activations, are decidable but still NP-complete in general (Katz
et al., 2017).

State-of-the-art verifiers are therefore incomplete in general, i.e.,
they can fail to prove a specification when it holds. However, when they
succeed, the DNN will satisfy the specification. In this monograph, we
focus on white-box verifiers that require access to the model parameters.
Verification of closed-source models requires black-box verifiers. We
refer the interested readers to the relevant material in this direction in
Section 1.7. The white-box verifiers can be formulated using the elegant
framework of abstract interpretation. The verifier is parameterized by
the choice of an abstract domain with two main components: abstract
elements and abstract transformers. Abstract elements are mathematical
objects symbolically representing an infinite set of numerical points over
which the verifier operates. Abstract transformers overapproximate the
effect of applying the transformations inside the DNN program (e.g.,
affine or ReLU assignments) on abstract elements.

There is a tradeoff between the cost and overapproximation error
(also known as precision) of an incomplete verifier: expensive verifiers
are more precise while cheap verifiers are imprecise. Both are deter-
mined by the design of the abstract domain and transformers. The key
consideration in designing an efficient verifier applicable to real-world
DNNs is managing this tradeoff. The classical domains, such as Polyhe-
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dra and Octagons, used for analyzing programs are not well suited for
DNN verification. This is because the DNNs have a different structure
compared to traditional programs. For example, DNNs have a large
number of non-linear assignments but typically do not have loops. For
efficient verification, researchers have developed numerous new abstract
domains and transformers tailored for DNN verification. These abstract
domains can scale to realistic DNNs with millions of neurons, or more
than 100 layers, verifying diverse safety properties in different real-world
applications. We will present them in Section 3. We will also discuss
how verification can be done incrementally to improve efficiency when
verifying a large number of similar DNNs and specifications as needed
for the developement pipeline in Figure 1.1.

1.4 Training Provably Safe DNNs

DNNs trained with standard training often do not satisfy safety spec-
ifications as safety satisfaction is not part of their training objective.
Adversarial or counter-example guided training augment the training
data with violating examples during training, however the trained mod-
els still cannot be proven to be safe in most cases. To overcome these
limitations, certified training methods have been developed in recent
years which directly incorporate the verifier computations within the
training loop and generate models with a high degree of provability, i.e.,
they are more likely to satisfy specifications and are relatively easier to
prove than DNNs obtained with competing methods.

In certified training, if the model f does not satisfy the specification,
as checked by a verifier, its weights are updated to increase the prov-
ability. The gradient updates are derived by formulating a differentiable
property loss on the verifier output, which measures how far the model
is from satisfying the property. Since gradient updates are derived from
the verifier code, its computations must be expressible as a differentiable
function of model weights and parallelizable on GPUs for scalability.
Overall, certified training can be seen as training f where the model
updates are derived by differentiating the surrogate approximation of
the DNN within φ, computed by the verifier.
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While certified training improves the provability, safety specifica-
tions can be in conflict with accuracy. Using an imprecise verifier during
training can result in overregularization and a significant reduction in
the standard accuracy. However, precise verifiers often have complicated
code which makes the optimization problem too complicated to solve
during training, yielding suboptimal results. Also, employing a verifier
during training is more expensive than when used for checking specifi-
cations on an already trained DNN, as now the verifier is called during
every training iteration. Balancing the provability, accuracy, and cost
is therefore the main challenge when developing state-of-the-art meth-
ods. Researchers have developed a variety of abstractions, refinements,
and loss formulations to enable efficient training. We will cover these
methods in detail in Section 4.

1.5 Explaining and Interpreting DNNs

Popular methods for explaining DNN predictions identify relevant input
features that influence the DNN output the most. However, they do
not give guarantees about the robustness of the generated explanations.
Relying on non-robust explanations can lead to a false sense of confidence
in an untrustworthy model. We will discuss how abstract interpretation
can be leveraged to generate explanations with robustness guarantees
in Section 5, reliably improving DNN transparency.

Abstract interpretation-based DNN verifiers generate high-
dimensional abstract elements at different layers capturing complex
relationships between neurons and DNN inputs to prove DNN safety.
However, the individual neurons and inputs in the DNN do not have
any semantic meaning, unlike the variables in programs, therefore it
is not clear whether the safety proofs are based on any meaningful
features learned by the DNN. If the DNN is proven to be safe but
the proof is based on meaningless features not aligned with human
intuition, then the DNN behavior cannot be considered trustworthy.
While there has been a lot of work on interpreting black-box DNNs,
standard methods can only explain the DNN behavior on individual
inputs and cannot interpret the complex invariants encoded by the
abstract elements capturing DNN behavior on an infinite set of inputs.
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The main challenge in interpreting DNN proofs is mapping the complex
abstract elements to human-understandable interpretations.

Section 5 presents ProFIt, the first method for interpreting robust-
ness proofs computed by DNN verifiers. The technique can interpret
proofs computed by different verifiers. It builds upon the novel concept
of proof features computed by projecting the high-dimensional abstract
elements onto individual neurons. The proof features can be analyzed
independently by generating the corresponding interpretations. Since
certain proof features can be more important for the proof than others,
a priority function over the proof features that signifies the importance
of each proof feature in the complete proof is defined. The method
extracts a set of proof features by retaining only the more important
parts of the proof that preserve the property.

A comparison of proof interpretations for DNNs trained with stan-
dard and robust training methods shows that the proof features cor-
responding to the standard networks rely on spurious input features
that are not aligned with human intuition. The proofs of adversarially
trained DNNs filter out some of these spurious features. In contrast, the
networks trained with certifiable training produce proofs that do not
rely on any spurious features but they also miss out on some meaningful
features. Proofs for training methods that combine both empirical and
certified robustness not only preserve meaningful features but also se-
lectively filter out spurious ones. These insights suggest that DNNs can
satisfy safety properties but their behavior can still be untrustworthy.

1.6 Analyzing and Verifying Differentiable Programs

Differentiable programming, which includes automatic differentiation
(AD), is the backbone of machine learning. AD computes the gradients
alongside the values of the program’s output variables. AD computations
generalize many machine learning and signal processing applications.
Thus, generalized abstractions for AD analysis can be deployed across
applications: a neural network, an image filter, and a differential equation
solver can be expressed and analyzed in the same language, even when
combined in complex programs. Despite AD’s ubiquity, automated
formal reasoning of derivatives that AD computes has lagged.
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Analyzing gradient properties is important for today’s trustworthy
AI: for instance, the sensitivity of DNN’s output to input noise can be
expressed as finding bound for the absolute gradients values. The same
bounds can help with selecting low precision data types in machine
learning algorithms to prevent overflows. Fairness can be formalized as
a monotonicity property on a specific attribute, which is satisfied when
all derivatives are strictly positive.

To answer these questions, it is not sufficient to reason about the
output of a function (e.g., DNN) f for all inputs in φ. Instead one
has to reason about f ′, the derivative of f . For instance, to prove the
monotonicity of f , one should ensure that its derivative f ′ is strictly
positive or negative for all inputs in φ. Figure 1.3 presents an intuition
of this workflow.

Figure 1.3: Verifying derivative properties requires first computing the derivative of
a function f (given as a piece of code) using automatic differentiation. The derivative
program is then analyzed with abstract interpretation to prove the desired property
(φ,ψ) holds for the derivative f ′ instead of f itself.

Section 6 will present a general framework for precise analysis of AD
computations. This approach leverages ideas from abstract interpreta-
tion of DNNs and generalizes them to find precise abstract transformers
of gradient computation. It overcomes the limitation of standard pro-
gram analysis, which treats the gradient computation as any other code,
and leads to significant imprecision, and is in some cases ill-defined. We
will present the advantage of the AD-specific abstract transformers on
the case study for monotonicity analysis for a decision-making DNN.
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1.7 Sources and Further Reading

Many recent studies demonstrate the power of modern DNNs, e.g.,
Bojarski et al. (2016) for autonomous driving, Amato et al. (2013) for
medical diagnosis, Brown et al. (2020) for text generation, and Pan
et al. (2023) for logical reasoning. Many domains have standard datasets
for training and inference, e.g., in vision MNIST (LeCun et al., 1989),
CIFAR10 (Krizhevsky, 2009), and ImageNet (Deng et al., 2009).

At the same time, recent research also points out key concerns:
Ribeiro et al. (2016) discusses the issues of black-box model construction
and non-interpretability; Szegedy et al. (2014) and Kurakin et al. (2017)
discuss vulnerability against environmental and adversarial noise. Works
that pointed out problems with standard training include Shafique et al.
(2020) for robustness, Dwork et al. (2012) for fairness, and Sill (1997)
for monotonicity. Tsipras et al. (2019) and Wong et al. (2021) point
out problems with using a finite set of test inputs to ensure DNN
safety during deployment. Many recent works, identify classes of slight
adversarial perturbations that impact the DNN decisions (Madry et al.,
2017; Goodfellow et al., 2014; Heo et al., 2019).

For examples of local robustness to image rotations and its classifica-
tion see, e.g., Balunovic et al. (2019). For examples of global properties
in air traffic collision avoidance systems see, e.g., Katz et al. (2017),
and in security vulnerability classification see, e.g., Chen et al. (2021).
Beyond manual design, there is a growing line of work on automatically
generating formal specifications for DNNs. These include Geng et al.
(2022), Chaudhary et al. (2024b), Geng et al. (2024), and Jin et al.
(2024).

Checking the safety of DNNs has been a very active area of research
with many publications, primarily during inference and relying on white-
box access to the model, such as Balunovic et al. (2019), Singh et al.
(2019b), Zhang et al. (2018a), Singh et al. (2018), Singh et al. (2019d),
Paulsen et al. (2020), Xu et al. (2021), Tran et al. (2019b), Wu et al.
(2022b), Anderson et al. (2019), Katz et al. (2019), Singh et al. (2019a),
Wong and Kolter (2018), Lan et al. (2022), Wang et al. (2018), Bunel
et al. (2020), Wang et al. (2021), Ugare et al. (2022), Kabaha and
Drachsler-Cohen (2022), Palma et al. (2021a), Dathathri et al. (2020),
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Munakata et al. (2023), Ranzato et al. (2021), Banerjee et al. (2024b),
Banerjee et al. (2024a), and Zhou et al. (2024). Black-box DNN verifiers
are based on collecting DNN output for inputs from φ and providing
probabilistic guarantees. These include Baluta et al. (2021), Webb et al.
(2019), Chaudhary et al. (2024a), and Chaudhary et al. (2025).

Certified training leverages DNN verifiers during training obtaining
models that have higher provability than those with standard training.
Examples include Gowal et al. (2019), Mirman et al. (2018), Xu et al.
(2020), Zhang et al. (2020), Shi et al. (2021), Yang et al. (2023), Müller
et al. (2023a), Balunovic and Vechev (2020), and Hu et al. (2023b).

Numerous methods aim to provide transparency of DNNs. Standard
methods include Ribeiro et al. (2016) and Wu et al. (2023) and Wong
et al. (2021). Marques-Silva and Ignatiev (2022), Malfa et al. (2021),
Ignatiev et al. (2019), Darwiche and Hirth (2020), and Wu et al. (2023)
generate explanations with formal guarantees. The work of Banerjee et
al. (2024a) presents ProFIt, the first method for interpreting robustness
proofs computed by DNN verifiers.

Various uses of automatic differentiation are presented (Hückelheim
et al., 2018). Static analysis of AD computations is introduced by Laurel
et al. (2022a), Laurel et al. (2022b), and Laurel et al. (2023). Verification
of properties involving gradients and Jacobians are discussed by Zhang
et al. (2019), Fazlyab et al. (2019b), and Shi et al. (2022)

Abstract interpretation was introduced in the seminal work by
Cousot and Cousot (1977). Over the past almost 50 years, this approach
to program analysis has flourished and demonstrated many uses. There
are numerous books, monographs, and tutorials describing the founda-
tions of abstract interpretations, for instance Cousot (2021), Nielson
et al. (2005), Miné (2017), and Rival and Yi (2020).

Examples of abstract domains for neural networks include Deep-
Poly/CROWN (Singh et al., 2019b; Zhang et al., 2018a), DeepZ/Fast-
Lin (Singh et al., 2018; Weng et al., 2018), Star sets (Tran et al., 2019b),
and DeepJ (Laurel et al., 2022a). These custom solutions can scale to
realistic DNNs with up to a million neurons (Müller et al., 2021a), or
more than 100 layers (Wu et al., 2022b), verifying diverse safety proper-
ties in different real-world applications. Examples include autonomous
driving (Yang et al., 2023), job-scheduling (Wu et al., 2022b), data
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center management (Chakravarthy et al., 2022), biology (Mohr et al.,
2021), aerospace (Cohen et al., 2024), and financial modeling (Laurel
et al., 2023). For examples of refinements of abstract domains used
in machine learning see e.g., Wang et al. (2018), Singh et al. (2019d),
Müller et al. (2021b), Ryou et al. (2021), Wang et al. (2021), Wu et al.
(2022b), and Yang et al. (2021).



2
Background

In this section, we introduce the necessary background for understanding
our monograph.

2.1 Deep Neural Networks

Deterministic DNNs f : Rm → Rn are vector-valued functions that
can be implemented using straight-line programs (i.e., without loops)
of a certain form. A DNN composes a set of layers according to an
architecture (e.g., residual, transformer), given by a directed acyclic
graph (DAG). Each layer f i is one of the following: (i) an affine trans-
formation f i(x) = Wx + b based on learned weights W ∈ Rni×ni−1

and biases b ∈ Rni and (ii) the non-linear functions f i(x) = σ(x)
applied component-wise. Common examples of σ include the ReLU
(max(0, x)), the sigmoid ( ex

ex+1), and the tanh ( ex−e−x

ex+e−x ) activation func-
tions. Stochastic DNNs f : Rm → P(Rn) apply similar transformations
as deterministic DNNs but map inputs to distributions p ∈ P(Rn) over
outputs. The stochasticity can be introduced through noise injection
(Srivastava et al., 2014), parameter sampling (Goan and Fookes, 2020),
or latent variable sampling (Kingma and Welling, 2019).

265
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Neurons and activations. During execution on a given input vector,
each layer in the DNN receives a vector from its predecessor layer (as
determined by its architecture), applies the layer-specific transformation
(e.g., affine, ReLU) to obtain a new output vector, and passes the output
to all its successors. Each component of one of the vectors passed along
through the layers is called a neuron x, and its value v ∈ R is called an
activation. There are three types of neurons: m input neurons whose
activations form the input to the network, n output neurons whose
activations form the output of the network, and all other neurons, called
hidden, as they are not directly observed.

Illustrative example. Figure 2.1 (a) shows a simple, deterministic
neural network f : R2 → R2 with sequential architecture. The network
has three layers: two affine layers and one ReLU layer between the
affine layers. Each layer has two neurons. Each affine layer performs
two affine assignments based on learned weights (shown on the edges)
and biases (shown above or below neurons). The output of one layer
serves as the input to the next. The computations in the neural network
can be written as straight-line code, as shown in Figure 2.1 (b). Note
that there are multiple semantically equivalent program representations
for the same program. For example, the assignments to x3, x4 in Figure
2.1 (b) can be interchanged without changing the semantics. In Figure
2.1 (a), for input (x1, x2) = (0.2, 0.3), we obtain the hidden activation
vectors (x3, x4) = (0.5,−0.1), (x6, x7) = (0.5, 0), and the output vector
(o0, o1) = (1, 0).

Figure 2.1: A deterministic DNN and its corresponding program representation.
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Discriminative DNNs. Discriminative DNNs can be used for classifi-
cation or regression. For a DNN f that classifies its inputs to multiple
possible labels, n is the number of distinct classes, and the neural net-
work classifies a given input x to a given class k if f(x)k > f(x)j for
all j with 1 ≤ j ≤ n and j ̸= k. The output of the regression model is
simply f(x).

Generative DNNs. A generator DNN f takes a latent variable z sam-
pled from a prior distribution pz(z) and produces a sample x ∼ pf (x | z),
based on the learned parameters, in the data space Rm, which could
represent an image, a piece of text, or other data. The generator f can
be deterministic or stochastic. A generative model defines a probability
distribution pf (x) over the data space by considering the generator’s
outputs and marginalizing over the latent space Z, integrating over all
possible latent variables.

pf (x) =
∫

Z
pf (x | z)pz(z)dz

2.2 Abstract Interpretation

Abstract interpretation computes an over approximation of the system
(e.g., a program or a neural network) behaviors for a set of (potentially
infinite) executions (Cousot and Cousot, 1977). It works via two domains:
the concrete domain (C, ⊆) and the abstract domain (D, ⊑). A DAG-
based DNN can be translated into a semantically equivalent straight-line
program where neurons are the program variables and each neuron is
assigned at most once in any given DNN execution. We assume the
neurons in a DNN are obtained from a sequence X where the input
neurons appear first, then hidden, and finally the output neurons.

Concrete domain. A concrete domain (C, ⊆) consists of a set C of
concrete elements partially ordered by the precision relation ⊆ and a set
of concrete transformers that model the effect of applying different DNN
statements on concrete elements. We next define concrete elements and
concrete transformers in the context of DNN analysis:

Definition 2.1. (Store) A store s : X → R is a partial mapping from
neurons x ∈ X to activations v ∈ R.
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We use dom(s) to denote the domain of a store s.

Definition 2.2. (Store comparison) s1 ⊆ s2 iff dom(s1) ⊆ dom(s2) and
for all x ∈ dom(s1), s1(x) = s2(x).

Definition 2.3. (Concrete element) A concrete element C ∈ C is a set
of stores.

A concrete element C for the DNN in Figure 2.1 (a) is {{x3 7→
0, x4 7→ 1}, {x3 7→ 3, x4 7→ −9}}. Note that the domain for both stores
in C is {x3, x4}.

Definition 2.4. (Concrete comparison) C ⊆ C ′ iff each store s ∈ C is
part of C ′.

When C ⊆ C ′ holds, we say that C is more precise than C ′. The
set of all possible concrete elements in C typically forms a lattice
(C,⊆,∪,∩,⊤,⊥). Here, the least upper bound of two concrete elements
is computed as set union ∪, and the greatest lower bound is computed
via set intersection ∩. ⊤ is the top element in the lattice containing all
possible stores for all neurons in X . ⊥ is the bottom element representing
an empty set of stores.

Definition 2.5. (Concrete transformer) The output T#(C) of a concrete
transformer T# : C → C corresponding to a DNN statement (e.g., affine
or ReLU assignment) applied on a concrete element C ∈ C contains all
possible stores after applying the statement to all stores in C.

The concrete transformer for any ReLU assignment y := max(0, x)
(here y, x are arbitrary neurons from X ) sets y = 0 for each store s in
C where s(x) ≤ 0 and sets y = s(x) for stores where s(x) > 0. When
considering C = {{x3 7→ 0, x4 7→ 1}, {x3 7→ 3, x4 7→ −9}} and the
ReLU assignment x6 := max(0, x4), we get the output {{x3 7→ 0, x4 7→
1, x6 7→ 1}, {x3 7→ 3, x4 7→ −9, x6 7→ 0}}.

Abstract domain. An abstract domain (D, ⊑) consists of a set D of
abstract elements D ∈ D partially ordered by the relation ⊑ and a set
of abstract transformers T that model the effect of DNN statements on
abstract elements.
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The concrete and the abstract domains are connected by two func-
tions, as shown in Figure 2.2. The monotonic concretization function
γ : D → C for a given abstract element D ∈ D computes the concrete el-
ement γ(D) ∈ C containing all stores represented by D. The abstraction
function α : C → D for a concrete element C ∈ C computes an abstract
element α(C) ∈ D for the stores in C.

Figure 2.2: The concrete domain (C, ⊆) and the abstract domain (D, ⊑) are
connected by the abstraction α and monotonic concretization functions γ.

Definition 2.6. (Sound abstraction function) An abstraction function
α : C → D is sound iff for all concrete elements C ∈ C, we have that
C ⊆ γ(α(C)) holds.

Soundness implies that all concrete stores in C are captured by
α(C). However, some stores captured by α(C) may not occur in C.
As an example, consider the Box domain (Gehr et al., 2018; Gowal
et al., 2018), which associates a lower bound l and upper bound u

with each neuron x such that l ≤ x ≤ u, written as x ∈ [l, u]. For
C = {{x3 7→ 0, x4 7→ 1}, {x3 7→ 3, x4 7→ −9}}, α(C) in the Box domain
yields x3 ∈ [0, 3] and x4 ∈ [−9, 1]. Note that γ(α(C)) contains all stores
satisfying 0 ≤ x3 ≤ 3 and −9 ≤ x4 ≤ 1 and therefore it contains
extra stores like {x3 7→ 1, x4 7→ 0} not present in C. Traditionally,
α computes the smallest abstract element capturing the stores in C.
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However, for abstract domains used for analyzing DNNs, the smallest
element typically does not exist. Therefore, in this monograph, we only
require that α computes a sound abstraction.

An abstract lattice (D,⊑,⊔,⊓,⊤,⊥) can be defined using the join
(⊔) operator for computing the least upper bound of two abstract
elements and the meet (⊓) operator for computing the greatest lower
bound. Unlike programs, popular abstract domains for analyzing DNNs
typically do not form a lattice.

Definition 2.7. (Precision) An abstract element D ∈ D is more precise
compared to D′ ∈ D iff γ(D) ⊆ γ(D′).

We next formally define a sound abstract transformer.

Definition 2.8. (Sound abstract transformer) A given abstract trans-
former T is sound w.r.t to its concrete transformer T# iff for all elements
D ∈ D, T#(γ(D)) ⊆ γ(T (D)).

Figure 2.3 visualizes Definition 2.8. A sound abstract transformer
for the ReLU assignment y := max(0, x) in the Box domain sets the
lower bound of y to max(0, l) and upper bound to max(0, u), keeping
the intervals for other neurons the same. The soundness follows from the
fact that the smallest and the largest values of y from T#(γ(D)) cannot
exceed these values. When considering α(C) and x6 := max(0, x4), we
obtain the interval [0, 1] for x6 while keeping the intervals for x3, x4 the
same.

For abstract transformers T1, T2, since T#(γ(D)) ⊆ γ(T1(D)) and
T#(γ(D)) ⊆ γ(T2(D)), we have that the intersection γ(T1(D)) ∩
γ(T2(D)) ⊇ T#(γ(D)) is also sound. The composition of two sound
abstract transformers is sound with respect to the composition of the
corresponding concrete transformers.

Definition 2.9. (Completeness) We say an abstract domain D is com-
plete for a concrete transformer T# (e.g., affine, ReLU) iff it can be
captured exactly in the domain, i.e., if there exists an abstract trans-
former T corresponding to that concrete transformer such that for all
abstract elements D ∈ D, T#(γ(D)) = γ(T (D)).
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Figure 2.3: The concretization γ(T (D)) of the output of a sound abstract trans-
former T is ⊇ than the output of T# operating on γ(D).

The Box domain is complete for the ReLU assignment y := max(0, x)
when |X | = 2, as the abstract transformer mentioned above satisfies
T#(γ(D)) = γ(T (D)) for all D ∈ D. For |X | > 2, it is not complete.

A useful concept is that of a best abstract transformer.

Definition 2.10. (Best abstract transformer) An abstract transformer T
in D is best iff for any other sound abstract transformer T ′ (correspond-
ing to the same concrete transformer T#) it holds that for all elements
D ∈ D, T always produces a more precise result (in the concrete), that
is, γ(T (D)) ⊆ γ(T ′(D)).

The composition of two best abstract transformers may not be
the best transformer for the composition of the corresponding concrete
transformers. For example, the composition of the best Box transformers
for x5 := max(0, x3) and x6 := max(0, x4) does not yield the most
precise output in the Box domain.

Definition 2.11. (Expressiveness of an abstract domain) An abstract
domain (D, ⊑) is more expressive than another domain (D′, ⊑′) iff
D ⊇ D′.



3
Formal Verification of DNNs

This section describes how the classical abstract interpretation frame-
work can be leveraged to design diverse state-of-the-art DNN verifiers.
We focus on three broad categories of specifications, defined over an
already trained DNN f , that capture a range of important properties.

• Single Execution: Requires that the output of each execution of
a single deterministic DNN should satisfy a given postcondition.
The set of executions is specified by a precondition. Examples
include robustness, safety, and stability.

• Relational: Requires that the outputs of multiple executions
(given by a precondition) of the same or different deterministic
DNNs satisfy a given postcondition. In contrast to single execution
properties, verifying relational properties requires capturing rela-
tionships between multiple related executions. Examples include
fairness, monotonicity, DNN equivalence, and the safety of a DNN
ensemble.

• Probabilistic: Typically require that the outputs of executions
(given by a precondition) of a given deterministic or stochastic

272
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DNN satisfy a given postcondition with high probability. Prob-
abilistic specifications are useful for reasoning about stochastic
models such as variational autoencoders (VAEs). For deterministic
models, these specifications quantify undesirable behavior.

The design of preconditions and postconditions depends highly on
the application within which the DNN is used. We will also discuss
incremental verification to improve scalability when verifying multiple
models and properties. While we focus on the verification of DNNs,
the DNN verifiers discussed in this monograph can be combined with
approaches for program/system verification to provide end-to-end safety
guarantees of AI-enabled systems (Tran et al., 2020b; Yang and Chaud-
huri, 2022; Habeeb et al., 2024; Mitra et al., 2024). Next, we discuss
the verification of single execution properties.

3.1 Single Execution Properties

We formally define the verification problem for single execution proper-
ties, which is parameterized by two concrete elements Cφ, Cψ ∈ C. Cφ is
used to specify the set of inputs where the DNN should not misbehave.
The desired behavior is captured by Cψ. Let x ∈ Rm be the vector
containing the activations of the input neurons for a store s ∈ Cφ. The
problem involves checking for each x if the store corresponding to the
activation vector f(x) ∈ Rn for the output neurons is ⊆ s′ where s′ is a
store in Cψ.

Cφ and Cψ can contain an infinite number of stores, and therefore,
it is not possible to solve the problem by simply running the DNN for
each x. Instead of set representation, the verification algorithms work
with the symbolic representations φ,ψ of Cφ, Cψ. φ,ψ are typically
represented as a disjunction of conjunctions of linear constraints over
the input and output neurons, respectively (we will discuss handling of
an atypical case). Geometrically, the constraints describe the union of
convex polyhedra. We say an input activation vector x ∈ Rm satisfies
φ, written as x ∈ φ, iff it satisfies all constraints in φ. The satisfaction
of ψ by f(x) ∈ Rn written as f(x) ∈ ψ can be defined similarly. We use
f(φ) to describe the symbolic representation of the set of DNN outputs
corresponding to the inputs x in φ.
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A DNN verifier checks if f(φ) ⊆ ψ holds. If it can prove the property,
then it produces an independently checkable certificate. If it can disprove
the property, then it generates a counter-example x ∈ φ such that
f(x) ̸∈ ψ. It returns unknown if it cannot prove or disprove a property.

3.1.1 Representative Properties

Next, we describe some representative single execution properties that
have been verified in the literature. For robustness properties, y denotes
the correct class.

• Robustness. Given a correctly classified input x, the local ro-
bustness property requires that all inputs obtained after apply-
ing a set of transformations are classified correctly. Formally,
φ := {x′ | x′ ∈ T (x), T ∈ T } and ψ := f(x′)y − f(x′)i̸=y > 0
where T is the set of transformations. Examples of T include
changes in pixel intensity (Gehr et al., 2018; Singh et al., 2019b), ge-
ometric transformations (e.g., rotations, translations) (Balunovic
et al., 2019; Yang et al., 2023; Mohapatra et al., 2020) applied
to images, and string transformations (e.g., deletions, insertions)
(Jia et al., 2019; Zhang et al., 2021b) applied to an input text.
The local robustness can be extended to the global robustness
property by universal quantification over the input x (Kabaha
and Drachsler-Cohen, 2024; Yang and Rinard, 2019).

• Safety. This is a global property requiring that the DNN outputs
f(x) corresponding to each input x in the precondition ϕ satisfy
the postcondition ψ capturing safe behaviors (Katz et al., 2017;
Wang et al., 2018). Here ϕ and ψ respectively describe disjunctions
of polyhedra over the input and output spaces of f .

• Stability. This property can be defined both locally and glob-
ally. In the local version, given an input x, the output of the
DNN corresponding to each input x′ within a local neighbor-
hood parameterized by ϵ ∈ R should not deviate from f(x) by
more than a constant c ∈ R (Zhang et al., 2019; Jordan and
Dimakis, 2020). The distances in the input and output spaces are



3.1. Single Execution Properties 275

typically measured using norm functions dϕ and dψ respectively.
ϕ := {x′ | dϕ(x, x′) ≤ ϵ} and ψ := dψ(f(x), f(x′)) ≤ c. The global
property is defined by universal quantification over x (Chen et al.,
2021).

Many of these properties can be written as a combination of a
pre-defined computation graph (represented as an ONNX file) and
a specification file in VNNLIB format (Demarchi et al., 2023). The
VNNLIB specification typically defines a precondition ϕ represented
by element-wise constraints on x, and a postcondition ψ represented
by a logical formula over the outputs of the computation graph. The
standardized benchmarks from the Verification of Neural Network Com-
petitions (VNN-COMPs) include many properties in this general form,
arising from different applications such as computer vision, computer
systems (Lin et al., 2024), control (Yang et al., 2024b), aerospace, and
power systems (Chevalier et al., 2023). The details of these benchmarks
are available in VNN-COMP reports (Brix et al., 2024a; Brix et al.,
2023; Müller et al., 2022; Bak et al., 2021), which can serve as a starting
point for readers who want to apply neural network verification to their
domain-specific problems. Readers can also find the latest performance
reports of practical verification toolboxes, such as α,β-CROWN, ERAN,
Marabou, and PyRAT, in the VNN-COMP reports.

3.1.2 Verification Algorithms

A diverse set of verifiers exist for single execution properties. We broadly
classify them based on their completeness guarantees:
Complete vs. incomplete verifiers. Complete verifiers can provide
exact answers: they either prove the property or provide a counterex-
ample. In contrast, an incomplete verifier may be indecisive (returns
“unknown”) on some properties. Incomplete verifiers, such as those based
on abstract interpretation, have been developed to scale to large neural
networks. On the other hand, complete verification is an undecidable
problem for general neural network architectures and arbitrary prop-
erty specifications (Ivanov et al., 2019). In cases when completeness is
possible, complete verifiers can be built upon incomplete verifiers with
techniques such as branch-and-bound (Bunel et al., 2020; Wang et al.,
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2021; Ferrari et al., 2022), and they may be practically used with a
timeout to verify as many properties as possible. Incomplete verifiers
excel in situations where efficiency and scalability are the key concerns,
while complete verifiers enable us to improve the precision of incomplete
verifiers with different techniques, such as iterative branch-and-bound
(Bunel et al., 2020) and refinement (Singh et al., 2019c). In this mono-
graph, we focus on incomplete verifiers as they are more scalable and
applicable to verifying general architectures and properties.
Abstract interpreters for DNNs. Figure 3.1 shows the high-level
idea behind abstract interpretation-based DNN verifiers. The verifier
first runs a verification analysis, with a chosen abstract domain D, to
compute an overapproximation of f(φ). The analysis starts by comput-
ing an abstract element α(φ) using a sound abstraction function α. The
soundness of α ensures that γ(α(φ)) ⊇ φ (Definition 2.6). Next, the an-
alyzer symbolically propagates α(φ) through the different layers of the
network. At each layer, the analyzer computes an abstract element (in
blue) overapproximating the exact layer output (in white) corresponding
to φ computed by a concrete transformer T#. The formula is computed
by applying a sound abstract transformer T , overapproximating the
effect of the operations in the layer, on the abstract element input to
the layer. T can be obtained by combining the abstract transformers for
individual statements within the layer or designed to handle all individ-
ual statements jointly. The propagation yields a sound approximation
γ(g(α(φ))) ⊇ f(φ) at the output layer. Next, the verifier checks if
γ(g(α(φ))) ⊆ ψ holds for the bigger region γ(g(α(φ))) by either calling
an off-the-shelf solver (Salman et al., 2019; Wang et al., 2018) or using
custom approximations (Zhang et al., 2018a; Weng et al., 2018; Boopa-
thy et al., 2019; Singh et al., 2019b; Singh et al., 2018). If the answer is
yes, then f(φ) ⊆ ψ also holds for the smaller region f(φ). Because of
the overapproximation, it can be the case that γ(g(α(φ))) ⊆ ψ does not
hold while f(φ) ⊆ ψ holds. To reduce the amount of overapproximation,
refinements (Wang et al., 2018; Singh et al., 2019c; Müller et al., 2021b;
Ryou et al., 2021; Lyu et al., 2020; Wang et al., 2021) can be applied.

To obtain an effective verifier, it is essential to design an analysis
such that the concretization of g(α(φ)) is as close as possible to the
true output f(φ) while g can also be computed in a reasonable amount
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Figure 3.1: An illustration of the workings of neural network verifiers based on
abstract interpretation.

of time for practical networks. The cost and precision of g depend
upon the expressivity of the abstract domains and the cost of abstract
transformers for different layers and preconditions. For scalability, state-
of-the-art analyzers restrict the abstract domains to describe a convex
shape, e.g., Zonotope (Anderson et al., 2019; Singh et al., 2018; Gehr
et al., 2018; Goubault and Putot, 2022; Goubault and Putot, 2024),
Star sets (Tran et al., 2020b), Polyhedral (Gehr et al., 2018; Singh
et al., 2019b; Zhang et al., 2018a), etc. Note that the verifier does not
require φ,ψ to have the same shape as supported by the analyzer (φ
is approximated using α(φ) and ψ is handled exactly via a solver or
approximated).

3.1.3 Abstract Domains for Analyzing DNNs

Various analyzers exist based on the abstract domain they support,
which we describe next. Traditional relational abstract domains useful
for analyzing programs such as Octagons (Miné, 2006), Zones (Miné,
2002), TVPI (Simon and King, 2010), etc., have not proven useful
for DNNs as they are as imprecise for affine assignments as simpler
domains like Box while being more expensive. As a result, specialized
abstractions have been designed for DNNs that can efficiently handle
affine transformations and non-linearities. For a given domain, the
precision and cost of the analysis are not only determined by the size
of the DNN but also by the complexity of the specification and the
way the DNN is trained. It is possible that a given domain proves a
specification on a large DNN but fails to prove it on a smaller DNN.
Next, we describe four popular abstract domains for DNN verification
and compare their expressivity and precision on an illustrative example.
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Example network. We focus on the simple fully connected neural
network with ReLU activation shown in Figure 3.2. This network has
already been trained, and we have the learned weights shown in the
figure. The network has two affine layers and one ReLU layer between the
affine layers. The weights on the edges represent the learned coefficients
of the weight matrix that the affine layers use. The learned bias for
each neuron is shown above or below it. All of the biases in one layer
constitute the translation vector of the affine transformation.

Figure 3.2: Example fully connected neural network with ReLU activations.

To compute its output, each neuron ∈ {x3, x4} in the first affine layer
applies an affine transformation based on the weight matrix and bias to
its inputs x1, x2, producing a value v. Then, an activation function is
applied to v, in our example, ReLU, which outputs v, if v > 0, and 0
otherwise. In the last layer, a final affine transform is applied to yield the
output of the entire network, typically a class label that describes how
the input is classified. The predicted class is usually the one with the
highest value. The computations in the neural network can be written
as straight-line code, as shown in Figure 3.3.

Specification. We consider local robustness specification defined
around the point (0.3, 0.4). This point is originally classified as the
class o0, as for this input, the value at o0 is higher. Next, we define a
set of transformations that can perturb the original point by adding
or subtracting at most 0.3 to the original input in both dimensions.
Mathematically, this defines an L∞ ball of radius 0.3 around the original
point. This yields the precondition φ where both x1, x2 can take any
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Figure 3.3: Straight-line code representing the computations in the neural network
of Figure 3.2 for a concrete input.

values in the intervals [0, 0.6] and [0.1, 0.7] respectively. Our goal will be
to check whether the network’s output is the same as for the original
point, for any possible inputs in φ. If the proof is successful, it implies
that the network is robust and produces the same classification label
for all of these inputs.

Box. This is the simplest abstract domain that associates an interval
[l, u], l, u ∈ R with each neuron x in the DNN (Pulina and Tacchella,
2010; Gehr et al., 2018). Geometrically, an n-dimensional abstract
element in this domain represents a hyperbox shape in Rn. Figure 3.4
(a) visualizes an abstract shape for two variables. This domain can
exactly represent the precondition φ from our specification. Therefore
γ(α(φ)) = φ for our example. The analysis starts by associating the
intervals [0, 0.6] and [0.1, 0.7] with x1 and x2 respectively. Next, it
computes the intervals for x3 and x4 by applying the Box abstract
transformer for the affine assignments x3 := x1 + x2 and x4 := x1 − x2,
respectively. There is an infinite number of Box transformers for these
assignments. We consider the best transformer for each assignment
that computes the tightest interval bounds. This transformer can be
constructed by composing two types of transformers: interval addition
and multiplication by a scalar λ ∈ R shown in Figure 3.5. First, each
coefficient in the affine assignment is multiplied to the interval for
the corresponding variable using the multiplication transformer. Then,
all intervals are added together using interval addition. For x3, the
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Figure 3.4: Popular abstract shapes used for verifying DNNs

Figure 3.5: Abstract transformers for interval addition and scalar multiplication.

output is computed as [0.1, 1.3] = [0, 0.6] + [0.1, 0.7]. For x4, the output
is [−0.7, 0.5] = [0, 0.6] + (−1 ∗ [0.1, 0.7]). For each affine assignment,
the best abstract transformer has linear complexity in the number of
neurons on the right-hand side (RHS) of the assignment expression. The
composition of the best Box transformers for the individual assignments
yields the best abstract transformer for the full affine layer. Both affine
assignments can be handled independently; therefore, their composition
can be easily parallelized.

Even though the best affine transformer computes the tightest box,
it is not exact and, therefore, loses precision. For example, the point
(x3, x4) = (1.3, 0.5) is part of the output box but not feasible in any
concrete execution. This is because the Box domain does not track
dependencies between neurons caused by the affine assignments where
the same variables are used on the RHS of the assignment expressions
for x3 and x4.

Next, the analysis computes the intervals for x5 and x6 by applying
the ReLU abstract transformer. The best output interval for the ReLU
assignment y := ReLU(x) can be computed as [ReLU(l), ReLU(u)].
The transformer is visualized in Figure 3.6 for the case when l <

0 < u. This computation can be done in constant time and efficiently
parallelized across neurons in a layer. The best ReLU transformer for
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Figure 3.6: Approximations of the popular ReLU activations y := ReLU(x) with
different domains. We consider the most challenging case l < 0 < u, where the exact
output is piecewise-linear (shown in green in all figures).

the layer can be obtained by composing the best transformers for the
individual ReLU using the Single Neuron construction defined in Section
3.1.4. Similar to affine layers, the best abstract transformer for the ReLU
layers is not exact. Other popular non-linear operations used in DNNs,
such as Tanh, Sigmoid, etc., can be handled similarly in constant time
by the Box domain. For our example, we get the intervals [0.1, 1.3] and
[0, 0.5] for x5 and x6 respectively. Finally, the best affine transformer is
applied again to compute the intervals [0.6, 2.3] and [−1.3, 1.6] for o0
and o1, respectively. The output g(α(φ)) of the Box analysis for each
neuron is shown in Figure 3.7.

Now, we need to check whether the postcondition o0 > o1 holds on
the output g(α(φ)). This can be done symbolically without concretizing
g(α(φ)). Since there is no dependency between the intervals for different
neurons, we only need to look at the intervals for o0 and o1. To determine
whether the constraint holds, the analysis checks whether the lower
bound of o0 is > than the upper bound for o1. This is not the case for
our example, so the analysis fails to prove our specification. Note that
while the Box domain may appear quite imprecise, it is not useless. If
the size of the precondition was smaller (e.g., if the L∞ ball had a radius
of 0.15), then Box analysis could prove the specification. As we will
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Figure 3.7: Box analysis results on the example DNN.

see in the next section, Box analysis is quite useful for training DNNs
to satisfy specifications and can achieve high precision when verifying
complex specifications on larger DNNs trained in this way. Since Box
analysis is cheap, many verifiers often first run the Box analysis to avoid
running more expensive analyzers for easier specifications.

Zonotope. The Zonotope domain associates an affine expression x̂ =
α0 +∑r

i=1 αi · ϵi with each neuron x (Ghorbal et al., 2009). Here the
expression consists of a center coefficient α0 ∈ R, a set of noise symbols
ϵi ∈ [−1, 1] , and coefficients αi ∈ R representing partial deviations
around the center. Geometrically, an n-dimensional zonotope describes
a center-symmetric polytope in Rn. Figure 3.4 (b) visualizes a Zonotope
shape in 2-D. The Zonotope domain is more expressive than Box and
can capture linear dependencies between the neurons. The affine form
for an interval [l, u] can be computed as l+u

2 + u−l
2 · ϵi, where ϵi is a new

noise symbol. Therefore we get the affine forms x̂1 = 0.3 + 0.3 · ϵ1 and
x̂2 = 0.4 + 0.3 · ϵ2 from φ. As for the Box domain, we have γ(α(φ)) = φ.
Next, we apply the best affine transformer for the Zonotope domain,
which can be constructed by composing the transformers for affine
addition and multiplication of affine expressions by a scalar shown in
Figure 3.8. This yields
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Figure 3.8: Abstract transformers for addition and scalar multiplication in the
Zonotope domain.

x̂3 = x̂1 + x̂2 = (0.3 + 0.3 · ϵ1) + (0.4 + 0.3 · ϵ2)
= 0.7 + 0.3 · ϵ1 + 0.4 · ϵ2

x̂4 = x̂1 + (−1 · x̂2) = (0.3 + 0.3 · ϵ1) + (−0.4− 0.3 · ϵ2)
= −0.1 + 0.3 · ϵ1 − 0.3 · ϵ2

x̂3 and x̂4 share the same noise variables, capturing dependency due to
the affine assignments. Unlike the corresponding Box transformer, the
best Zonotope transformer is exact for affine assignments. Its complexity
is linear in the number of variables in the RHS of the assignment and
the maximum number of noise terms in an affine form for the RHS
variables. The composition of the exact transformers for the individual
assignments preserves the exactness when computing the output for
the full layer. For different neurons in a layer, the transformers can be
applied, and therefore, their composition can be efficiently parallelized.

Next, we need to handle the ReLU layer. We will describe ReLU
transformers for individual assignments. The layerwise Zonotope ReLU
transformer can be obtained by combining the transformers for individ-
ual neurons using the Single Neuron construction formalized in Section
3.1.4. For y := ReLU(x), we consider three cases depending on the
interval [l, u] for x. This interval can be easily extracted from x̂ as
[l, u] = [α0 −

∑r
i=1 |αi|, α0 +∑r

i=1 |αi|]. If the lower bound l > 0, then
y = x, and therefor, we we can set ŷ = x̂. The complexity of this
operation is linear in the number of noise symbols r. If u ≤ 0, then
y = 0 and we set ŷ = 0 in constant time. The Zonotope output is
exact in both of these cases. For our example, the interval bound for
x3 is [0.1, 1.3] and therefore we get x̂5 = x̂3 = 0.7 + 0.3 · ϵ1 + 0.3 · ϵ2.
The interval bounds [−0.7, 0.5] for x4 represent the challenging case
of l < 0 < u. Here the exact output shown in Figure 3.6 cannot be
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exactly represented as a Zonotope. Unlike popular abstract domains
used in program analysis like Octagons, TVPI, etc., Zonotopes are not
closed under intersection. As a result, there is no best Zonotope ReLU
transformer for this challenging case (otherwise, the best transformer
can be constructed by intersecting the output of all other transformers).
Therefore, various heuristic-guided abstract transformers have been de-
signed in the literature. Figure 3.6 shows a popular abstract transformer
that heuristically minimizes the area of the Zonotope approximation in
the xy-plane (Singh et al., 2018). The affine form for y depends only
on the affine form of x and therefore the computation can be easily
parallelized across neurons in a layer. The complexity of this transformer
is linear in r. The output is computed as ŷ = ω · x̂+µ/2+µ/2 · ϵn where
ϵn is a new noise symbol and ω = u

u−l and µ = −l·u
u−l . For our example,

ω = 5
12 and µ = 3.5

12 . This yields

x̂6 = ω · x̂4 + µ/2 + µ/2 · ϵ3

= 5
12 · (−0.1 + 0.3 · ϵ1 − 0.3 · ϵ2) + 1.75

12 + 1.75
12 · ϵ3

= 1.25
12 + 1.5

12 · ϵ1 + −1.5
12 · ϵ2 + 1.75

12 · ϵ3

Theoretically, this abstract transformer is not more precise than the
one from Box but yields more precise verification results in practice
due to capturing the dependence between y and x. Similar transformers
computing the output of the form ŷ = ω · x̂ + µ/2 + µ/2 · ϵn can be
constructed for handling other common activations like Tanh, Sigmoid,
etc., where ω, µ depend on the activation. We refer the reader to Singh
et al. (2018) and Bonaert et al. (2021) for more details. Notice that
the precision of the transformer depends on the quality of the interval
bounds. As we shall see in Section 3.1.5, the interval bounds can be
refined by using a more precise analysis to improve the precision of the
Zonotope analysis.

Finally, we can apply the affine transformer for the next layer to
compute the output affine form for o0. The Single Neuron construction
ensures that we can soundly use the affine forms for x5, x6 computed
above to obtain:
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ô0 =x̂5 + x̂6 + 0.5
=(0.7 + 0.3 · ϵ1 + 0.3 · ϵ2)+

(1.25
12 + 1.5

12 · ϵ1 + −1.5
12 · ϵ2 + 1.75

12 · ϵ3) + 0.5

=15.65
12 + 5.1

12 · ϵ1 + 2.1
12 · ϵ2 + 1.75

12 · ϵ3
Notice that the coefficients for ϵ2 in the affine forms x̂5 and x̂6 have

opposite signs. When we add these affine forms to compute ô0, there is
cancellation between the coefficients which improves the upper bound
compared to the Box analysis yielding [0.56, 2.05] and contributes to
better analysis precision. Similar cancellation occurs when computing
o1 yielding more precise bounds [−1.05, 1.64]. The output g(α(φ)) from
the Zonotope analysis is shown in Figure 3.9.

Figure 3.9: Zonotope analysis results on the example DNN.

A straightforward way to check whether the specification holds is to
compare the interval bounds for o0, o1 as for the Box analysis. However,
this is not sufficient to prove the property. Instead, we can compute the
affine form for o0 − o1 and then check whether its lower bound is > 0.
Computing this, we get the affine form 12.1

12 + −0.6
12 · ϵ1 + −6.6

12 · ϵ2 + 3.5
12 · ϵ3

with the lower bound 0.11 which is sufficient to prove our specification.
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DeepPoly/CROWN. The DeepPoly/CROWN abstract domain asso-
ciates four constraints with each neuron (Singh et al., 2019b; Zhang
et al., 2018a). Out of these, two are box constraints l ≤ x ≤ u, and two
are polyhedral L ≤ x ≤ U where both L,U are linear expressions of
the form ∑m

i=1 ai · xi + b with ai, b ∈ R. Figure 3.4 (c) shows a Deep-
Poly/CROWN shape in 2-D. The polyhedral bounds enable DeepPoly
to capture dependencies between the neurons while interval bounds
are used for efficiently computing precise approximations of non-linear
activations. Since this domain tracks interval bounds, it can represent φ
exactly setting 0 ≤ x1 ≤ 0.6 and 0.1 ≤ x2 ≤ 0.7 (the polyhedral bounds
are the same as interval bounds in this case). Next, the affine assign-
ments are handled exactly and in a parallelizable manner by adding the
polyhedral bounds x1 + x2 ≤ x3 ≤ x1 + x2 and x1 − x2 ≤ x4 ≤ x1 − x2.
This has linear complexity in the number of variables in the RHS of
the affine assignment. To compute interval bounds, we can use interval
affine transformers. This yields 0.1 ≤ x3 ≤ 1.3 and −0.7 ≤ x4 ≤ 0.5.

As for the Zonotope domain, DeepPoly can exactly handle the ReLU
assignment y := ReLU(x) when l > 0 or u ≤ 0. For the former, it adds
the polyhedral bounds x ≤ y ≤ x and interval bounds l ≤ y ≤ u. For
the latter, it sets all bounds to 0. Since the lower bounds for x3 is > 0 we
can compute x3 ≤ x5 ≤ x3 and 0 ≤ x5 ≤ 0.6. Like the Zonotope domain,
the DeepPoly domain cannot exactly capture the ReLU output when
l < 0 < u, as is the case for computing the bounds for x6. DeepPoly
is also not closed under intersection and, therefore, does not have a
best transformer for ReLU. As a result, specialized transformers have
been designed based on various heuristics (Weng et al., 2018; Wong
and Kolter, 2018; Singh et al., 2019b; Zhang et al., 2018a; Xu et al.,
2021). Figure 3.6 shows two parallelizable approximations that can
minimize the area in the xy-plane. Both are incomparable with the
Zonotope approximation we used previously. Note that the Zonotope
approximation can be captured by the DeepPoly domain. However, in
general, the two domains are incomparable, i.e., there are DeepPoly
shapes that are not Zonotopes and vice-versa. However, in practice, the
DeepPoly domain often provides more precise results.

In Figure 3.6, the first DeepPoly/CROWN transformer adds the
constraints 0 ≤ y ≤ u, 0 ≤ y ≤ λ · x + µ while the second one adds
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l ≤ y ≤ u, x ≤ y ≤ λ·x+µ. Since any sound transformers can work here,
using different transformers may lead to different verification results,
and we hope to choose the tightest one. For a given value of l, u, a
common heuristic is to choose the transformer with the smaller area
in the x, y plane, and we will discuss the opportunity to further refine
these transformers in Section 3.1.5. The transformer can be extended
to handle other activations. We refer the reader to Singh et al. (2019b),
Zhang et al. (2020), and Paulsen and Wang (2022) for details. In terms of
cost, all three cases can be handled in constant time. As one can notice,
similar to the Zonotope domain, the constraints for y are computed
based only on the constraints in x, ignoring the constraints for the other
neurons in the same layer as x. The precision of the transformer therefore
depends on the quality of the interval bounds [l, u]. Coming back to
our example, the bounds we computed using the interval arithmetic
are the tightest for x4. However, this is only the case for the output of
the first affine layers. For other layers, as we will see, this method loses
precision.

In our example, we choose the first approximation for bounding
x6 since it has a smaller area. This yields the constraints 0 ≤ x6 ≤
5
12 · x4 + 3.5

12 and 0 ≤ x6 ≤ 0.5. The Single Neuron construction is used
to combine the individual ReLU transformer to compute the layerwise
ReLU transformer. This enables using the bounds for x5, x6 computed
above for bounding o0.

The polyhedral bounds for o0 can be easily computed as x5 + x6 +
0.5 ≤ o0 ≤ x5 + x6 + 0.5. However, using the interval transformers
for computing the interval bounds yields imprecise output [0.6, 2.3],
which can reduce the precision of subsequent analysis. The best interval
bounds can be obtained via linear programming where the objective
is to minimize/maximize o0 subject to the DeepPoly constraints for
the other variables. While LP computations can be parallelized across
neurons, running LP two times for every neuron can be expensive for
larger DNNs. Therefore, standard DeepPoly /CROWN uses a custom
algorithm called backsubstitution that, in practice, obtains the bounds
of a similar quality as LP but faster (Singh et al., 2019b; Zhang et al.,
2018a; Müller et al., 2021a; Zelazny et al., 2022). We next show how
backsubstitution yields a more precise upper bound for o0.
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Instead of using the interval bounds, backsubstitution uses polyhe-
dral bounds. It substitutes the upper polyhedral bounds for x5 and x6
into the upper polyhedral bound for o0. This yields

o0 ≤ x5 + x6 + 0.5 ≤ x3 + 5
12 · x4 + 3.5

12 + 0.5

≤ x3 + 5
12 · x4 + 9.5

12
We can compute the upper bound using the interval upper bounds

for x3 and x4. However, this does not improve the upper bound. Next,
we can substitute the upper bounds for x3 and x4 to obtain a new upper
bound

o0 ≤ x3 + 5
12 · x4 + 9.5

12
≤ (x1 + x2) + 5

12 · (x1 − x2) + 9.5
12

≤ 17
12 · x1 + 7

12 · x2 + 9.5
12

Computing the upper bound using the expression yields 2.05 which
is more precise and is the output of the algorithm. The precision im-
proves because of the cancellation of the coefficients for x2. In general,
the backsubstitution algorithm, starting from a layer l > 2, recursively
substitutes the polyhedral bounds for the variables in the polyhedral
expression, till the first layer. At each layer, it computes interval bounds
and chooses the best among them. Backsubstitution is the most ex-
pensive operation in the DeepPoly/CROWN analysis and its cost for
computing the interval bounds of a single neuron is quadratic in terms
of the maximum number of neurons in a layer in the DNN and linear
in the number of layers. The cost can be controlled by using different
heuristics such as stopping after a few layers or using interval bounds
instead of polyhedral ones for substitution for some variables. Similar
computations can be performed for the bounds of o1. g(α(φ)) from the
DeepPoly analysis is shown in Figure 3.10.

As for the Zonotope analysis, interval bounds from DeepPoly’s
g(α(φ)) cannot prove the postcondition. Instead, we can compute the
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Figure 3.10: DeepPoly/CROWN analysis results on the example DNN.

lower bound for o0 − o1 using backsubstitution and check whether that
is > 0. The computed lower bound is 0.2, which is more precise than
the Zonotope analysis and proves the specification.

Star Set. Star Sets are a generalization of Zonotopes where the noise
terms are constrained by a predicate P (ϵ1, ϵ2, ...ϵp) instead of the interval
[−1, 1]. In the context of DNN verification, the most common predicate
is defined using a conjunction of linear constraints ∑p

j=1 cj · ϵj ≤ d,
where cj , d ∈ R, over the noise symbols (Tran et al., 2021; Tran et al.,
2019a). For our example, the analysis starts by creating the affine forms
x̂1 = ϵ1, x̂2 = ϵ2 with the constraints 0 ≤ ϵ1 ≤ 0.6 and 0.1 ≤ ϵ2 ≤ 0.7.
The affine assignments are handled exactly by creating the affine forms
x̂3 = ϵ1 +ϵ2 and x̂4 = ϵ1−ϵ2. This transformer can be easily parallelized
across neurons in a layer and does not modify the constraints over the ϵ’s.
The complexity of the exact transformer for one affine assignment is the
same as Zonotopes. Next, the ReLU assignment is handled based on the
interval bounds which can be computed using linear programming (LP).
We find that the lower bound for x3 > 0, so we can set x̂5 = x̂3 = ϵ1 +ϵ2.
We have the challenging case l < 0 < u on the bounds for x4. The Star



290 Formal Verification of DNNs

Sets domain uses the triangle approximation shown in Figure 3.6, which
cannot be represented in the Zonotope domain. This adds the affine
form x̂4 = ϵ3 with the new noise symbol ϵ3 constrained by ϵ3 ≥ 0, ϵ3 ≥
ϵ1− ϵ2, ϵ3 ≤ 5

12 · (ϵ1− ϵ2) + 3.5
12 . All three cases for the ReLU require two

LP calls to compute the interval bounds in the worst case. While these
calls can be easily parallelized and combined using the Single Neuron
construction to compute a layerwise approximation, the use of LP
makes Star Sets more expensive than Zonotopes. Note that the triangle
approximation can be represented by the DeepPoly/CROWN domain.
However, the standard implementations use less precise relaxations as
backsubstitution cannot exploit the extra precision from the triangle
approximation. Overall, the Star Sets domain is more expressive than
Zonotopes and DeepPoly/CROWN but also the most expensive.

The final affine assignments add the affine forms ô0 = ϵ1+ϵ2+ϵ3+0.5
and ô1 = 2 · ϵ1 + 2 · ϵ2− ϵ3− 1. Figure 3.11 shows the final output shape
g(α(φ)) computed by the Star Sets domain. To prove the specification,
an LP call is made to minimize o0 − o1 under the constraints defining
g(α(φ)). The positive result is sufficient to prove the specification.

Figure 3.11: Star Sets analysis results on the example DNN.

We had γ(α(φ))) = φ with all four domains for our example specifi-
cation. However, equality does not always hold, and a sound approxima-
tion needs to be computed. Next, we discuss geometric perturbations
on 2D-images, which apply non-linear transformations resulting in an
atypical φ that cannot be described as the union of convex polyhedra.
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Geometric perturbations. A geometric image perturbation is a func-
tion P , which takes an input image x and a multi-dimensional parameter
vector θ ∈ Rk encoding transformations on x, e.g., angle of rotation
and amount of scaling, and produces the geometrically perturbed image
x′ = P (x, θ). Geometric perturbations involve an affine transformation
on each pixel’s row and column indices, followed by an interpolation
operation. As these operations are performed in the 2D plane, we first
interpret the row and column indices (i, j) as points (u, v) ∈ R2, where
the u-axis is the horizontal axis and the v-axis is the vertical axis. Here,
we define functions ϕu(j) = j − (W − 1)/2 and ϕv(i) = (H − 1)/2− i,
which convert zero-indexed i, j indices to u, v coordinates with respect
to the center of an H ×W image. Let Gθ : R2 → R2 be an invertible
affine transformation (e.g., rotation, translation) parameterized by θ

(e.g., rotation angle, amount of horizontal shift). Having converted row-
column indices to R2, we compute for each location (ϕu(j), ϕv(i)) the
(real-valued) coordinate that maps to this location under Gθ; we can
obtain this coordinate as (u′, v′) = G−1

θ (ϕu(j), ϕv(i)), where G−1
θ is the

inverse transformation. Since these transformed coordinates may not
align exactly with integer-valued pixel indices, we must interpolate. The
most popular interpolation method is bilinear interpolation (Jaderberg
et al., 2015), given as:

Ix(u, v) =
H−1∑
p=0

W−1∑
q=0

xp,q ·max(0, 1−|v−ϕv(q)|) ·max(0, 1−|u−ϕu(p)|)

(3.1)
where x is the original image. The value of each pixel in the interpolated
image x′ is then:

x′
i,j = P (x, θ) = Ix

(
G−1
θ (ϕu(j), ϕv(i))

)
(3.2)

φ for geometric perturbations contains the set of all images generated
by (3.2) for a range θ ∈ [α, β], where α, β ∈ Rk, of parameter values.
Verification against geometric transformations requires two key steps:
(1) obtaining bounds on the set of perturbed images P (x, θ) obtainable
after applying geometric perturbation P corresponding to θ ∈ [α, β]
and (2) propagating these bounds through the neural network. This is
shown in Figure 3.12. As a concrete example, we consider computing
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Figure 3.12: DNN verifier against geometric perturbations based on the Box analysis.
It first computes a box approximation α(φ) of the set of images P (x, θ) produced
by applying geometric perturbations from θ ∈ [α, β]. The result is propagated
through the DNN with standard Box analysis using the same transformers for DNN
transformations as described before.

α(φ) for the scaling transformation with θ ∈ [−0.02, 0.02]. The inverse
transformation for scaling is shown below:

G−1
θ (u, v) =

[
1

1+θ 0
0 1

1+θ

] [
u

v

]
=
[
u/(1 + θ)
v/(1 + θ)

]
(3.3)

We consider the Box domain because it is the most common ab-
straction for computing α(φ) for geometric perturbations (Singh et al.,
2019b; Yang et al., 2023; Mohapatra et al., 2020). One benefit of the
Box approximation of φ is that α(φ) can be easily propagated through
the DNN with other abstract domains (e.g., Zonotope, DeepPoly). We
refer the reader to the work of Balunovic et al. (2019) that computes
α(φ) in the DeepPoly domain. We start by associating the interval
[−0.02, 0.02] with θ. We next apply the Box transformer for the inverse
transformation, which involves interval division for every u, v coordinate(

u

1 + [−0.02, 0.02] ,
v

1 + [−0.02, 0.02]

)
=
(

u

[0.98, 1.02] ,
v

[0.98, 1.02]

)
(3.4)

For example with (u, v) = (1, 1) we get the set of pixels that map to
(u, v) in the scaled image as inside the square [0.98, 1.02]× [0.98, 1.02]
in the original image. The Box output from (3.4) containing the set of
points in the original image mapping to different (u, v) in the scaled
image is then fed to the to the abstract transformer corresponding to
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(3.1), obtaining α(φ). This abstract transformer can be constructed
by combining the interval transformer for the absolute, max, addition,
subtraction, and multiplication transformations.

Next, we list some other abstract domains that have been employed
for neural network verification.

• CH-Zonotope. CH-Zonotopes are more expressive than Zonotopes
and can be seen as the Minkowski sum of a Hyperbox and Zonotope
(Müller et al., 2023b; Mirman et al., 2018). Formally, the affine
form for the variable x in this abstraction can be written as x̂ =
α0 +∑r

i=1 αi · ϵi + βx · κ where β ∈ R. Here κ ∈ [−1, 1] is a special
noise term that is specific to each variable and is not shared across
different affine forms like ϵi.

• Multi-Norm Zonotope. Standard zonotopes can exactly repre-
sent preconditions defined by L∞ distances or intervals. However,
they lose precision when handling L1 or L2 balls. To overcome this
limitation, multi-norm Zonotopes were developed (Bonaert et al.,
2021), parameterized by a given Lp norm. Here the affine expression
x̂ = α0 + ∑r

i=1 αi · ϵi + ∑q
j=1 βj · κj , in addition to the standard

Zonotope noise symbols αi, also contains the set of noise variables
κ := (κ1, κ2, . . . , κq) constrained by the Lp-based inequality ||κ||p ≤ 1.
Overall, this domain is more expressive than the Zonotope domain.
For handling the non-linearities such as ReLU, Sigmoid, and Tanh,
the domain adapts the transformers from the Zonotope domain. The
domain provides specialized efficient transformers for the Softmax
and dot product operations that are common in the transformer ar-
chitecture making the domain suitable for verifying this architecture.

• Polynomial Zonotope. Polynomial Zonotope (Kochdumper et al.,
2023; Ladner and Althoff, 2024; Kochdumper and Althoff, 2021;
Ladner and Althoff, 2023; Ladner et al., 2024) is a non-convex
abstraction parameterized by a degree m. Here the affine form x̂ =
α0 +∑r

i=1 αi · ϵi +∑q
j1=1 β1 · κj1 +∑q

j1=1
∑q
j2=j1 β12 · κj1 · κj2 + ...+∑q

j1=1
∑q
j2=j1, ...,

∑q
jm=j(m−1) β12...m · κj1 · κj2 · ....κjm where all the

noise terms κj , ϵi ∈ [−1, 1] as for standard Zonotopes. The noise
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terms κj are called dependent as a change in their value affects
multiple terms in the affine form.

• ImageStars. An extension of Star Sets, called ImageStars, was de-
veloped in Tran et al. (2020a) to handle convolutional networks in the
vision domain efficiently. The coefficients αi in the Star abstraction
denote an image instead of scalars in this abstraction. The abstract
transformers for ImageStars are an adaptation of the transformers
for Star Sets.

• Symbolic Linear Relaxation (SLR). Like DeepPoly/CROWN
domain, the SLR domain keeps the polyhedral bounds Li ≤ xi ≤
Ui for each neuron xi. Instead of keeping interval bounds on the
value of xi, it tracks interval bounds on the expressions Li and
Ui. Thus SLR associates six constraints per neuron (Wang et al.,
2018). The abstraction is exact for affine assignments and heuristically
approximates the effect of non-linearities based on the interval bounds
computed by affine transformer. The interval bounds for Li, Ui can
be computed in a similar manner as for DeepPoly/CROWN.

• Octatope. The Octatope domain is a restricted form of Star Sets
but is more expressive than the Zonotopes. Here, the noise symbols
are constrained by Octagon constraints (Miné, 2006). Geometrically,
Octatopes are affine transformations of n-dimensional Octagons (Bak
et al., 2023). As a result, the Octatope domain can exactly capture
affine transformation. Recall that the use of LP for computing the
interval bounds make Star Sets expensive. The restriction to Octagon
constraints makes LP more efficient for the Octatope domain. It can
be solved in strongly polynomial time via a reduction to the minimum
cost flow (MCF) problem (Goldberg and Tarjan, 1989).

• HexaTope. This domain is less expressive than Octatope (Bak et al.,
2024). Here, the noise symbols in the affine form are constrained by
difference constraints, as is the case for the Zones domain (Miné,
2002). This domain can also capture affine assignments exactly and
enables efficient LP solving.
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• Polyhedra. The Polyhedra domain is the most expressive linear
relational domain (Cousot and Halbwachs, 1978; Singh et al., 2017).
The elements in this domain can be represented as a conjunction of
a finite number of linear constraints between neurons of the form∑
i ai · xi ≤ b where ai, b ∈ R and xi ∈ X . The domain can exactly

capture affine assignments. The best transformer for piecewise-linear
activations like ReLU, Maxpool has exponential cost, making the
domain prohibitively expensive for handling larger DNNs.

• Tropical Polyhedra. The tropical polyhedra domain was used
for verifying ReLU-based networks in Goubault et al. (2021). A
tropical polyhedron (Allamigeon et al., 2008) is a conjunction of
a finite number of tropical constraints of the form max(maxi(ai +
xi), b) ≤ max(maxi(ci + xi), d) where ai, ci, b, d ∈ R and xi ∈ X .
Geometrically, a tropical polyhedron encodes a union of zones (Miné,
2002). Compared to other domains, this one is exact for ReLU but
loses precision for affine transformation.

3.1.4 Generic Recipes for Non-Linear Layers

Affine layers can be efficiently handled exactly in most existing domains
by composing the exact transformers for individual affine assignments.
This computation can often be parallelized. The most challenging com-
putation inside DNNs is the non-linear layers. Next, we describe four
generic recipes for constructing abstract transformers, with varying pre-
cision and cost, for approximating the effect of a given layer Y := σ(X)
containing n non-linear assignments yi := σ(xi). The construction can
be instantiated for any domain D (e.g., DeepPoly, Octatope). Let D ∈ D
denote the input abstract element and consider the common case where
D does not contain any constraints involving any of the variables yi.
The output O ∈ D can be calculated as:

• Single Neuron. This method requires individual transformers Ti
for each non-linear assignment yi := σ(xi). Each Ti can be based
on different algorithms. However, Ti for different assignments can
be applied independently with D as input for each Ti, allowing
efficient parallelization on GPUs. O is computed by applying the
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meet operator (⊓) (or its approximation) on the outputs Oi computed
by each Ti. The best O obtained from this method can be less precise
than that from the sequential method. This is the most common
construction for handling non-linear layers in the literature. We
followed this recipe for handling the ReLU layers in our illustrative
example in Section 3.1.3.

• Sequential. This method also requires abstract transformers Ti
corresponding to each assignment. The individual assignments yi :=
σ(xi) are processed sequentially where the output of the abstract
transformer Ti serves as the input to Ti+1. The order in which the
assignments are processed can affect the verifier’s precision. O is
obtained after processing the last assignment in the chosen sequence.
As the assignments are processed one after the other, the transformer
computations cannot be done in parallel. Even if each Ti is the best
transformer for each assignment, this method’s output O need not
be the best approximation of the layerwise output in the domain D.

• Multi Neuron. This method processes a group of 1 < k < n

assignments jointly using the same or different abstract transformers
T g that operate on a group of assignments. The set of groups G
must form a covering (the groups can have overlapping assignments)
of the set of assignments in the layer. The individual groups can be
processed independently, enabling parallelization opportunities. O is
computed by applying the meet operator (⊓) (or its approximation)
on the outputs corresponding to different groups. The precision of
O increases with the size k of each group and the number of groups
in the covering. The best O obtained from this method is at least
as precise as the single-neuron method but need not be the best
layerwise approximation in the domain D. For a given group, the
best output from this method is more precise than the best from the
sequential method.

• Layerwise. All n assignments are processed at once using a single
abstract transformer T . The best layerwise approximation in D can
be computed using this method.
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Figure 3.13 shows the application of the four constructions on a toy
example. We refer the reader to Gehr et al. (2018) for a detailed descrip-
tion of sequential transformers with any domain D for the ReLU layer
based on using the Join (⊔) operator. The work of Singh et al. (2019a)
describes the construction of single neuron, multi neuron, and layerwise
transformers for ReLU using joins. This was generalized to more diverse
non-linearities in Müller et al. (2021b). Anderson et al. (2020) and Tjan-
draatmadja et al. (2020) discussed generating layerwise approximations
directly for the composition of affine and ReLU transformations, which
typically involve an exponential number of constraints.

Figure 3.13: Illustration of the generic constructions for handling non-linear layers.
(a) shows an example layer with 3 non-linear assignments. (b) The single neuron
construction applies the transformer for each assignment independently taking D as
input. The results are combined using the meet (⊓) operator. (c) Starting from D,
the sequential construction applies the transformer for each assignment on the output
of the previous assignment. (d) The multi neuron construction first constructs a
covering {{(y1, x1), (y2, x2)}, {(y2, x2), (y3, x3)}} of the set of assignments and applies
group transformers on each group independently with D as the input. The results
are combined using ⊓. (e) The layerwise construction handles all assignments with a
single transformer T .

Since abstract interpretation is compositional, once we have trans-
formers for non-linear and affine layers, any DNN architecture, e.g.,
residual (Xu et al., 2020), recurrent (Ko et al., 2019), graph neural
network (Wu et al., 2022b), can be handled by simply composing the
corresponding transformers according to the DNN architecture defined
by a computation graph (Xu et al., 2020).
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3.1.5 Refinement

When the verifier cannot prove a specification due to imprecise g(α(φ)),
refinement can be applied to strategically improve the approximation
error. In this section, we will discuss general refinement strategies that
can be adapted for different DNN architectures. State-of-the-art verifiers
combine several refinement strategies with abstract interpretation-based
analysis.

Input/output splitting. The precondition φ is partitioned into m

smaller regions φi. An abstract interpreter is then run to compute
g(α(φi)) for each φi. This computation can be parallelized across differ-
ent splits. If the postcondition ψ can be proven on each φi, then the
original specification is also proved. If a counterexample is found on one
of the split (e.g., using a bug finding algorithm), then the specification
is disproved. Otherwise, we can further partition the preconditions
for which g(α(φi)) is imprecise. This process can continue till the full
specification is proved, a concrete counter example is found, or a limit
on the number of splits is reached. The cost of this strategy depends
upon the number of splits and the size of each split. Several heuristics
exist in the literature for partitioning. We refer the reader to Wang et al.
(2018), Singh et al. (2019d), Balunovic et al. (2019), Yin et al. (2022),
Wei et al. (2023), Yang and Rinard (2019), and Brückner and Lomuscio
(2024) for examples. Output splitting works similarly by partitioning
the postcondition (Henriksen and Lomuscio, 2021). Input splitting and
activation splitting (next paragraph) methods are also known in the
literature as branch-and-bound (BaB) based methods.

Activation splitting. In this strategy, the set of non-linear assignments
in the DNN are ranked according to a heuristic that measures the
importance of different assignments for proving the specification. Next,
the first assignment yi := σ(xi) from the ranking is chosen and the
interval range [li, ui] for xi is partitioned into m regions [lij , uij ]. For
each split [lij , uij ], we need to compute the DNN output corresponding
to φ ∧ (lij ≤ xi ≤ uij). The abstract interpreters from the previous
section can be adapted to handle the interval constraint lij ≤ xi ≤ uij
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on an intermediate neuron xi by designing (or leveraging) an (existing)
abstract transformer for computing the intersection of an abstract
element D ∈ D with a linear constraint. For our case, D is the element
computed for φ before any split. To handle the linear constraint, an LP
solver (Bunel et al., 2020) or Lagrangian multipliers (Wang et al., 2021;
Ferrari et al., 2022; Shi et al., 2024) can be applied. After applying the
intersection, the assignment yi := σ(xi) and any other operations in
the DNN that come after it are handled by applying the corresponding
transformers. If the specification is proved on each split, then the
original specification is also proved. If a counterexample is found on one
of the splits [lij , uij ], then the specification is disproved. If the result
is inconclusive on a set of splits [lij , uij ], then for each such split, the
process is repeated to select the next non-linear assignment yk := σ(xk)
(this can be in a layer before xi) and the abstract interpreter is run
for each region φ ∧ (lij ≤ xi ≤ uij) ∧ (lkj ≤ xk ≤ ukj). In the case of
ReLU networks, activation splitting can achieve complete verification
(Wang et al., 2021) since ReLU is piece-wise linear, and the number of
linear regions in a ReLU network is finite (exponential to the number
of ReLU neurons). For non-ReLU networks, although splitting is also
possible for improving precision (Sidrane et al., 2022; Shi et al., 2024),
the verification problem is, in general, undecidable.

There exists a variety of heuristics for ranking the non-linear assign-
ments and for partitioning the interval ranges. We refer the reader to
Pulina and Tacchella (2010), Lu and Kumar (2019), Yang et al. (2024c),
Shi et al. (2024), Duong et al. (2023), Henriksen and Lomuscio (2020),
Palma et al. (2021b), Xue and Sun (2024), and Lemesle et al. (2024)
for state-of-the-art heuristics. A generalization of activation splitting
discovers cut constraints between neurons in different layers in the DNN
and runs the abstract interpreter on the conjunction of φ with the
discovered constraints (Zhang et al., 2022; Zhou et al., 2024). Abstract
transformers for intersecting abstract elements with cutting constraints
are needed for this approach.

Optimizing parametric analysis. This approach leverages parametric
abstract transformers Tλ for non-linearities: their output has parameters
λ that can be optimized for the given specification. An example is
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designing the lower polyhedral bound in the DeepPoly/CROWN domain
for the ReLU assignment y := ReLU(x) to be y ≥ λ · x where λ ∈ [0, 1]
can be optimized (Figure 3.14). The setting of λ for each neuron can
be independent. Notice that setting λ = 0 and λ = 1 gives us the
transformers shown in Figure 3.6 based on minimizing the area in the
xy-plane, and λ = u

u−l gives the Zonetope transformer. While they
may decrease the number of spurious points in the output, they do
not yield optimal precision. All lower bounds with λ ∈ [0, 1] are sound,
and better results can be obtained by tuning the λ for each assignment
guided by the specification. The verification of the specification is then
expressed as an optimization problem either directly or via a surrogate
differentiable loss over the parametric analysis output gλ(α(φ)). The
optimization can be solved with LP, SMT, or gradient-based methods.
α-CROWN is a prominent example of this approach (Xu et al., 2021)
using gradient descent on GPUs to optimize all λs in parallel. Please
see Ryou et al. (2021), Chevalier et al. (2024), Lyu et al. (2020), König
et al. (2024b), and Dvijotham et al. (2018b) for more examples.
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Figure 3.14: Parametric DeepPoly/CROWN transformers Tλ, where λ denotes
the slope of the lower polyhedral bound of ReLU. Any 0 ≤ λ ≤ 1 yields a sound
transformer, and λ can be optimized for every ReLU to achieve the tightest verification
result.

Reduction with precise approximations. This approach runs two
analyzers in parallel where one is fast but imprecise and the second
one is precise but slow. The analysis results from the imprecise analysis
are used to speed up the computations in the precise analysis while
the precise results are used to reduce the approximation error of the
imprecise analysis. To manage the cost, the precise analysis maybe
employed on a strategically selected subset of neurons in the DNN. The
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final output is the intersection of the results from the two analyzers.
For example, the RefineZono analysis runs (i) a cheap but imprecise
analysis based on a reduced product of the Box and Zonotope domains
on all neurons in the DNN (Singh et al., 2019d) and (ii) LP and MILP-
based analysis to compute precise interval bounds on the inputs to
strategically selected ReLU assignments. The Box bounds from the
imprecise analysis speedup the precise analysis by reducing the search
area for the solver. The tighter interval bounds on the ReLU inputs are
passed to the imprecise analysis. Since the Zonotope approximation of
ReLU assignments (as shown in Figure 3.6) depends on the tightness
of the input interval bounds, the output has a smaller area, and this
contributes to improved precision. Another popular example of this
approach is DeepPoly combined with multi neuron transformers (Müller
et al., 2021b; Singh et al., 2019a; Ma et al., 2024; Ferrari et al., 2022;
Tang et al., 2023; Ma, 2023). We refer the reader to Bak et al. (2020)
and Bak (2021) for more examples of this strategy.

Backward analysis. The analyzers described so far ignore the postcon-
dition. This makes the output g(α(φ)) useful for proving a variety of
postcondition. However, incorporating the constraints from the postcon-
dition can be used to refine the verifier output (Yang et al., 2021; Wu
et al., 2022b; Rober et al., 2023; Kotha et al., 2023). This type of refine-
ment uses two abstract domains Df ,Db for the forward and backward
analysis, respectively. The backward pass first updates the backward
element at the output layer by (i) applying an abstract transformer
in Df to intersect g(α(φ)) with ¬ψ and (ii) abstracting the result in
Db. The backward pass at a non-output layer k performs two steps.
First, the network behavior from layer k till the output and ¬ψ is en-
coded using the elements from both the forward and backward analysis.
Next, interval bounds on each neuron in the layer are computed using
LP/SMT solvers (Yang et al., 2021; Wu et al., 2022b), or gradient-based
optimization (Kotha et al., 2023). The backward abstract element is
then refined by (i) applying an abstract transformer in Df to intersect
the forward element at the layer with the interval constraints from
the solver, (ii) abstracting the output in Db, and (iii) applying meet
operator (⊓) on the original backward element and the one from (ii). If
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the output of (iii) is empty, then the specification is proved. To control
the cost of the backward pass, the solver can be run to compute interval
bounds for only a subset of heuristically selected neurons. The forward
and backward passes can be applied iteratively till the specification is
proved/disproved or a stopping criteria is met. The final output is the
intersection of the abstract elements from the forward and backward
analysis.

Independent from refinement, specialized backward analysis have
been designed to compute an under or overapproximation of the DNN
preimage with respect to the postcondition ψ. We refer the reader
to Dimitrov et al. (2022), Urban et al. (2020a), Kotha et al. (2023),
Zhang et al. (2018b), Gopinath et al. (2020), and Zhang et al. (2024) for
details. We conclude our discussion of the verification of single execution
properties by referring the interested readers to excellent evaluations
from Li et al. (2020), König et al. (2024a), and Brix et al. (2024b)
comparing the performance of state-of-the-art verifiers on standard
benchmarks.

3.2 Relational Properties

The verification methods covered in Section 3.1 lack the expressive-
ness needed to specify properties such as monotonicity, which requires
comparing the DNN’s output on two distinct inputs. To capture such
properties, we need input and output specifications that can charac-
terize the DNN’s behavior across multiple distinct but related inputs,
rather than just perturbations of a single input as in non-relational
verifiers (Singh et al., 2019b). In this section, we discuss the verification
of relational properties that encode desirable DNN behavior in two
settings: a) multiple executions of the same DNN on related inputs
(input-relational) (Banerjee et al., 2024b), and b) multiple executions of
different DNNs on the same input (network-relational) (Paulsen et al.,
2020). We begin by formally defining the input and output specifications
for these relational properties and illustrate practical examples where
verifying these properties is useful.
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3.2.1 Relational Specifications

Suppose we want to ensure that a DNN applied in the financial domain,
such as housing price prediction (Banerjee et al., 2024b), makes sensible
decisions—e.g., predicting a higher price for a larger house with more
rooms, assuming all other features remain constant. Non-relational
verifiers cannot capture relationships between pairs of inputs, such as
comparing the number of rooms in a larger house and a smaller one.
Similarly, if we want to verify that a smaller, compressed model behaves
equivalently to the larger network from which it was derived within
a specific input region (Paulsen et al., 2020), existing non-relational
verifiers are inadequate, as they are unable to reason about two network
executions simultaneously. We now go into the details of both input-
relational and network-relational properties.
Input-relational properties. Input-relational properties check
whether a DNN behaves as expected across k distinct but related inputs.
In this case, we define k input regions, φ1, . . . , φk, along with a cross-
executional constraint φδ that encodes the relationships between the
k distinct inputs used in different executions of the DNN f . For any set
of k inputs x1, . . . , xk satisfying ∧ki=1(xi ∈ φi) ∧ (x1, . . . , xk) ∈ φδ, we
aim to prove that the corresponding outputs f(x1), . . . , f(xk) meet the
condition (f(x1), . . . , f(xk)) ∈ ψ. The key distinction here is that the
cross-executional constraint captures relationships across inputs, while
the output specification ensures that the outputs of all k executions are
related (see Figure 3.15). For example, to demonstrate that the given
DNN f is monotonically increasing, we can use φδ = (x − y ≥ 0) for
a pair of inputs x and y, and ψ = (f(x) − f(y) ≥ 0) as the output
specification. Another interesting property expressible as a relational
specification is the DNN’s robustness against Universal Adversarial
Perturbations (UAP). The UAP (Universal Adversarial Perturbation)
robustness verification problem examines whether a single perturbation
δ ∈ Rm can be applied to k DNN inputs, causing the model to mis-
classify all of them. This problem differs fundamentally from the more
commonly studied local robustness verification (Singh et al., 2019b),
where the adversary is allowed to perturb each input independently.
However, recent research has shown that generating input-specific ad-
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Figure 3.15: Relational specification for defining UAP robustness on two distinct
inputs. Here the same perturbation δ ∈ R2 is applied to both inputs and ψ ensures
that at least one of the perturbed inputs remains correctly classified.

versarial perturbations is often unrealistic, as practical attacks typically
involve finding a perturbation that works across a set of inputs rather
than targeting a single input. These studies suggest that focusing solely
on robustness against input-specific adversarial attacks is overly con-
servative and offers a pessimistic view of real-world DNN robustness.
Because the same adversarial perturbation is applied to all k inputs,
the perturbed inputs are related. We can express this relationship using
the following cross-executional constraint: x′ − y′ = x − y, where x′

and y′ represent the perturbed versions of the original inputs x and
y. Beyond monotonicity and UAP robustness, previous works have
also considered other important input-relational properties, such as
DNN fairness (Urban et al., 2020b) and global robustness (Wang et al.,
2022a).
Network-relational properties. Network-relational properties are
used to compare the outputs of two different networks on the same
input. For instance, if we want to verify whether two networks behave
identically over a specific input region, we can express this as a network-
relational property. DNNs are often compressed using techniques like
quantization (Gholami et al., 2022) and pruning (Liang et al., 2021) to
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meet practical requirements, such as reducing energy consumption and
computational costs. However, it’s essential to quantify any potential
performance loss post-compression. Paulsen et al. (2020) employs rela-
tional verification to formally prove that, within specific input regions,
the compressed model does not experience any performance degradation.

3.2.2 Relational Verifier

In this section, we primarily discuss three input-relational verification
techniques: a) RaVeN (Banerjee et al., 2024b), b) RACoon (Banerjee
and Singh, 2024), and c) RABBit (Suresh et al., 2024), due to their
scalability in terms of both DNN size and the number of executions
k. Note that the input relational verifiers like RACoon can handle
network-relational properties, such as the local network equivalence
problem (Paulsen et al., 2020). Hence, we will limit our discussion to
input-relational verifiers.

The main difference between non-relational and relational verifica-
tion problems lies in the cross-executional input constraints φδ, which
capture dependencies between inputs used in different DNN executions.
Leveraging these cross-executional dependencies is crucial for improving
the precision of relational verifiers. Before going into the details of spe-
cific verification algorithms, we first discuss the significance of utilizing
cross-executional dependencies through an illustrative example.

Illustrative Example

Network. For this example, we consider the network, fex, with three
layers: two affine layers and one ReLU layer with two neurons each
(Figure 3.16). The weights on the edges represent the coefficients of the
weight matrix used by the affine transformations applied at each layer,
and the learned bias for each neuron is shown above or below it.
Relational property. We verify the UAP verification problem de-
scribed in Section 3.2.1 on fex where the relational property is defined
over 2 separate executions of fex. φ1, φ2 and φδ are defined as follows
where i∗1 = [14, 11]T , i∗2 = [11, 14]T , and ϵ = 6.
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Figure 3.16: Representation of fex used in the illustrative example

φ1 := (∥i1 − i∗1∥∞ ≤ ϵ) φ2 := (∥i2 − i∗2∥∞ ≤ ϵ)
φδ := ((i1 − i2) = (i∗1 − i∗2))

In UAP verification, an adversary can select to attack the DNN with
any perturbation δ such that ∥δ∥∞ ≤ ϵ but the same perturbation
δ must be applied to both inputs - i∗1, i∗2 ∈ R2. Therefore the two
executions are related and tracking this relationship improves precision.
In contrast, in the common local robustness problem, an adversary can
choose different perturbations for the two inputs and therefore the two
executions are unrelated and can be verified independently. Any input
i1 ∈ R2 inside the L∞ ball defined by ∥i1− i∗1∥∞ ≤ ϵ is not misclassified
if (fex(i1) = [o1, o2]T ) ∧ (o1 − o2 > 0) holds. Conversely, any input
i2 ∈ R2 lying inside the L∞ ball - ∥i2 − i∗2∥∞ ≤ ϵ is not misclassified if
(fex(i2) = [o1, o2]T )∧(o2−o1 > 0) holds. We want to formally verify that
there does not exist an adversarial perturbation δ ∈ R2 with ∥δ∥∞ ≤ ϵ
such that both the inferences on inputs i1 = i∗1 + δ and i2 = i∗2 + δ

produces incorrect classification results (encoding in Figure 3.15).
The key challenge lies in utilizing the cross-executional input con-

straint φδ (e.g., ensuring that the perturbation ∥δ∥∞ remains the same
across inputs). For instance, if we apply non-relational verifiers (e.g.,
Zonotopes) to input regions defined by φ1 and φ2 in isolation, without
considering the cross-executional constraint φδ, we cannot verify the
property. In this case, the lower bound of (o1 − o2) w.r.t. the input
region φ1 and the lower bound of (o2−o1) w.r.t. the input region φ2 are
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−13.25 and −31.44 respectively when computed independently, which
is insufficient to prove the output specification. However, relational ver-
ifiers like RaVeN use specialized abstract domains, such as DiffPoly,
to infer linear constraints across the outputs of each layer in fex. This
approach captures cross-executional dependencies, enabling the verifica-
tion of relational properties. Figure 3.17 illustrates how computing these
additional linear constraints enhances the precision of the analysis.

Figure 3.17: For the variables x1
5 and x2

5 the convex region (green) obtained with
constraints from DiffPoly analysis is more precise than the convex region (blue)
formed without the difference constraints.

Relational verification algorithms. The first approach to UAP
robustness verification, known as I/O Formulation (Zeng et al., 2023),
breaks down the relational verification process into two stages. In the
first stage, the I/O formulation applies existing non-relational verifiers
like DeepPoly to each local input region φi. Through this analysis,
it derives a local linear approximation gi(α(φi)) of the network f for
each φi (see Zeng et al., 2023 for details). In the second stage, the I/O
formulation utilizes these linear approximations gi(α(φi)) and represents
the cross-execution constraints φδ as a set of linear inequalities, which
are then used to construct a Mixed Integer Linear Program (MILP).
The MILP instance is subsequently optimized using an off-the-shelf
solver (Gurobi Optimization, LLC, 2018) to produce the verification
result. However, I/O Formulation tracks cross-execution dependencies
only at the input layer. Because the linear approximations gi(α(φi))
are obtained independently, without capturing dependencies between
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the executions, it loses precision. Additionally, I/O Formulation is
limited to verifying UAP robustness and cannot handle other input-
relational properties, such as monotonicity. RaVeN (Banerjee et al.,
2024b) addresses both limitations by introducing a new abstract domain
called DiffPoly, which includes appropriate abstract transformers for
the affine and activation layers of the DNN. In the following sections, we
will describe the DiffPoly domain and outline the key steps of RaVeN.
DiffPoly domain. RaVeN leverages the DiffPoly domain to track
dependencies between the outputs of a DNN across all layers for two
executions. Since common relational properties like UAP robustness
and monotonicity involve bounded differences between pairs of inputs,
the DiffPoly domain focuses on efficiently capturing the difference
relationship. DiffPoly operates over the product DNN, containing two
copies of the same DNN corresponding to different executions. For a
neuron xi in the original DNN, we use x1

i and x2
i to refer to its two

copies in the product DNN. DiffPoly analysis not only maintains the
symbolic and concrete bounds for each variable, as done in DeepPoly,
but also tracks additional bounds on the difference between two copies
of the same variable (e.g., the difference between two instances x1

5, x
2
5

of x5 in Figure 3.17) to improve the analysis precision. The domain
provides specialized abstract transformers for bounding the difference
between the outputs of non-linear functions applied to the same neuron
in different related executions.

RaVeN uses DiffPoly analysis to infer linear constraints for variables
from each execution pair from the set of k ≥ 2 executions, captur-
ing cross-execution dependencies across all DNN layers. Finally, by
leveraging these cross-execution linear constraints, RaVeN formulates a
MILP instance and solves it using an off-the-shelf MILP solver (Gurobi
Optimization, LLC, 2018) to produce the verification results (see Figure
3.18). Note that regardless of the size of the DNN, RaVeN introduces
only a constant number of integer variables per execution in the formu-
lated MILP instance. This design prevents an exponential increase in
the optimization time of the MILP instance, enabling RaVeN to scale
effectively to large DNNs.
Relational property guided refinement. Although RaVeN is much
more precise than I/O Formulation, it has two main drawbacks: a)
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Figure 3.18: The overview of the sound and incomplete relational verifier RaVeN.
Given a DNN f and a relational property (φ,ψ) relating k DNN inferences we show
the flow of RaVeN along with the key steps - (i) constructing the product DNN
by duplicating f k times and analyzing the product DNN with an existing DNN
abstract interpreter, (ii) computing pairwise differences of outputs of all k inferences
at each layer with DiffPoly analysis that uses concrete lower and upper bounds of
each variable in the product DNN, (iii) combining DiffPoly analysis and product
DNN analysis with an existing DNN abstract interpreter to infer layerwise linear
constraints over outputs of all k DNN executions that preserves dependencies between
different DNN executions, (iv) encoding the postcondition as a MILP objective and
formulate MILP with layerwise linear constraints computed in step (iii). Finally, it
uses an off-the-shelf MILP solver (Gurobi Optimization, LLC, 2018) to verify the
relational property by solving the corresponding MILP.

While it adds only a constant number of integer variables per execution,
it also introduces linear constraints from the DiffPoly analysis for each
pair of executions, which can become computationally expensive to
handle as the number k of executions increases; b) RaVeN performs a
single verification pass for each relational property, and if the generated
MILP instance fails to prove the property, it cannot refine the result.
Subsequent works, RACoon (Banerjee and Singh, 2024) and RABBit
(Suresh et al., 2024), address both of these limitations. RaVeN’s compu-
tational bottleneck comes from the large number of linear constraints
added at each DNN layer. To overcome this, RACoon replaces the static
symbolic and concrete bounds used by RaVeN with parametric bounds
for variables at each layer in every execution. RACoon then refines
these parametric bounds jointly over multiple executions to facilitate
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verification of the specific relational property being analyzed. The para-
metric bounds correspond to dual variables from the Lagrangian dual of
the LP relaxation of RaVeN’s MILP instance. However, instead of opti-
mizing these dual variables directly with an LP/MILP solver, RACoon
introduces a gradient-descent-based refinement algorithm, avoiding the
computational blowup of an off-the-shelf solver.
Although RACoon improves the scalability of RaVeN, since it only
considers the dual of the MILP instance (or, LP relaxed version of
the MILP instance) it does not improve on the precision over RaVeN.
To address this, RABBit (Suresh et al., 2024) introduces a "Branch
and Bound" solver designed for DNNs with piecewise linear activation
functions like ReLU. In the branching step, RABBit selects an activation
node, decomposes the piecewise linear activations into linear functions,
and explores subproblems corresponding to each linear segment. For the
bounding step, RABBit, like RACoon, employs parametric bounds and
refines them jointly for each subproblem across multiple executions.

3.3 Probabilistic Analysis

For deterministic DNNs, both single execution and relational properties
can be verified quantitatively by computing the subset φf of φ for which
the DNN output satisfies the postcondition. The fraction pφ,ψ = φf

φ is
the probability that for any x ∈ φ f(x) ∈ ψ holds leading to probabilistic
guarantees. Qualitative verification discussed in Sections 3.1 and 3.2
can be seen as a special case of quantitative verification where we check
whether φf = φ and, therefore, the probability should be one. Complete
quantitative verifiers can compute pφ,ψ exactly; however, the problem is
undecidable in the general case. A lower bound on the probability can
be computed using abstract interpretation-based incomplete verifiers. If
the verifier proves the specification for φ, then the probability is one.
Otherwise, one can leverage input splitting, discussed in Section 3.1.5 to
find an underapproximation φg ⊆ φf of the region where the property
holds. The fraction φg

φ is a sound lower bound on pφ,ψ (Wei et al., 2023).
An upper bound on the probability can also be computed with abstract
interpretation by finding regions containing only counterexamples. See
the work of Dimitrov et al. (2022), which leverages DeepPoly.
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Another class of probabilistic specifications for deterministic DNNs
arises when the precondition φ defines a probability distribution over the
input space. For example, the transformations T applied to an input x
in the local robustness problem can be samples from a noise distribution
(e.g., uniform, Gaussian), leading to a probabilistic specification. The
verification problem is to find the probability that the DNN output f(x)
satisfies ψ given a random input x ∼ φ (Fazlyab et al., 2019a; Mirman
et al., 2021; Pilipovsky et al., 2023; Păsăreanu et al., 2020). One can
treat a DNN with probabilistic input as a probabilistic program, which
represents rules for computing complicated probability distributions as
code (Goodman et al., 2008). The example below shows probabilistic
local robustness specification with transformations sampled from a noise
distribution.

def program (x):
T = NoiseDistribution(parameters)
x’ = T(x)
return f(x’)

Transformation T can be a scalar, a vector, or a matrix, where the
distribution’s parameters control each element perturbation. Commonly,
one can choose a Gaussian distribution N with mean and variance as
its parameters. As the program computes with probability distributions
rather than with individual values, the underlying analysis needs to keep
track of a sound approximation of the distribution function. Abstract
interpretation has a rich history of being applied to analyze probabilistic
programs, with standard abstract domains, e.g., see Cousot and Monerau
(2012), Mardziel et al. (2013), and Sankaranarayanan et al. (2013).
Recent works extend the Box abstraction to track lower and upper
bounds on the probability density (Huang et al., 2021; Zhou et al.,
2023) or cumulative density functions (Ferson et al., 2015) of an interval
of values of a random variable. The works of Bouissou et al. (2012),
Bouissou et al. (2016), and Goubault and Putot (2025) define the
probabilistic Zonotope domain that can be used to analyze neural
networks. A probabilistic version of the StarSet domain for reasoning
about probabilistic specifications over neural networks was introduced
in Tran et al. (2023). Existing abstract interpreters for symbolically
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propagating probability distributions through DNNs are less scalable
than those for propagating a set of points.

For stochastic DNNs constructed from randomization in learned
parameters, such as Bayesian neural networks (BNNs), probabilistic
specifications measure the probability that a deterministic DNN fw
corresponding to a random sample from the posterior distribution
of learned weights w, satisfies a given single execution or relational
specification. Abstract interpretation can be leveraged for computing
a lower bound on this probability for certain posterior distributions.
The probabilistic verifier first constructs an interval neural network
(INN) around a sampled w. In an INN, the learned weights are not
scalars but intervals (Prabhakar and Rahimi Afzal, 2019). Abstract
interpreters such as Boxes and DeepPoly/CROWN are adapted to verify
whether (φ,ψ) holds on an INN. The sets of weight intervals on which
the abstract interpreter proves the specification are collected and then
converted into a lower bound on the probability. For details, see the
works of Wicker et al. (2020) and Batten et al. (2024). An upper bound
can also be obtained using abstract interpreters by modifying the above
procedure. For details, see Wicker et al. (2023).

For stochastic DNNs based on latent variable sampling, such as
variational autoencoders (VAE), each input in φ maps to a probability
distribution in the output space. ψ in this case defines constraints that
each output probability distribution should satisfy. For example, one
can require that the expectation of each output distribution satisfies
Box constraints. Extending probabilistic abstract interpretation to this
setting is an open area of research. We refer the reader to the works of
Dvijotham et al. (2018a) and Berrada et al. (2021) that design verifiers
based on Lagrangian optimization.

3.4 Incremental Analysis

In this section, we study the iterative development procedure for ob-
taining fast, accurate, and trustworthy DNNs, which we introduced in
Figure 1.1 in the Introduction. The most expensive step in the devel-
opment workflow is running a DNN verifier. Domain experts usually
design a large number of specifications (around 10-100K), typically
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defined for inputs in the test set. Therefore, the expensive verifier needs
to be run several thousand times on the same DNN. While there has
been a lot of work in recent years on developing precise and scalable
verifiers, they do not scale in the deployment setting: they can precisely
verify individual specifications in a few seconds or minutes, however,
the verification of a large and diverse set of specifications on a single
DNN can take multiple days to years or the verifier can run out of
memory. Given that multiple networks are generated due to repair
or retraining, using existing verifiers for trustworthy development is
infeasible. The inefficiency is because the verifier needs to be run from
scratch for every new pair of specifications and DNNs. A straightfor-
ward approach to overcoming this limitation is to run the verifier on
several machines. However, such an approach is not sustainable due
to its huge environmental cost (Wu et al., 2022a; Bender et al., 2021).
Further, in many cases, large computational resources are not available.
For example, to preserve privacy, reduce latency, and increase battery
lifetime, DNNs are increasingly employed on edge devices with limited
computational power (Wang et al., 2020; Chugh et al., 2021). Therefore,
for sustainable, democratic, and trustworthy DNN development, it is
essential to develop new general approaches for improving the verifier
scalability, when verifying multiple specifications and networks. In re-
cent years, approaches to enable incremental application of abstract
interpretation-based incomplete DNN verifiers have been developed to
address these challenges based on the novel concepts of proof sharing
and proof transfer. We describe these in detail next. We use the notation
f i:j(T ) to refer to applying the DNN transformations from layer i till
layer j on an input set T . We refer the interested readers to Ugare
et al. (2023) and Tang (2024) for incremental verification of complete
verifiers.

3.4.1 Proof Sharing Across Specifications on the Same DNN

Proof sharing focuses on improving the efficiency of abstract
interpretation-based verifiers when verifying a large number (r) of
specifications (φi, ψ) on a single DNN with different preconditions but
the same postcondition. The specifications can be local or global. Exam-
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ples of this scenario include verifying popular specifications for image
classifiers such as robustness against norm-based or geometric pertur-
bations (Singh et al., 2019b; Balunovic et al., 2019) that have the same
postcondition but define different local regions.

Proof sharing can be applied for boosting the verification of any
DNN for which a baseline abstract interpretation-based verifier V is
available. The high-level idea behind proof sharing is shown in Figure
3.19. We focus on a feedforward network with L layers to simplify the
presentation. Incremental verification with proof sharing involves two
steps:

1. Generate a set T of m ∈ Z+ symbolic shapes as proof templates at
an intermediate layer k < L such that each template T ∈ T implies
the postcondition ψ, i.e., network output for the template T satisfies
ψ. Formally, ∀T ∈ T , fk+1:L(T ) ⊆ ψ.

2. For a new specification (φ,ψ), propagate the abstract element α(φ)
till layer k with the given verifier V computing S = V (f1:k, φ). Check
whether S ⊆ T holds for one of the templates in T . If yes, then the
proof is complete; otherwise, run the verifier till the last layer to
compute S′ = V (fk+1:L, S) and check S′ ⊆ ψ.

Figure 3.19: The concept of proof sharing across multiple specifications on the same
network. Here, the DNN output with respect to the template T is ⊆ ψ. The symbolic
outputs S1 and S2 of the DNN for the preconditions φ1 and φ2, respectively, are
⊆ T . This is sufficient to prove that f(φ1) ⊆ ψ and f(φ2) ⊆ ψ holds.

By construction, it is guaranteed that verification with proof sharing
is at least as precise as the baseline analysis without proof sharing. The
verifier for template generation and verifying the target specifications
can be different. Proof sharing can be generalized to work with templates
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at multiple layers. Step 2 above can be adapted such that S is covered by
multiple templates from T with each such template covering S partially.
Complexity. Let ρ ∈ [0, 1] be the rate at which the inclusion checks
S ⊆ T for T ∈ T succeeds, then the runtime cost of verification with
proof sharing across multiple specifications is:

tPT = tT + r(tS + t⊆ + (1− ρ)tψ) (3.5)

where tT is the cost of generating the template set T , tS is the cost
of computing S, t⊆ is time to check S ⊆ T for T ∈ T until a match is
found, and tψ is the time required to check whether V (fk+1,L, S) ⊆ ψ
holds. In contrast, the cost of verification without proof sharing is
tBL = r(tS + tψ).
Reducing runtime. The cost tPT of verification with proof sharing is
smaller than the baseline tBL if tS , tT , t⊆ are significantly smaller than
tψ and ρ is large (i.e., close to 1). However, these requirements are at
odds with each other. First, generating optimal T that maximizes proof
sharing for any verifier requires reasoning about all possible verifiers
which is not possible with current methods. For a fixed verifier V ,
generating the optimal T maximizing ρ corresponding to a set of r
specifications {(φi, ψ)} can be posed as the solution to the following
optimization problem where [.] is the indicator function:

argmaxT

r∑
i=1

[ ∨
T∈T

V (f1:k, φi) ⊆ T
]
, s.t. ∀ T ∈ T . fk+1:L(T ) ⊆ ψ

(3.6)
Unfortunately, solving (3.6) is still computationally infeasible as it
requires computing the pre-image of the non-linear network function
fk+1:L with respect to ψ. Further, even if optimal T could be somehow
computed, the resulting templates have complicated shapes for which
the inclusion check t⊆ is expensive. Therefore while the high-level idea
behind proof sharing is simple, actually obtaining speedup requires
careful design of new representations for templates, to enable fast
inclusion check, and novel algorithms for generating them such that tT
is reduced and ρ is large.
Results. Fischer et al. (2022) instantiated the proof sharing framework
for speeding up the Zonotope analysis (Singh et al., 2018). The results
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show that proof sharing enables upto 3x speedup over the vanilla
Zonotope analysis for proving the robustness of classifiers for the popular
MNIST (LeCun et al., 1989) and CIFAR10 (Krizhevsky, 2009) datasets,
based on fully-connected architectures (the largest network had 9 layers
with 500 neurons per layer), against challenging patch-based (Chiang
et al., 2020) and geometric perturbations (Balunovic et al., 2019). The
templates are constructed by considering a relaxed version of (3.6):

argmaxφ̂1,...,φ̂m

r∑
i=1

 m∨
j=1

V (f1:k, φi) ⊆ Tj

 ,where

Tj = αBox(V (f1:k, φ̂j)), s.t. V (fk+1:L, Tj) ⊆ ψ

(3.7)

In contrast to (3.6), the template generation in (3.7) is tied to a cho-
sen verifier V and a small set {(ϕ̂i, ψ)|1 ≤ i ≤ m} (with m << r) of
specifications, different from the target specifications {(φi, ψ)}. The
templates are generated by first running the vanilla Zonotope analysis
on {(φ̂i, ψ)} and collecting the zonotopes produced at an intermediate
layer. Zonotopes are not ideal for use as templates for proof sharing
as matching them against other zonotopes S computed when verifying
target specifications is expensive using existing algorithms for inclusion
checks (Sadraddini and Tedrake, 2019). Therefore, zonotopes are con-
verted to simpler box shapes Tj via a heuristic function αBox that tries
to find the largest box around the zonotope for which the Zonotope
analysis can prove that V (fk+1:L, Tj) ⊆ ψ.

The layer for template generation is selected by running the proof
sharing enabled verifier on a small subset of the target specifications
{(φi, ψ)}. The empirical observations suggest that the overlap between
the shapes produced for different robustness specifications increases for
layers later in the network, which enables better matching rates at these
layers. Finally, while the templates are generated using the Zonotope
analysis, they can be used to enable proof sharing with other verifiers
without any modification.
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3.4.2 Proof Transfer Across Multiple Similar DNNs

We consider specifications of the form considered in Section 3.4.1,
but now the goal is to transfer the proof obtained when verifying
multiple specifications on one DNN for boosting the verification of
a large number of specifications on multiple similar DNNs produced
by repeated application of different model repair algorithms before
and after deployment (Figure 1.1). Proof transfer focuses on boosting
verifier efficiency in this scenario. Figure 3.20 illustrates the workflow of
incremental verification based on proof transfer. The set of specifications
on the similar DNNs can be the same (before deployment) or different
(after deployment in the case of a data shift) from the original DNN.
Proof transfer requires that the original and similar networks have the
same architecture. Incremental verification with proof transfer involves
the following three steps:

1. Generate a set T of m templates at an intermediate layer k < L

on the original network such that the output of similar networks
corresponding to each T ∈ T is likely to satisfy ψ.

2. Transfer T generated on the original network to a similar network
at layer k by incrementally modifying each T ∈ T to compute T sim,
such that the output of the similar network corresponding to T sim
satisfies ψ, generating a new template set T sim.

3. Run the given verifier V for the target specification (φ,ψ) on similar
networks till layer k computing Ssim = V (f1:k

sim, φ) and check whether
Ssim ⊆ T sim holds for one of the templates in T sim. If yes, then the
proof is complete; otherwise, run the verifier till the last layer and
check accordingly.

By construction, the proof transfer framework ensures that verifi-
cation with proof transfer on similar networks is at least as precise as
vanilla verification. Note that T is generated only once on the original
network while template transformation is performed for each network.
Complexity. Let there be p similar networks, including the original
one, and ri be the number of specifications to be verified on the i-th
similar network, ρi ∈ [0, 1] be the rate at which the check Ssim ⊆ T sim
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Figure 3.20: Workflow of proof transfer from left to right. It consists of three
components: template generator, template transformer, and incremental verifier.
First, the template generator takes the DNN f as input and creates a set of templates.
For each similar DNN, the template transformer transforms the templates and is used
by the incremental verifier to verify the similar network. The incremental verifier
either successfully verifies the network and generates a certificate or reports that the
property may not hold.

succeeds on the i-th network, then the total cost of verification with
proof transfer is:

tPT = tT +
p∑
i=1

tiT sim +
p∑
i=1

ri(tiSsim + ti⊆ + (1− ρi)tiψ) (3.8)

where tT is the cost of generating templates on the original net-
work, tiT sim is the cost of transforming T to T sim on the i-th net-
work. tiSsim , t

i
⊆, t

i
ψ have the same meaning as in Section 3.4.1 on

the i-th network. In contrast, the runtime of vanilla verification is
tBL = ∑p

i=1 ri(tiSsim + tiψ).
Improving runtime. Since templates are generated only once on the
original DNN, the cost of generating them can be amortized when the
number of similar networks is large. This is the case in the development
pipeline of Figure 1.1. The runtime of verification with proof transfer
for verifying all ∑p

i=1 ri specifications is minimized when the cost of
template generation is efficiently amortized, template transformation
tiT sim and inclusion checks are fast with template matching rates ρi
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close to 1. Generating optimal templates on the original network that
are also valid across multiple networks is a harder problem than (3.6)
as we now need to reason about multiple DNNs. Optimal templates
for similar networks can be significantly larger or smaller than the
optimal templates on the original network. Thus, obtaining optimal
templates on similar networks with template transformation may be as
computationally infeasible as generating them from scratch. Therefore,
obtaining speedups across similar networks requires careful design of
new algorithms for template generation and transformation.
Results. FANC (Ugare et al., 2022) considered similar DNNs obtained
after iteratively applying model repair for improving inference speed
by popular techniques such as quantization (Gholami et al., 2021) and
pruning (Blalock et al., 2020). The specifications involved proving the
robustness of classifiers for the MNIST and CIFAR10 datasets, based
on fully-connected and convolutional architecture (the largest network
had 8 layers and 8, 960 neurons), against challenging patch (Chiang
et al., 2020), L0-norm (Ruan et al., 2019), geometric (Balunovic et al.,
2019), and brightening perturbations (Pei et al., 2017). The results
show that proof transfer makes Zonotope analysis up to 4x faster.
Template generation on the original network was verifier-specific (as in
Section 3.4.1) and involved computing boxes by running the verifier on a
small set of L∞-norm based specifications. The template transformation
expands the box template by joining it with another box generated
heuristically. The same layer, determined by a similar method as for
proof sharing (Fischer et al., 2022), was used for storing templates on
the original DNN and its approximate versions.



4
Training with Differentiable Abstract Interpreters

DNNs trained only to maximize accuracy with standard training
(Kingma and Ba, 2015) are often unsafe (Madry et al., 2017). This
section describes how the feedback from abstract interpreters can be
incorporated into the training loop to obtain DNNs with better safety
guarantees. While the description here applies to different safety prop-
erties, we focus on local robustness against adversarial attacks, as
it is the most common property for abstract interpretation-guided
training considered in the literature. We will use the notation fw to
denote a DNN parameterized by the learnable weight parameters w
and φ(x) = {x′ | x′ ∈ T (x), T ∈ T } to represent an adversarial region
obtained by applying transformations T ∈ T to x. The most common
transformation for DNN training with abstract interpretation consid-
ered in the literature is adding a perturbation δ ∈ Bp(0, η) to x, where
||.||p represents the p-norm and Bp(x, η) = {x+ δ ∈ Rm | ||x+ δ||p ≤ η}
defines the set of perturbed inputs in an Lp-ball of radius η ∈ R around
x. The abstract interpretation-guided training methods discussed in
this section can also be used to generate larger AI-enabled systems with
stronger end-to-end safety guarantees (Yang et al., 2024a).

320
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4.1 General Formulation for Deterministic DNNs

We consider robust training of classifiers, which involves defining a
differentiable loss function LR encoding the robustness specification for
each point x′ ∈ φ(x) with the property that LR at x′ is ≤ 0 iff x′ is
classified correctly. In other words, in the DNN output y = fw(x′), the
score yc for the correct class c is higher than all other classes yi, i.e.,
yc > yi for all i. The DNN is robust iff LR ≤ 0 for all x′ ∈ φ(x). An
example of LR is maxi̸=cyi − yc (Mirman et al., 2018).

(4.1) shows the mathematical characterization of the training prob-
lem for local robustness. Here, one considers the maximum violation of
the robustness loss LR within each φ(x) corresponding to inputs x from
the training distribution I. Note, if we consider average loss within
φ(x) instead of the maximum, then it will not yield robust DNNs even
if the loss was perfectly minimized to 0 during training. The training
goal is to learn the weight parameters w so that the expected value
of the maximum robustness loss over I is minimized. This min-max
formulation makes robust training a harder optimization problem than
standard training. Computing the maximum robust loss for each φ(x)
exactly requires computing fw(φ(x)), which is an undecidable problem
in general. Therefore an approximation of LR is computed in practice.

find w

minimize ρ(w)
where ρ(w) = E(x,y)∼I [maxx′∈φ(x)LR(w, x′, y)]

(4.1)

Adversarial training methods (Madry et al., 2017), a form of
counter-example guided learning, compute a lower bound on the worst-
case robust loss by heuristically computing a point xadv ∈ φ(x)
at which the robust loss is high but not guaranteed to be maxi-
mum. This yields a lower bound on the maximum robust loss as
LR(w, xadv, y) ≤ maxx′∈φ(x)LR(w, x′, y). x′ is then augmented to the
training dataset. Minimizing weight parameters with respect to a lower
bound of the maximum loss means that even if the lower bound is ≤ 0,
the actual loss can be > 0. As a result, while DNNs trained with adver-
sarial training are harder to attack than those with standard training,
they are often not provably robust.
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find w

minimize ρ(w)
where ρ(w) = E(x,y)∼I [maxz∈γ(gw(α(φ(x))))LR(w, z, y)]

(4.2)

On the other hand, certified training methods (Wong et al., 2018;
Mirman et al., 2018; Xu et al., 2020; Zhang et al., 2020; Gowal et al.,
2018) compute an upper bound on the worst-case robust loss using
abstract interpretation-based DNN verifiers. (4.2) shows the formula-
tion of certified training as an optimization problem where the inner
maximization differs from adversarial training. While the latter tries
to find x′ ∈ φ(x) for which the robustness loss computed using fw(x′)
is maximized, certified training tries to find a point z ∈ Rn in the
concretization of the analysis output gw(α(φ(x))) maximizing the loss.
Notice that the abstract transformers of the verifier and not the concrete
transformers of the DNN are used for computing the loss. Certified
training therefore operates on an overapproximation gw of fw within the
precondition φ(x), computed by the abstract interpreter. The abstract
computations have the same parameters w as the original DNN. For
differentiable optimization, the computations of the abstract interpreter
must be expressible as a differentiable function of the weight parameters
w. Examples of popular differentiable abstract domains include the
Box (Gowal et al., 2018; Mirman et al., 2018), Zonotope (Balunovic
and Vechev, 2020), and DeepPoly/CROWN (Zhang et al., 2020; Lyu
et al., 2021). Figure 4.1 shows the high-level idea behind certified train-
ing with differentiable abstract interpreters. The parameter updates
during training optimization modify both the concrete and abstract
computations.

Figure 4.1: Certified training involves computing the point z ∈ γ(gw(α(φ(x))))
where the robust loss is maximum. The resulting loss is backpropagated through the
verifier code to update the model parameters.
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Because γ(gw(α(φ(x)))) ⊇ fw(φ(x)), the maximum robustness loss
computed at z ∈ γ(gw(α(φ(x)))) is at least as worse as the maximum
LR for fw. This results in an upper bound on the true loss. As a
result, when this loss is ≤ 0, the actual loss is also ≤ 0. DNNs trained
with certified training achieve higher robustness guarantees than those
trained with adversarial training (Mirman et al., 2018). However, z may
not correspond to any output of fw within the region φ(x), resulting in
unnecessary over-regularization for robustness. Existing differentiable
abstract interpreters essentially compute a linear approximation of the
DNN behavior within φ(x). The certified training updates, therefore, try
to regularize the DNN to behave linearly within the specification region.
This makes the resulting networks easier to prove (even imprecise
analyzers like Box are quite precise) than adversarial and standard
training. However, the linearization of the DNN behavior can conflict
with standard accuracy. As a result, certifiably trained DNNs are often
less accurate than those trained with standard and adversarial training.

To reduce the loss of standard accuracy, in practice, the robust
loss is combined with standard accuracy loss during training using
different heuristics (Gowal et al., 2018; Zhang et al., 2020; Mirman
et al., 2020; Shi et al., 2021). One would expect that training with
precise verifiers yields more accurate and robust DNNs than imprecise
ones, as they reduce the gap between the actual output fw(φ(x)) and
the approximation γ(gw(α(φ(x)))). Precise differentiable verifiers have
a high cost, making them unsuitable for larger networks as the verifier is
called thousands of times during each training iteration. Further, even
for smaller networks, precise verifiers do not improve the accuracy and
robustness tradeoff as the optimization problem for training becomes
harder with more complex abstract domains (Jovanovic et al., 2022).
In practice, the highly imprecise Box domain performs the best for
certified training. The works of Baader et al. (2020) and Wang et al.
(2022b) theoretically show that the Box-based training is quite powerful
by showing the existence of two DNNs f, f ′ such that (i) they have
the same accuracy, and (ii) Box analysis achieves the same certification
results on f ′ as a more precise verifier on f . This implies that we can
always construct provably robust neural networks using the Box domain.
Next, we will illustrate how the Box-based certified training, also known
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in the literature as interval bound propagation (IBP), works on a simple
toy example.

4.2 Interval Bound Propagation (IBP)

We consider a DNN with the same architecture as in Figure 3.2 with
two affine layers and one ReLU layer, each containing two neurons. The
precondition φ(x) defines the range [−1, 1] for inputs x1, x2 and the
postcondition requires us to prove o0 > o1. The robustness loss LR is
o1 − o0. We focus on a snapshot of the model during training, with
weights w shown in the top part of Figure 4.2. The bottom of Figure
4.2 shows the abstract network on which the training operates. This
network has the same precondition and parameters w but computes
a linear overapproximation gw(α(φ(x))) of fw(φ(x)) utilizing the Box
abstract transformers handling the affine transformation and the ReLU
activation.

l3 :=max(0, w13) · l1 + min(0, w13) · u1 + max(0, w23) · l2 + min(0, w23) · u2

l4 :=max(0, w14) · l1 + min(0, w14) · u1 + max(0, w24) · l2 + min(0, w24) · u2

l5 :=max(0, l3)
l6 :=max(0, l4)
lo0 :=max(0, w50) · l5 + min(0, w50) · u5 + max(0, w60) · l6 + min(0, w60) · u6

lo1 :=max(0, w51) · l5 + min(0, w51) · u5 + max(0, w61) · l6 + min(0, w61) · u6
(4.3)

u3 :=min(0, w13) · l1 + max(0, w13) · u1 + min(0, w23) · l2 + max(0, w23) · u2

u4 :=min(0, w14) · l1 + max(0, w14) · u1 + min(0, w24) · l2 + max(0, w24) · u2

u5 :=max(0, u3)
u6 :=max(0, u4)
uo0 :=min(0, w50) · l5 + max(0, w50) · u5 + min(0, w60) · l6 + max(0, w60) · u6

uo1 :=min(0, w51) · l5 + max(0, w51) · u5 + min(0, w61) · l6 + max(0, w61) · u6
(4.4)

The analysis associates the bounds l1 = −1, u1 = 1 and l2 =
−1, u2 = 1 with x1, x2 respectively, encoding the precondition region.
These remain fixed at each training iteration. (4.3) and (4.4), respec-
tively, show the computations of the lower and upper bounds for each
neuron using the Box abstract transformers. It can be seen that each
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Figure 4.2: A toy neural network fw and its abstract counterpart gw computed by
the Box analysis. Both networks have the same optimizable parameters w. fw operates
over concrete values of x1, x2 from [−1, 1] × [−1, 1] using concrete transformers for
affine and ReLu layers. gw operates directly over the intervals for x1, x2 using the
corresponding Box abstract transformers.

bound can be represented as a differentiable function of the trainable pa-
rameters w. At a given training iteration, the output bounds for o0 and
o1 can be computed using the weights at that iteration. Next, we need
to solve the inner maximization by finding the point z ∈ γ(gw(α(φ(x))))
maximizing the robust loss LR. We do not need to concretize the anal-
ysis output and can show that z = [lo0 , uo1 ] maximizes LR. Therefore
maxz∈γ(gw(α(φ(x))))LR = uo1 − lo0 involves lo0 , uo1 which are differen-
tiable functions of the weight parameters w. Next, the gradient of the
maximum robustness loss with respect to different weight parameters
is computed based on the computations shown in (4.3) and (4.4). The
parameters are then updated based on the gradients. For our example,
we used the difference of o0 and o1 for defining the robustness loss, but
other formulations are also possible, such as cross-entropy. We refer the
reader to Gowal et al. (2018) and Mirman et al. (2018) for details.
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As readers may notice, (4.3) and (4.4) are much simpler than the
abstract transformers such as DeepPoly/CROWN discussed in Section
3, which allows these bounds to be calculated very efficiently during
training. The asymptotic complexity of propagating IBP bounds through
a neural network is the same as regular forward propagation on a DNN.
Thus, theoretically, any DNN that can be trained using gradient descent
can also be trained with IBP. IBP has been applied to train ImageNet-
level neural networks (Gowal et al., 2019; Xu et al., 2020). After IBP
training, the IBP bounds of the DNN typically become quite tight.

However, challenges still remain during training, as the initialization
of DNNs can produce extremely loose IBP bounds, and thus the loss
function (4.2) becomes vacuous, unable to provide useful training signals.
To address the vacuous bounds at the beginning of training, Gowal et al.
(2019) propose a warmup procedure where the input preconditions φ(x)
(typically, pixel-wise perturbations) are scheduled to gradually enlarge
very slowly during training. For example, a very small perturbation can
be used when training just starts, and the perturbation size will gradually
increase during training until it reaches a target. On the other hand,
CROWN-IBP (Zhang et al., 2020) utilizes IBP to calculate intermediate
layer bounds, while using CROWN to provide a much tighter bounds
at the output layer for training, striking a balance between bound
tightness and training efficiency. Shi et al. (2021) discussed specialized
initializations and loss function designs to reduce the training time
spent on warmup.

4.3 Input Splitting Refinement for Training

To reduce the over-regularization caused by the imprecise Box analysis,
abstraction refinement can be employed. In this section, we will discuss,
how input splitting, a popular form of refinement introduced in Section
3.1.5 can be leveraged during training to obtain robust and accurate
networks. We will describe the method of Yang et al. (2023) that is
the first work to train DNNs for provable robustness against geometric
transformations.
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Robust geometric training. The key to incorporating geometric ro-
bustness guarantees into training lies in formulating verification as part
of the loss function. To reduce the overapproximation error, the geomet-
ric verifiers (Balunovic et al., 2019; Mohapatra et al., 2020; Yang et al.,
2023) heuristically split the range of the input parameters into K ∈ N
splits. To account for this, the training loss enforces local robustness at
the level of individual input splits. To certify the network across the
entire desired range θ ∈ [α, β], this local property is enforced across all
K splits. Furthermore, the DNN should have high clean accuracy. This
yields the following formulation for the ideal robust classification loss:

Lci(w, x, y) = κ ·L
(
w, x, y

)
+
(
1−κ

)
· 1
K

K∑
k=1

maxz∈γ([Lk,Uk])LR
(
w, z, y

)
(4.5)

where [Lk, Uk] = gw(α(P (x, θk))) and κ ∈ [0, 1] governs the relative
weighting between the clean accuracy loss L and geometric robustness
loss LR, with higher κ prioritizing clean accuracy. Notice that L is
computed on fw while LR is computed on its box approximation gw
sharing the same parameters w. Figure 4.3 visualizes this combination.
The maximum of LR can be computed as maxj ̸=cUj − Lc where c

is the correct class label. Alternatively, we can use the cross entropy
between the ground truth distribution and the distribution obtained
after applying softmax on z from (4.6).

zc = Lc and zj = Uj , j ̸= c. (4.6)

In practice, the loss in (4.5) is too computationally expensive since
the runtime scales linearly with the number of splits, which often
needs to be large to ensure precise verification. As a remedy, one can
enforce the robustness property stochastically using data augmentation
in conjunction with a randomized sampling of interval splits. The
method of Yang et al. (2023), called CGT, uniformly samples a scalar
perturbation amount θ̃ ∼ U(α, β) and compute a local interval split
θl = [θ̃ − ν, θ̃ + ν], where ν is a hyperparameter vector governing the
interval size of each perturbation parameter. We then compute the
tractable robust classification loss as:

Lct(x, y) = κ·L
(
w,P (x, θ̃), y

)
+(1−κ)·maxz∈γ([Ll,Ul])LR

(
w, z, y

)
(4.7)
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Figure 4.3: A robust and accurate neural network f must have high performance
on not only the test inputs x but also inputs x′ obtained by applying geometric
transformations to x. To train such a network, one uses the standard accuracy loss
L(x) on f and the robustness loss LR(x′) on its interval approximation g.

where [Ll, Ul] = gw(α(P (x, θl))). Since CGT samples a different θ̃ for
each mini-batch of training samples, it will, on average, effectively
enforce local robustness over the entire parameter range, hence leading
to robustness for the full P (x, θ).

While this loss function incorporates only Box analysis to propagate
the geometric region through the network, it can be easily adapted to
other domains like DeepPoly/CROWN (Zhang et al., 2020) by substi-
tuting the ϵ-balls in their loss functions with CGT’s formulation of local
geometric balls.

CGT was evaluated across multiple datasets, including MNIST,
CIFAR10, Tiny ImageNet, and Udacity self-driving car datasets. CGT-
trained DNNs consistently achieve state-of-the-art deterministic certified
geometric robustness and clean accuracy. Interestingly, the work shows
that achieving both high accuracy and robustness on the autonomous
driving dataset (Bojarski et al., 2016) is possible. Therefore, in practical
scenarios, high accuracy and robustness are achievable, contradicting
the hypothesis presented in Tsipras et al. (2019).
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4.4 Combining Certified and Adversarial Training

While refinement based on input splitting yields state-of-the-art mod-
els for geometric perturbations, it is infeasible for reducing the over-
regularization when considering high-dimensional norm-based perturba-
tions. To handle these cases, several refinements combining adversarial
and certified training have been developed. We discuss these next.

COLT. Incomplete verifiers based on abstract interpretation can fail
to prove a specification (φ(x), ψ) on an already trained DNN fw due
to the accumulation of the approximation loss at different layers. If
fw actually satisfies the specification, then it means that there exist
latent adversarial examples at an intermediate layer i. These are points
x′
i ∈ γ(giw(α(φ(x)))) \ f iw(φ(x)) that when propagated from layer i

onwards according to the concrete DNN transformers produce an output
violating ψ, where f iw and giw are respectively the DNN and verifier
output at layer i.

The COLT method (Balunovic and Vechev, 2020) leverages adversar-
ial training to eliminate latent adversarial examples from intermediate
layers. It proceeds in a layerwise fashion. Initially, it uses adversarial
training to eliminate violating examples at the input layer. However,
this does not lead to provability due to latent counter-examples. The
next training step shown in Figure 4.4 addresses this issue. The abstract
interpreter propagates the precondition through the first layer of the
network obtaining the region C1 = g1

w(α(φ(x))). COLT uses an adver-
sarial attack to find a concrete point x1 inside C1 which produces the
maximum loss LR when this point is propagated further through the
network. The method updates the DNN parameters by backpropagating
the robustness loss.

An important design aspect of COLT is that it freezes the first layer
and stops backpropagation after updating the second layer. Further, no
backpropagation through the verifier code is performed. The verifier
is only used to compute the different regions. As a result, the DNN
only has to learn to behave well on the concrete points that were found
in the region C1. This process is repeated for the other layers. COLT
can be instantiated with any abstract domain. However, the latent
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Figure 4.4: An attack algorithm generates the latent adversarial example x1 inside
the abstract shape C1 for the first layer. x1 is propagated till the last layer to compute
a lower bound on the maximum robustness loss.

adversarial examples are computed using the PGD attack (Madry et al.,
2017) which requires an efficient projection method to the particular
abstract shape the method is instantiated with. The paper leverages
the Zonotope approximation (Singh et al., 2018) that we discussed in
Section 3.1.3 during training by introducing efficient projection methods.
We refer the interested readers to Balunovic and Vechev (2020) for more
details. The use of Zonotopes makes COLT expensive for training larger
models. The procedure was simplified while preserving its effectiveness
by Palma et al. (2022).

SABR. The SABR method aims to reduce the over-regularization
caused by the IBP training. The amount of overapproximation depends
upon the size of the input region φ(x) propagated by the Box analysis.
SABR propagates a small but carefully selected subset of φ(x), called
propagation regions. Because it propagates subsets, the Box analysis
used during the training is not a sound overapproximation of the DNN
behavior within φ(x). However, soundness is not needed during training
as long as the worst-case robustness loss on the final unsound output
is close enough for the true robustness loss over the full region. It
is possible that because of overapproximation, the concretization of
the Box analysis for the propagation region is close to fw(φ(ϕ)). The
propagation regions are obtained by finding an adversarial example
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x′ ∈ φ(x) and then heuristically computing a small box region around
x′ based on a parameter τ ∈ R. More details can be found in Müller
et al. (2023a).

TAPS. This method combines IBP and adversarial training by aiming
to reduce latent adversarial examples. Like COLT, it first propagates the
input region till some intermediate layer using IBP and then conducts
adversarial training within the obtained Box approximation to compute
the robustness loss. However, unlike COLT, this approach does not freeze
layers and propagates gradients also through the verifier computations
for computing the intermediate regions. The gradients for adversarial
training and verifier computations are combined via a gradient connector,
that allows training the whole network jointly such that the over-
approximation of IBP and under-approximations of adversarial training
cancel out. For more details, see Mao et al. (2023).

Combining losses. The works of Palma et al. (2024) and Fan and Li
(2020) consider convex combinations of robustness loss formulations
for adversarial and certified training. The main challenge is combining
the gradients on the DNN for adversarial training with gradients from
certified training defined over an abstract interpreter. Fan and Li (2020)
update the network parameters in the direction of the angular bisector
of the two gradients while Palma et al. (2024) leverage scalarizations
(Kurin et al., 2022).

This finishes our discussion of certified training methods for single
execution properties. We refer the readers to the work of Mao et al.
(2024) comparing the effectiveness of different training methods intro-
duced in this section. We note that there are certified training methods
that do not require differentiable abstract interpreters during training
or testing (Zhang et al., 2021a; Leino et al., 2021; Hu et al., 2023a; Anil
et al., 2019; Singla and Feizi, 2021; Trockman and Kolter, 2021). These
require specific architectures tailored for specific properties, which can
reduce their suitability for other specifications (Jiang and Singh, 2024).
Next, we will consider training for relational properties, specifically,
robustness against universal adversarial perturbations.
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4.5 Universal Adversarial Perturbations

The training methods presented in the above sections focus on training
that is robust against standard input-specific perturbations. In many
practical scenarios, attackers cannot feasibly compute and apply single-
input adversarial perturbations in real-time. Recent work has shown that
input-agnostic attacks, specifically, universal adversarial perturbations
(UAPs), are a more realistic threat model (Li et al., 2019a; Li et al.,
2019b; Liu et al., 2023). UAPs do not depend on single inputs; instead,
they are learned to affect most inputs in a data distribution. For these
scenarios, it is overly conservative to assume the single-input adversarial
region model for verification/certified training. Instead, we would like
to ensure safety against universal perturbations. In Section 3.2, we
discussed DNN verification for input relational specifications, including
robustness against UAPs. In this section, we discuss the use of abstract
interpreters to train for UAP robustness where perturbations u are
contained in an L∞ ball B∞(0, η) = {u ∈ Rm | ||u||∞ ≤ η} of radius
η ∈ R. We begin by formally defining the UAP training objective.

4.5.1 UAP Robustness Training Objective

For single-input perturbation robustness, we minimize the expected loss
over the data distribution I due to worst-case adversarial perturbations
crafted separately for each input. For UAP robustness, we minimize
the worst-case expected loss from a single perturbation applied to all
points in the data distribution.

w = arg min
w

max
u∈B∞(0,η)

(
E

(x,y)∼I
[L(w,x + u, y)]

)
(4.8)

Here, we assume that L refers to a standard loss function in which
adversarial additive perturbations incur a greater loss than safe pertur-
bations. Since UAPs are input-agnostic, we maximize the expected value
over u ∈ B∞(0, η). To create an efficient training algorithm for certified
UAP robustness, we need an efficiently computable upper bound for
the maximization.
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4.5.2 Certified Training for UAP robustness

In this section, we discuss one way to achieve certified UAP robustness:
CITRUS (Xu and Singh, 2024). CITRUS relies on the idea that (4.8)
can be upper bounded by computing the worst case expected loss from
the set of perturbations that cause at least 2 inputs to be misclassified.
The intuition for CITRUS can be seen in Figure 4.5. In the following
sections, we describe how this loss can be upper bounded and turned
into an algorithm for training.

Figure 4.5: Intuition behind CITRUS. UAPs occur where adversarial regions (red
boxes) from multiple inputs overlap (dark red boxes). To approximate this, adversarial
examples (stars) are computed for each input, xi, the corresponding perturbation
vectors, vi, (gray arrows), and adversarial regions are collocated to B∞(0, η). To
approximate UAP regions, we take cross-input adversarial perturbations and draw
l∞ balls around them, b0

i,j = B∞(xi + vj , τ).

k-Common perturbations. We can define a k-common perturbation
(k-cp) as a perturbation for which there exists k inputs on which
the perturbation is adversarial. Intuitively, single-input perturbation
robustness is an upper bound on UAP robustness as UAPs can only
exist if single-input perturbations exist for multiple inputs. We can
reframe this intuition if we consider the worst-case UAP (i.e., the UAP
that affects the most inputs) as a k∗-cp. We know this UAP can, at
most, affect as many points as there are 1-cps. In fact, for all k < k∗

we know that the worst-case UAP can only affect as many points as
there are k-cps. This leads us to the conclusion that the expected loss
maximizing over the set of k-cps is an upper bound for (4.8).
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CITRUS. It is still not computationally practical to compute the
loss over the set of k-cps for training as it is expensive to compute
the intersection over single-input adversarial regions (Dimitrov et al.,
2022). However, for 2-cps, we can upper bound this loss by considering
cross-input adversarial regions. A cross-input adversarial region is a
perturbation space that is adversarial for more than one input (see the
dark red region in Figure 4.5). Therefore, we can over approximate
the UAP robustness of each input. xi, by considering the loss from
adversarial regions from other inputs xj where j ̸= i. Section 4.4 intro-
duced SABR (Müller et al., 2023a), which showed that taking smaller
bounding boxes centered around adversarial examples was an effective
way to train networks for standard adversarial robustness. CITRUS
utilizes this insight and computes small bounding boxes around the
adversarial examples for all other inputs in a batch. Networks trained
with CITRUS have SOTA certified UAP robustness while maintaining
much higher accuracy than previous certified training methods. For
MNIST with ϵ = 0.3, CITRUS achieved 99.04% standard accuracy and
95.61% certified average UAP accuracy, outperforming existing certified
training methods like IBP (97.67%/94.76%), SABR (98.75%/95.37%),
and TAPS (98.53%/95.24%). On CIFAR-10 with ϵ = 8/255, CITRUS
obtained 63.12% standard accuracy—a substantial 10.3% improvement
over TAPS (52.82%)—while maintaining competitive certified UAP ac-
curacy of 39.88%. For TinyImageNet with ϵ = 1/255, CITRUS achieved
35.62% standard accuracy and 26.27% certified UAP accuracy, signif-
icantly outperforming other methods. For details and proofs, see Xu
and Singh (2024).

4.6 Certified Training for Variational Autoencoders

The certified training techniques discussed so far focused on training
deterministic networks. In this section, we will look at certified training
for stochastic networks, specifically for variational autoencoders (VAEs).
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4.6.1 Variational Autoencoders

Variational Autoencoders (VAEs) are generative DNN architectures
that learn latent representations of data. Given a set of inputs X ⊆ Rm

generated via an unknown process with latent variables Z ⊆ Rdl , VAEs
learn a latent variable model with joint density pw(x, z) = pw(x|z)p(z).
Since directly maximizing the likelihood is often intractable, VAEs
employ variational inference, learning a conditional likelihood model
pwd

(x|z) and an approximated posterior distribution pwe(z|x). A VAE
consists of two main components: an encoder network fe : Rm → P(Rdl)
with parameters we, and a decoder network fd : P(Rdl)→ P(Rn) with
parameters wd. Here, P(Rn) denotes the set of probability distributions
defined over Rn. For standard VAEs, given a single input z ∈ Rdl , the
decoder’s output fd(z) is deterministic. The effectiveness of VAEs has
led to their deployment in safety-critical applications, including wireless
communications, autonomous driving, and medical diagnosis.

4.6.2 VAE Robustness Training Objective

Let Z denote the set of distributions at the latent layer computed by
fe on an input region φt(x) around a training data point x ∈ Rm,
i.e., Z = {Z | Z = fe(x′), x′ ∈ φt(x)}. Let Y be the set of output
distributions Y = {Y | Y = fd(Z), Z ∈ Z}. Each Y and Z are random
variables corresponding to specific probability distributions over Rdl

and Rn respectively. Given a target probability threshold (1− δ) and
error function M , the worst-case error is defined as L(w, fe, fd, x) =
maxY ∈Y T (Y ) where T (Y ) is defined as:

T (Y ) = min
ϵ∈R

ϵ s.t. P(M(Y ) ≤ ϵ) ≥ (1− δ) (4.9)

At a high level, for any given output distribution Y , T (Y ) determines
the tightest possible error threshold ensuring that for any sample y ∼ Y ,
the corresponding error M(y) is no more than T (Y ) with probability
at least (1− δ).
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4.6.3 Bounding Worst-Case Loss

For certified training of VAEs, similar to the methods presented in the
above sections, exactly computing T (Y ) is computationally intractable,
so our goal is to find a sound upper bound on the loss. To this end, we
introduce the concept of support sets for the set of distributions Z at
the latent layer.

Definition 4.1 (Support sets). For a set of distributions Z over Rdl and
a probability threshold (1− δ), a subset S ⊆ Rdl is a support for Z if:

min
Z∈Z

P(z ∈ S|z ∼ Z) ≥ (1− δ) (4.10)

For a fixed (1 − δ), we can show that for any support set S, the
error upper bound Tub(S) = maxz∈SM(fd(z)) serves as a valid upper
bound of the worst-case error:

Theorem 4.1. For a VAE with encoder fe, decoder fd, local input region
φt(x), error function M and probability threshold (1− δ), if Z = {Z |
Z = fe(x′), x′ ∈ φt(x)} then for any support set S for Z, the worst-case
error L(w, fe, fd, x) ≤ Tub(S) where Tub(S) = maxz∈SM(fd(z)).

Since the decoder’s output fd(z) is deterministic for all z ∈ S,
computing Tub(S) is equivalent to bounding the error of a deterministic
network on an input region, which can be efficiently done using existing
techniques like Interval Bound Propagation (IBP).

4.6.4 Support Set Computation and Bounding

Given the set of distributions Z with probability density functions pZ(z)
and a fixed (1− δ), we aim to find a support set S = [L,U ] such that
∀Z ∈ Z,

∫ U
L pZ(z)dz ≥ (1− δ). For VAEs, the encoder typically outputs

parameters µ and σ for each latent dimension, representing Gaussian
distributions. Using deterministic network bounding techniques like
IBP, we can approximate the reachable intervals [µlb, µub] and [σlb, σub]
for these parameters. For simplicity, let us consider the one-dimensional
case where Z = {N (µ, σ) | µ ∈ [µlb, µub], σ ∈ [σlb, σub]}, see Figure 4.6.
We can prove that the distributions specified by µlb, σlb and µub, σub
capture the least probability among all possible distributions in Z.
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Figure 4.6: Support sets. Given a set of distributions {N (µ, σ)|µ ∈ [µlb, µub], σ ∈
[σlb, σub]} we define a symmetric support set Sδ = [µlb − ζ, µub + ζ], ζ ∈ R+

Therefore, finding a support set S = [L,U ] only requires ensuring that
both these endpoint distributions capture at least (1− δ) probability.

Theorem 4.2. Given Z = {N (µ, σ) | µ ∈ [µlb, µub], σ ∈ [σlb, σub]} and
probability threshold (1−δ), the interval [L,U ] = [µlb−σubΦ−1(p0), µub+
σubΦ−1(p0)] is a valid support set, where:

p0 = min
p∈[(1−δ),1]

[
Φ−1(p) + Φ−1(p− (1− δ)) ≥ µlb − µub

σub

]
(4.11)

For higher dimensional latent spaces, we can compute the support
set for each dimension independently using a probability threshold of
(1− δ)1/dl .

4.6.5 CIVET

CIVET (Certified Interval Variational Autoencoder Training), is a
method for training VAEs with certified robustness guarantees building
upon the ideas presented above. CIVET computes support sets for
multiple probability thresholds and combines them into a weighted loss:
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Definition 4.2 (CIVET Loss). Given a deterministic decoder network fd,
input x ∈ Rm, distribution bounds µlb, µub, σub, and a set of thresholds
{δ1, . . . , δj} (sorted in descending order), the CIVET loss is defined as:

LCIV ET = (1−δ1)Ldec(fd, x, Sδ1)+
j∑
i=2

(δi−1−δi)Ldec(fd, x, Sδi
) (4.12)

Here, Sδi
is the support set computed for threshold (1 − δi), and

Ldec(fd, x, Sδi
) is the worst-case loss of the decoder over this support

set, computed using a deterministic verification method like IBP.

4.6.6 Experimental Results

Xu et al. (2024) demonstrates CIVET’s effectiveness across different
domains and perturbation magnitudes. For wireless applications using
the FIRE dataset (Liu et al., 2021), CIVET achieves a certified SNR
of 13.88-15.02 dB across perturbation budgets of 15-25%, significantly
outperforming standard training (-2.35 dB at 25% perturbation) and
adversarial training (3.17-6.89 dB). On vision tasks, CIVET reduced
certified MSE by up to 93.8% on MNIST and 83.8% on CIFAR-10
compared to standard training, while maintaining competitive baseline
performance. When compared against Lipschitz-constrained VAEs (Bar-
rett et al., 2022), CIVET showed superior performance—for CIFAR-10
with ϵ = 2/255, CIVET achieved 0.0055 certified MSE versus 0.0105 for
Lipschitz VAEs—while removing architectural constraints. CIVET also
demonstrated strong empirical robustness against practical attacks like
RAFA (Liu et al., 2023), LSA (Kos et al., 2018), and MDA (Camuto
et al., 2021), confirming its real-world effectiveness. For more detailed
exploration and results, see Xu et al. (2024).



5
Explaining and Interpreting DNNs

To overcome the limitations of black-box construction, several expla-
nation (Samek et al., 2021) and interpretation methods (Räuker et al.,
2023) have been developed to generate intuitive explanations and inter-
pretations of DNN behavior. However, popular methods are unreliable
and non-robust, and relying on them can lead to a false sense of confi-
dence. In this section, we will discuss how the abstract interpretation
framework can generate reliable and robust explanations and interpre-
tations of deterministic DNN classifiers. In this section, we will use x
and h to refer to a vector of input and hidden neurons, respectively.
x and h will represent an input neuron and a hidden neuron that are
components of x and h, respectively.

5.1 Explaining DNN Predictions

A popular approach for explaining the predictions of a DNN is identifying
the subset of input features that affect the model predictions on a specific
input the most. However, most methods (Ribeiro et al., 2016; Qi et al.,
2020; Lundberg and Lee, 2017; Ribeiro et al., 2018) do not provide
any robustness guarantees that the identified features are sufficient
to ensure that the model behavior remains the same within an input

339
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region. The field of formal explainable AI has emerged in recent years
to overcome this limitation (Marques-Silva and Ignatiev, 2022; Malfa
et al., 2021; Ignatiev et al., 2019; Darwiche and Hirth, 2020). Let
S ⊆ X be a subset of input neurons, A = X \ S, and xA denote input
vector containing only the neurons from A. We define a local region
φ(x, S, η) = {x′ ∈ Rm | ||xA − x′A||p ≤ η ∧ xS = x′S} around an input
x, parameterized by S, containing inputs x′ such that the values of
neurons from S in x′ is the same as in x while the values of neurons
from A varies by at most η ∈ R.

Definition 5.1 (Provably robust explanation). A subset of neurons S ⊆ X
is a provably robust explanation of f ’s prediction on an input x for a
given η ∈ R if ∀x′ ∈ φ(x, S, η) we have that f(x) = f(x′).

A = X \ S contains irrelevant neurons with respect to f(x) as
changing them does not change the DNN prediction. There can be
multiple S that constitute provably robust explanations. Additional
criteria, such as reducing the size of the robust explanation set can be
employed to choose among different candidates.

A brute-force algorithm for computing S satisfying Definition 5.1
involves constructing φ(x, S, η) for each S ⊆ X and then leveraging an
abstract interpretation-based verifier V to check whether f ’s prediction
is robust within φ(x, S, η). However, the number of possible subsets
is 2|X |, and each check involves expensive verifier calls. VeriX (Wu
et al., 2023) constructs a robust explanation incrementally. It starts by
initializing S = X . Next, it selects a neuron x according to a predefined
traversal order. If V can prove f to be robust within φ(x, S \ {x}, η),
then we set S = S \ {x}. The quality of explanations produced by
this method depends on the order in which features are processed
and the precision of the verifier (imprecise verifiers produce bigger
sets). VeriX+ improves both the generation time and the size of robust
explanations by identifying more efficient traversal orders based on
abstract interpretation and binary search. The generated explanations
are useful for detecting incorrect predictions and out-of-distribution
samples. See Wu et al. (2024) for details.
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5.2 Interpreting Robustness Proofs

As we saw in Section 3, to prove DNN safety, abstract interpretation-
based DNN verifiers generate abstract elements at different layers,
capturing the relationships between neurons. These abstract elements
are usually complex, high-dimensional convex shapes defined over thou-
sands of neurons in the DNN. Although these proofs can guarantee the
DNN’s safety and thus induce reliability in the working of the DNN, they
do not provide any human-understandable insights into the semantic
meanings of the constituents (neurons) of the generated proofs. This is
unlike conventional program verification, where the proofs analyze the
program behavior by examining the semantic meanings of the different
parts, like inductive invariants, program contracts, etc. In the case of
DNN verification, the absence of any human-understandable elements
in the generated proofs, it remains unclear whether they are based on
any meaningful features learned by the DNN. If the DNN is proven to
be safe, but the proof is based on meaningless features not aligned with
human intuition, then the DNN behavior cannot be considered fully
trustworthy.

While there has been a lot of work on interpreting black-box DNNs,
standard methods (Ribeiro et al., 2016; Wong et al., 2021) can only
explain the DNN behavior on individual inputs and cannot interpret
the complex behavior encoded by the abstract elements capturing
DNN behavior on an infinite set of inputs. The main challenge in
interpreting DNN proofs is mapping the complex abstract elements to
human-understandable interpretations.

The work by Banerjee et al. (2024a) is the first to develop a method,
called ProFIt (ProoF Interpretation Technique) for interpreting ro-
bustness proofs computed by DNN verifiers and generating human-
understandable interpretations. The method can interpret proofs com-
puted by different DNN verifiers. The main concept behind the interpre-
tation is to dissect the generated proof into several components called
the proof features. The proof features are computed by projecting the
generated proof, a high-dimensional abstract element onto individual
neurons. The proof features can be analyzed independently by generat-
ing the corresponding interpretations. The proposed projection creates
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thousands of proof features. However, since the proof features are to
be analyzed manually, analyzing thousands of them can be prohibitive.
Further, since some proof features can be more important than others,
the algorithm proposes a set of representative proof features. The al-
gorithm defines a priority function over the proof features that signify
the importance of each proof feature in the complete proof is defined.
The method extracts a set of proof features by retaining only the more
important parts of the proof that preserve the property.

5.2.1 Proof Features

Before we describe the algorithm to find the representative set of proof
features to be analyzed, let us define a proof feature.

First, consider the case of DNN inference over a given concrete input,
where we wish to analyze the output. Treating the DNN as a collection
of individual neurons makes it difficult to analyze all the neurons due to
the sheer number of neurons in a DNN. On the other hand, analyzing
just the output layer neurons hides the details of how the output was
computed. To solve this problem, instead of analyzing the neurons from
all layers in the DNN or just the final layer neurons, recent works (Wong
et al., 2021; Liao and Cheung, 2022) on analyzing the DNN output
partition a DNN into a deep feature extractor and a decision layer. The
output neurons of the penultimate layer are the deep features and the
last layer linearly combines these features to compute the final output.

Similarly, in the case of DNN verification, the DNN can be segregated
into a deep feature extractor and a decision layer. However, instead of
a single input, we are given a local robustness input region φ = φ(x) =
{x′ | ||x′ − x||∞ ≤ η} containing infinitely many inputs instead of a
single input as handled by previous interpretation methods. Similarly,
instead of a concrete output, we now have a proof, high-dimensional
convex shape generated by the DNN verifier at the penultimate layer.
This shape can be projected to the hidden neurons h in the penultimate
layer to generate proof features. So, the proof features are a set of
intervals of the form [lh, uh] containing all possible output values of the
corresponding neuron h w.r.t. φ.
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Definition 5.2 (Proof features). Given a DNN f , input region φ and
DNN verifier (abstract interpreter) V , for each neuron h at the penul-
timate layer of f , the proof feature Qh extracted at that neuron h is
an interval [lh, uh] such that ∀x ∈ φ, the output at h always lies in the
range [lh, uh].

Notice that our target is neither to verify the DNN safety from
scratch nor to find the more important features in the DNN that make
it safe. Rather, it is to find the more important features in a given proof
of the DNN safety. Even if a DNN is safe, some verifiers may not be able
to prove it. Conversely, if two verifiers are both able to prove a DNN
safe, their proofs may have different proof features. So, in Definition
5.2, the computation of proof features is specific to the verifier (V ).

5.2.2 Representative Proof Feature Set

Notice that using Definition 5.2, there are as many proof features as the
number of neurons in the penultimate layer. This can be a prohibitively
large number to analyze manually. So, we must choose a representative
subset of the more important proof features that are responsible for the
proof to go through.

Let the size of the penultimate layer of an l-layered DNN be dl−1.
We use Q to denote the set of all proof features at the penultimate layer
and QS to denote the proof features corresponding to a subset S of
neurons in layer l− 1, i.e. QS = {Qh | h ∈ S}. Note that there are 2dl−1

possible subsets. Since the number of proof features (dl−1) can be very
large, enumerating all possible subsets is not an option. Further, many
of the proof features, and hence proof feature sets may not be important
for the proof. Similar to how DNNs are interpreted w.r.t individual
inferences, we want to identify a small set of proof features that are
more important for the proof of the property. Let us first describe the
expectations from such a proof feature set. These are – (i) Size, (ii)
Sufficiency, and (iii) Importance. Since the proof features are to be
interpreted manually, we want the size of this set to be as small as
possible. Following, we discuss the sufficiency and the importance of
the set in detail.
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Sufficiency. The proof feature set should be sufficient for the proof to
go through, i.e., if the proof is restricted to only the proof features from
the selected set, the proof should still be able to prove the safety of the
DNN. This is an important property expected of the proof feature set
because otherwise, it would not make sense to interpret a proof feature
set that is not even sufficient to prove the safety of the DNN.

Definition 5.3 (Proof feature Pruning). Pruning any Proof feature Qh ∈
Q corresponding to a neuron h in the penultimate layer involves setting
weights of all of h’s outgoing connections to 0 so that given any input
x ∈ φ the final output of f no longer depends on the output of h.

Once, a proof feature Qh is pruned the verifier V no longer uses
Qh to prove the safety property (φ,ψ) on the DNN. So, the proof is
restricted to the selected set of proof features. Next, we formally define
the sufficiency of a proof feature set.

Definition 5.4 (Sufficient proof feature set). For the proof of safety of f
with verifier V , a nonempty set QS ⊆ Q of proof features is sufficient if
the property (φ,ψ) can still be proven to hold on f by verifier V even
when all the proof features not in QS are pruned.

Let Wl be the weight matrix of the final layer of the DNN. Pruning
any proof feature Qh results in setting all weights in Wl[:, i] to 0 where
i is the column index of h in Wl. For a proof feature set QS ⊆ Q,
let Wl(S) be the pruned weight matrix. The proof feature set QS is
sufficient if (φ,ψ) can be proven to hold on f by V with the pruned
weight matrix Wl(S). Let, the verifier V compute an over-approximated
output region g of f over the input region φ. Since the input region
(φ), the feature extractor (first l − 1 layers of f), the verifier (V ) do
not change, the output region g of the pruned network only depends
on the pruning done at the final layer. Let g(Wl, S) denote the over-
approximated output region corresponding to Wl(S). Without loss of
generality, we assume that the postcondition is ψ(Y ) = (CTY ≥ 0)
where C ∈ Rn defines a linear inequality for encoding the robustness
property. f can be verified by V with Wl(S) if the value of a ψ-specific
lower bound function Lψ applied on g(Wl, S) is ≥ 0.
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Importance. Another property expected of the representative feature
set is that it contains important proof features. The importance of a
proof feature Qh in a proof feature set QS can be thought of as its
contribution in the final proof Lψ(g(Wl, S)). Formally, the importance
of a proof feature w.r.t a proof feature set QS can be approximated by
∆(Qh,QS), where

∆(Qh,QS) ≜ |Lψ(g(Wl, S))− Lψ(g(Wl, S \Qh))| (5.1)

Let gl−1 denote the output region computed at the layer l − 1 (penulti-
mate layer). So,

∆(Qh,QS) = |Lψ(g(Wl, S))− Lψ(g(Wl, S \Qh))|
≤ max

h∈gl−1
|(CTWl(S)h− CTWl(S \ {i})h)|

= max
h∈gl−1

|(CTWl[:, i]) · h)|
(5.2)

Notice that this definition is dependent on the set QS . However, it is
useful to compute the importance of the proof feature Qh independent
of the set QS . So, we need the maximum contribution of Qh w.r.t all
the sufficient proof feature sets containing Qh (represented by S(Qh)).
So, the importance is defined formally as

P (Qh) ≜ max
QS ∈ S(Qh)

∆(Qh,QS) (5.3)

5.2.3 ProFIt

Challenges. Now that we have defined a proof feature, its importance,
and the sufficiency of a proof feature set, our target is to find a sufficient
proof feature set that is small enough to be interpreted manually and
contains the more important proof features. However, there are still the
following two challenges.

First, the importance of each proof feature, P (Qh) as defined in
Equation 5.3 is computationally expensive to compute because S(Qh)
is a huge set - exponential in the total number of proof features, i.e.,
S(Qh) = O(2dl−1). So, we compute the approximate importance of a
proof feature - Pub(Qh). Combining Equations 5.2 and 5.3, P (Qh) ≤
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maxh∈gl−1 |(CTWl[:, i]) · h)|. Further, any proof feature Qh = [lh, uh]
computed by V contains all possible values of h where h ∈ gl−1. So,

P (Qh) ≤ max
h∈[lh,uh]

|(CTWl[:, i])| · |h|

= |(CTWl[:, i])| ·max(|lh|, |uh|)
= Pub(Qh)

(5.4)

Using Pub(Qh) as an approximation for P (Qh), the importance of a proof
feature can be computed with O(dl−1) elementary vector operations
and a single verifier call that computes the intervals [lh, uh].

The second challenge is that there is an inherent trade-off among
the goals. On one hand, the set of all the proof features, Q is sufficient,
but the size is |dl−1|. On the other hand, the empty set of proof features
is sufficient by definition, however, it does not contain any important
proof features. The ProFIt algorithm tackles this challenge.

Algorithm. The ProFIt algorithm proceeds by initializing HS0 as
an empty set and HS as Q and iteratively adds proof features to
HS0 and prunes features from HS . The set HS0 contains the features
guaranteed to be included in the final output, and HS contains the
candidate features yet to be pruned by the algorithm. At every step, the
algorithm ensures that the set HS ∪HS0 is sufficient and iteratively
reduces its size by pruning proof features from HS . The algorithm
iteratively prunes the feature Qh with the lowest value of Pub(Qh) from
HS while retaining features with higher priorities in HS ∪HS0 . If the
feature set HS0 ∪HS1 is sufficient (HS1 is the set containing top-|S|/2
features based on Pub(Qh)), ProFIt removes all features in HS \HS1

from HS and therefore HS is updated as HS1 in this step. Otherwise,
if HS0 ∪HS1 does not preserve the property (φ,ψ), ProFIt adds all
feature in HS1 to HS0 (line 16) and replaces HS with HS \HS1 . The
algorithm terminates after all features in HS are exhausted.

Optimization and correctness. Note that checking the sufficiency of
an arbitrary proof feature set QS requires expensive verifier invocations.
Since only the final layer is modified, incremental verification (Ugare et
al., 2023; Ugare et al., 2022) can be used which can efficiently verify the
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Algorithm 1: Approximate minimum proof feature extraction
Input: DNN f , property (φ,ψ), verifier V
Output: Approx. minimum proof features HS0

if V cannot verify (φ,ψ) on f then
return;

end
Calculate all proof features for input region φ;
Calculate priority Pub(Qh) for all proof features;
HS0 = {}, HS = Q
while HS is not empty do

HS1 = top-|S|/2 features based on Pub(Qh)
HS2 = HS \HS1

if HS0 ∪HS1 is sufficient using V then
HS = HS1

else
HS0 = HS0 ∪HS1

HS = HS2

end
end
return proof features HS0

property without starting from scratch. However, even removing a single
feature in each iteration and checking the sufficiency of the remaining
features in the worst case leads to O(dl−1) incremental verification
calls which are expensive. So, at each step, from HS ProFIt greedily
picks top-|S|/2 features HS1 based on their importance and invokes
V to check the sufficiency of HS0 ∪HS1 . Since at every step, the size
of HS reduces by half, the algorithm terminates within O(log(dl−1))
incremental verifier calls. The proof for sufficiency of HS0 , a non-trivial
theoretical upper bound on its size, and guarantees about the correctness
and efficacy of ProFIt can be found in the paper by Banerjee et al.
(2024a).

Interpretation of the proof features. Once the proof features are
extracted, the existing local gradient-based visualization techniques
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(Smilkov et al., 2017) can be adapted for visualizing the extracted
proof features. For any proof feature Qh = [lh, uh] both lh, uh can
be expressed as differentiable functions lh = Lh(lx1 , ux1 , . . . , lxm , uxm)
and uh = Uh(lx1 , ux1 , . . . , lxm , uxm) where ∀i ∈ [m]. lxi = xi − δi and
uxi = xi+δi are the lower and upper bound of the i-th input coordinate,
xi is the unperturbed value, δi is the amount of perturbation. To measure
the sensitivity of proof feature Qh w.r.t change in i-th input coordinate,
we take the gradient 1

2 × (∂Lh
∂δi

+ ∂Uh
∂δi

) of the mean (also the midpoint)
(lh+uh)

2 of Qh w.r.t δi. This gradient captures the change in the mean
value of the proof feature w.r.t the change in i-th input coordinate.

Figure 5.1: Gradient map corresponding to the top proof feature for MNIST DNNs
trained using different methods discussed in Section 4.

5.2.4 Results

In Figures 5.1 and 5.2, a comparison of proof interpretations for DNNs
trained with standard and robust training methods (Madry et al., 2017;
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Figure 5.2: Gradient map corresponding to the top proof feature for CIFAR-10
DNNs trained using different methods discussed in Section 4.

Zhang et al., 2020; Balunovic and Vechev, 2020) on the popular MNIST
(LeCun et al., 1989) and CIFAR10 datasets (Krizhevsky, 2009) shows
that the proof features corresponding to the standard networks rely
on meaningless input features while the proofs of adversarially trained
DNNs – PGD – (Madry et al., 2017) filter out some of these spurious
features. In contrast, the networks trained with certified training –
CROWN-IBP – (Zhang et al., 2020) produce proofs that do not rely
on any spurious features but they also miss out on some meaningful
features. Proofs for training methods that combine both empirical and
certified robustness – COLT – (Balunovic and Vechev, 2020), not only
preserve meaningful features but also selectively filter out spurious ones.
These observations have empirically been shown to be not dependent
on any specific DNN verifier. These insights suggest that DNNs can
satisfy safety properties but their behavior can still be untrustworthy.



6
Analyzing and Verifying Differentiable Programs

Static analysis of differentiable programs opens the door to analyzing
a broad new class of formal program properties which go beyond the
scope of classical program analysis. However new challenges arise when
analyzing a program’s derivative that do not exist when analyzing
the original program itself. Our goal will be to build a unified and
automated framework that gives programmers formal guarantees over
derivative properties while removing the burden of needing to know all
the intricacies of calculus. Drawing upon both our prior work (Laurel
et al., 2022a; Laurel et al., 2022b; Laurel et al., 2023; Laurel et al., 2024;
Laurel, 2024) as well as other similar techniques (Zhang et al., 2019;
Jordan and Dimakis, 2021; Jordan and Dimakis, 2020; Shi et al., 2022;
Deussen, 2021), we will see how to obtain general, precise, and scalable
static analysis of differentiable programs.

6.1 Differentiable Programming and Automatic Differentiation

Given that computer programs often define mathematical functions,
one may ask: can these mathematical functions be differentiable? This
question motivates the idea of Differentiable Programming, also called
Automatic Differentiation (AD) which is a way to automatically con-

350
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struct programs that compute the mathematical derivatives of other
programs. Automatic Differentiation has a long history in Computer
Science, going back to at least the 1960s (Wengert, 1964).

To describe Automatic Differentiation, we first introduce in Fig-
ure 6.1, a core language used to construct programs that represent
differentiable functions. Given a differentiable programming language,
AD frameworks are built upon techniques like operator overloading or
source code transformations, and these frameworks enable automati-
cally applying the rules of calculus (e.g., chain rule) at the level of a
program’s source code in order to produce a new program that is a
valid mathematical derivative of the original program (Griewank and
Walther, 2008). For instance, given the simple program x = input();
y = sin(x)+x; return y; (shown in Figure 6.2a), AD can produce
a new program (shown in Figure 6.2b) that computes cos(x) + 1 so
that we can obtain ∂y

∂x . The original program is often referred to as
the primal. In this example, we use forward mode AD implemented by
source code transformation. New variables corresponding to derivatives
of the primal’s intermediate variables are inserted by the AD compiler
and are denoted with a _d suffix. In particular, y_d stores the value of
∂y
∂x .

P ::= P1;P2 | xi = Expr

Expr ::= xj + xk | xj − xk | xj ∗ xk
| 1/xj | log(xj) | exp(xj)
| cos(x) | sin(x) | σ(xj) | c ∈ R

Figure 6.1: Differentiable Function Syntax

AD has two main variants: forward-mode and reverse-mode. In
the forward mode (which is used in Figure 6.2), the derivatives are
computed side-by-side with the original program variables, whereas in
reverse mode AD, the entire original program is first computed before
any derivatives are computed (Griewank and Walther, 2008). Forward-
mode AD can be thought of as a forward propagation (through the
computational graph) of derivatives of intermediate program variables
with respect to a fixed input variable. Reverse-mode AD can be thought
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1 x = Input ( ) ;
2 y = s i n ( x)+x ;
3 return y ;

(a)

1 x = Input ( ) ;
2 x_d = 1;
3 y = s i n ( x)+x ;
4 y_d = (cos(x)+1)*x_d ;
5 return y , y_d ;

(b)

Figure 6.2: (a) Primal Program and (b) Forward-Mode Differentiated Program

of as a backward propagation (through the computational graph) of
the derivative of a fixed output variable with respect to intermediate
program variables.

To compute the entire Jacobian of a function f : Rm → Rn (ex-
pressed as a differentiable program), the time complexity of forward-
mode AD is proportional to the number of input variables: O(m). In
contrast, the time complexity of reverse-mode AD is proportional to the
number of output variables: O(n). Beyond computing first derivatives
and Jacobians, AD can be iterated to compute higher-derivatives such
as Hessians.

6.1.1 Differentiable Programming Language Expressivity

Since the language supports function compositions (e.g., exp), multipli-
cation, and division, the computational graph described by a program
is naturally differentiable. Indeed, the chain rule, product rule and quo-
tient rule will respectively be applied by the compiler for each of those
operations in the original program. While this language may appear
restricted, it remains expressive enough to encode important functions
and programs from a variety of applications across Machine Learning,
Optimization, and Scientific Computing. For instance, this language
can easily express deep neural networks (DNNs) and can also encode
numerical ODE solvers like Euler and Runge-Kutta solvers.

6.2 Formal Properties Defined over Derivatives

The first derivatives specified by the Jacobian matrix form the founda-
tion of many prominent learning paradigms and are used in all facets of
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the machine learning (ML) pipeline, from training to testing. Beyond
ML, derivatives (including higher-derivatives) are used extensively in sci-
entific computing for tasks as diverse as climate modeling (Mametjanov
et al., 2012), analyzing differential equations (Bendtsen and Stauning,
1996; Ma et al., 2021) and sensitivity analysis (Hovland et al., 2005).

Since AD allows one to differentiate through complex programs
written for such tasks, one can now define and analyze formal properties
over those derivatives. Hence, AD allows one to go beyond analyzing
properties over the program’s original variables and instead analyze
properties over those variables’ derivatives. For this reason, many key
formal properties are defined over the derivatives and gradients that
AD computes. Hence AD and differentiable programming open the door
to new formal methods problems. These new formal methods problems
are especially relevant to trustworthy AI. We now describe key formal
properties that are defined over the derivatives computed by AD.

Notation. In keeping with the notation of Section 1.2, for a set of
points in Rm described by a (precondition) formula φ and a differentiable
function f , we write f ′(φ) or ∇f(φ) to denote the evaluation of the
derivative or gradient of f on all points in φ. We use xi to refer to the
ith component of a vector x. To denote the evaluation of a specific ith
partial derivative over all points in φ, we write ∂f(φ)

∂xi
. To denote the

evaluation of higher derivatives over φ, we may write f ′′(φ) or ∂nf(φ)
∂xi...∂xk

.
Lipschitz robustness. Lipschitz constants offer a natural way to

reason about a function’s behavior. Lipschitz constants can be used as a
metric to compare the stability and smoothness of the output of neural
networks prior to deployment, as a network with a smaller constant
is often preferable (Lin et al., 2019). Formal bounds on the Lipschitz
constant can also be used during training to learn classifiers that are
certifiably robust to adversarial perturbations (Tsuzuku et al., 2018),
robust to quantizations (Lin et al., 2019), or to improve interpretability
by making network explanations themselves more robust (Alvarez-Melis
and Jaakkola, 2018). Further, analyzing the Lipschitz constant has direct
applications in algorithmic fairness (Dwork et al., 2012) and differential
privacy (Dwork et al., 2006), where fairness and privacy are established
by certifying a small Lipschitz constant. This formal property can now
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be stated. For a differentiable function f(x) : Rm → R and local region
φ ⊂ Rm the bound on the gradient norm implies the local Lipschitz
constant bound as follows:

max
x∈φ
∥∇f(x)∥ ≤ L =⇒ ∀x1, x2 ∈ φ, ∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥

(6.1)
In this setting L ∈ R>0 is the local Lipschitz constant. Intuitively,

the local Lipschitz constant means that the function f can be bounded
by a line with slope L. We can equivalently formalize this property with
the following postcondition ψL = {v ∈ Rm : ∥v∥ ≤ L}, hence the full
formal specification becomes:

∇f(φ) ⊆ ψL (6.2)

Optimization analysis. Beyond using the Jacobian for formally
bounding (local) Lipschitz constants, a Jacobian analysis can also be
used to formally reason about the local optimization geometry of ML
models (Zhang et al., 2019). As an example, one may wish to certify
that for some local region, φ ⊂ Rm, a differentiable function of interest
f(x) : Rm → R never attains its extrema. The desired postcondition is
ψo = {v ∈ Rm : v ̸= 0}. This property can now be stated as:

∇f(φ) ⊆ ψo (6.3)

Existing work (Deussen, 2021) discusses how derivative bounds
which provably exclude zero can then be incorporated into branch-and-
bound optimization solvers to provably rule out entire (local) regions of
the input space. Hence by knowing that a region excludes any optimal
values, an optimization solver can avoid paying the computational cost
to explore that region.

Convexity and concavity. Another class of formal properties
that are defined over derivatives are convexity and concavity conditions.
Unlike the properties defined in (6.2) and (6.3), the convexity or con-
cavity of a function is defined over second derivatives instead of first
derivatives. For a function f : Rm → R and a precondition φ ⊂ Rm, f
is convex over all points in φ if the following holds:
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min
x∈φ

xT ·H(f, x) · x ≥ 0 (6.4)

In this setting H(f, x) is the Hessian, or matrix of all partial sec-
ond derivatives. Similarly, f is concave over the points captured by
precondition φ if

max
x∈φ

xT ·H(f, x) · x ≤ 0 (6.5)

We note that for functions of a single variable f : R→ R, proving
convexity of f over a region given by a precondition φ, reduces to proving
the following postcondition ψcnvx = {v ∈ R : v ≥ 0}, equivalently:

f ′′(φ) ⊆ ψcnvx (6.6)

And likewise proving concavity for a univariate f over φ reduces to
proving the postcondition ψcncv = {v ∈ R : v ≤ 0}, equivalently:

f ′′(φ) ⊆ ψcncv (6.7)

A more thorough treatment of convexity properties is found in
Deussen (2021). Convexity properties have been used in trustworthy
ML to train fair DNNs (Gupta et al., 2021). Relaxed notions of convexity
like pseudoconvexity can similarly be formulated as checking interval
bounds over second derivatives as in Hladík (2018) and Hladík et al.
(2021).

Sensitivity analysis. Sensitivities are often expressed with deriva-
tives. For instance, to understand how sensitive a function f is to the
ith input xi, one often computes ∂f

∂xi
. These derivatives are commonly

computed by AD (Hovland et al., 2005) which allows one to perform
sensitivity analysis for entire programs. AD-based sensitivity analyses
have proven especially useful in Scientific ML (Rackauckas et al., 2020;
Blondel et al., 2022). In our setting, one may aim to prove that in a re-
gion φ ⊂ Rm that a function’s sensitivity is bounded by some K ∈ R>0.
The evaluation of the ith partial derivative on every point in φ is denoted
as ∂f

∂xi
(φ). The desired postcondition is ψK = {v ∈ R : v ≤ K}. Hence

the formal specification we wish to prove is:
∂f

∂xi
(φ) ⊆ ψK (6.8)

This specification corresponds to a robust sensitivity analysis.
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Explainable ML: feature attributions and interactions Sim-
ilar in spirit to sensitivity analysis is Explainable Machine Learning,
which aims to interpret how ML models like neural networks make their
decisions. In Explainable ML, one may seek to explain which features
or input pixels are more important or salient than others. The reason is
that one may wish to attribute a DNN’s output to a particular feature,
hence why explanations are often referred to as feature attributions.

Derivatives with respect to the input features are computed to
quantify these attributions (Simonyan et al., 2013) and these derivatives
can then be compared to rank which features are more salient than
others. In our setting, this idea can be formally specified as follows:
for a function (e.g., a DNN) f : Rm → R, a local region φ ⊂ Rm and
features x1 and x2, we want to verify the following inequality:

∀x ∈ φ, ∂f(x)
∂x2

<
∂f(x)
∂x1

(6.9)

This specification certifies that feature x1 is always more salient
than x2. In practice we can prove (6.9) by verifying that

max
x∈φ

∂f(x)
∂x2

< min
x∈φ

∂f(x)
∂x1

(6.10)

Hence as long as the upper bound of one feature’s attribution is less
than the lower bound of another feature’s attribution, one can provably
rank the importance of the features. Alternatively, we can formalize the
proof of (6.10) as verifying that the postcondition ψ>0 = {v ∈ R : v > 0}
holds as follows (where “−” is the Minkowski difference):

∂f(φ)
∂x1

− ∂f(φ)
∂x2

⊆ ψ>0 (6.11)

In Explainable ML, higher derivatives are used to express properties
corresponding to the interaction of multiple input features (Lerman
et al., 2021). Thus for a function f(x1, ..., xm) : Rm → R, a local
region φ, and n input features of interest xi, ..., xk one may wish to find
the tightest range l, u ∈ R that encloses the higher derivatives. The
postcondition can be formalized as ψl,u = {v ∈ R : l ≤ v ≤ u}, hence
the specification for robustly quantifying nth-order interactions is:
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∂nf(φ)
∂xi, ..., ∂xk

⊆ ψl,u (6.12)

In addition, just as first-derivative attributions can be provably
ranked, (6.10) and (6.11), different higher derivative interactions can
also be provably ranked. This formal property can be stated as follows:

∂nf(φ)
∂xi, ..., ∂xk

− ∂nf(φ)
∂xj , ..., ∂xl

⊆ ψ>0 (6.13)

Monotonicity. In many applications, the formal property one must
certify is that a function, such as DNN, behaves monotonically. The
monotonicity property has proven useful in high-stakes social settings
such as for DNNs that are used to hire candidates or to offer applicants
loans. Indeed many algorithmic fairness properties can be formalized
as a monotonicity condition (Shi et al., 2022; Sivaraman et al., 2020).
For example, one way wish to ensure that for two otherwise equally
qualified job candidates, the candidate with more work experience is
preferred. Even beyond algorithmic fairness, monotonicity specifications
of neural networks (defined over their derivatives) arise in computer
systems tasks such as in Wei et al. (2023).

The monotonicity property for a univariate differentiable function f
(e.g., a DNN) with respect to an input x over a region φ ⊂ R can be
stated as follows: f is monotonically increasing with respect to x if

∀x1, x2 ∈ φ, x1 ≤ x2 =⇒ f(x1) ≤ f(x2) (6.14)

However (6.14) is both one-dimensional and relational since it is
defined over separate inputs x1 and x2. These limitations can be
overcome with derivatives. Using derivatives and the postcondition
ψ≥0 = {v ∈ R : v ≥ 0}, we can recast the monotonically increas-
ing specification into an equivalent non-relational form and generalize
it to higher dimensions. This formalization can be stated as follows:
f : Rm → R is monotonically increasing with respect to the ith feature
over a region φ ⊂ Rm if

∂f(φ)
∂xi

⊆ ψ≥0 (6.15)
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Similarly, f is monotonically decreasing if the postcondition ψ≤0 = {v ∈
R : v ≤ 0} is satisfied, or equivalently:

∂f(φ)
∂xi

⊆ ψ≤0 (6.16)

Range analysis. One may also need to perform a range analysis on
the gradients. For instance, in Misra et al. (2023), the authors needed
to reason about how small and how large gradients obtained during
gradient descent can be so that their compiler can select an appropriate
fixed point arithmetic data type with sufficient number of integer bits to
avoid gradient overflows and underflows. The range analysis specification
can be stated as follows: for a differentiable function f , an input region
φ ⊂ R one needs to find the tightest l, u ∈ R such that the postcondition
ψl,u = {v ∈ R : l ≤ v ≤ u} is still satisfied, or equivalently:

f ′(φ) ⊆ ψl,u (6.17)

Domain specific properties. In specific domains, researchers have
formalized other properties over derivatives for highly specific classes of
models. For instance, Eiras et al. (2023) uses derivative bounds to reason
about physics-inspired DNNs in scientific ML. Chang et al. (2019) uses
bounds on Jacobian-vector product to formally guarantee the stability
of neural network controllers and Deussen (2021) certifies bounds over
higher derivatives to compute sensitivities needed to select where to
apply approximations to a program. In addition, Qin et al. (2022)
certified bounds on derivatives in connection with barrier functions for
verifying self-driving control systems.

6.2.1 Encoding Derivative Properties by Abstract Interpretation

While we formally defined the properties of interest above, one still
needs an automated method to analyze and verify those properties. As
a solution, our work uses abstract interpretation as the foundational
framework to analyze these derivative properties.

The key insight is that the local regions φ ⊂ Rm (captured by the
preconditions) shown in the equations of Section 6.2 can be encoded
with numerical abstract domains like intervals, zonotopes or polyhedra.
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Hence checking derivative properties and verifying postconditions of
a program (e.g., a DNN) reduces to numerical abstract interpretation
over the derivative code generated by an AD tool.

6.3 Challenges

While Automatic Differentiation and Abstract Interpretation offer oppor-
tunities for synergy, combining these two distinct techniques encounters
several challenges. In particular, one must ensure that static analysis
of differentiable programs by abstract interpretation attains generality,
precision, and scalability. While these concerns are also faced by other
types of program analyses, the setting of differentiable programming
poses unique challenges and opportunities. In this context, generality
means the ability of an analysis to support multiple different features
of AD, such as higher-order derivatives and non-differentiable func-
tions. Precision means the analysis should compute as tight of a bound
as possible on the derivative expressions, which is a challenging task
since most derivative expressions are highly nonlinear. Lastly, scalability
means the analysis should compute derivative bounds for programs with
as many variables as possible - a core necessity for large ML programs
like DNNs. We now describe these challenges in more detail.

6.3.1 Generality

Formal, compositional reasoning about the semantics of differentiable
programs presents challenges because computer programs are often non-
differentiable. These points of non-differentiability stem from branch
statements in the program. These mathematical difficulties in the pro-
gram mean one thing: to prove formal guarantees about AD code, more
generalized types of derivatives are needed.

The need for generality also extends to higher derivatives and richer
abstract domains. As shown in Section 6.2, formal properties are often
defined over higher derivatives. Previously, a programmer would have
to define an AD semantics for the desired order of derivative and then
prove the corresponding abstract semantics sound for a chosen abstract
domain. To compute a different order of derivative or use a different
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abstract domain, all proofs would need to redone which puts a heavy
burden on the programmer.

6.3.2 Precision

Obtaining precision for AD static analyses remains difficult. This dif-
ficulty stems from the large amount of nonlinear operations inherent
to AD. Nonlinear operations pose challenges because most abstract
interpreters were designed for linear operations (Cousot and Halbwachs,
1978; Singh et al., 2017). Compared to the original program (the primal),
the derivative program AD computes (called the adjoint) can have 2-5×
more non-linear operations (Griewank and Walther, 2008), e.g., for the
most common operations:

• Every composition with a non-linear function in the primal requires
a separate composition with that function’s derivative in the adjoint
and an additional multiplication, due to the chain rule.

• A single multiplication in the primal leads to 2 separate multiplica-
tions in the adjoint due to the product rule.

• A single division in the primal leads to 4 nonlinear operations in the
adjoint due to the quotient rule.

As a strategy to tame the imprecision resulting from this increased
amount of nonlinearity (compared to other kinds of programs) one could
try to design optimal abstractions for groups of operations. However
the challenge then becomes how to choose the right level of granularity
for a more precise abstraction, a question which lacks an easy answer.

6.3.3 Scalability

Since derivative computations in AD typically have 2×-5× more opera-
tions than the original function that was differentiated (Griewank and
Walther, 2008), scalability becomes a primary concern, especially when
analyzing derivative properties of large neural networks. Furthermore,
tackling the precision challenge also affects the scalability, as more
precise analyses tend to be more expensive and thus less scalable.
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Combining Generality, Precision and Scalability

The challenges of generality, precision, and scalability do not exist
in isolation. In fact these three dimensions mutually influence each
other. For instance generality and precision are often competing goals
and similarly obtaining more precision often comes at the cost of less
scalability. In addition, many concerns exist at the intersection of these
dimensions. For example, supporting the analysis of higher-order AD
creates challenges for precision since higher-derivatives contain more
nonlinearity than first derivatives and creates challenges for generality
since new semantics are needed. Hence striking the perfect balance
between these three dimensions remains difficult. A visual representation
of these three dimensions and the AD-specific concerns that cut across
these dimensions is shown in Figure 6.3.

Figure 6.3: Precision, Generality and Scalability dimensions along with their
associated analyses concerns which are shared across multiple dimensions.

6.4 Synthesizing Precise AD Static Analyzers

We now present Pasado, our technique for synthesizing precise ab-
stract transformers, specialized for AD. Pasado’s technique allows us to
synthesize precise abstract transformers for the Chain Rule, Product
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Rule and Quotient Rule of Calculus, which we will denote TCf
, TP ,

TQ: D → D where D is the abstract domain which in our work will be
the reduced product of Zonotopes and Intervals. This section focuses
solely on Pasado’s chain rule abstraction, rules for the quotient and
product rule abstractions can be found in Laurel et al. (2023).

Function properties. We require each function f to to be twice
differentiable and we require a guaranteed root solver for the second
derivative of each f , so that we can solve for all x∗ ∈ [l, u] (or certify
that none exist inside [l, u]) such that f ′′(x∗) = c for any given c ∈ R.

Pasado preliminaries. Pasado will use standard abstract trans-
formers to abstract the primal computation and TCf

, TP , TQ to abstract
the derivative computation. Since both forward-mode AD and reverse-
mode AD use these same rules, we can synthesize precise abstractions for
each of the core operations for either mode of AD. The only difference
between AD modes is the order of application, for instance in forward
mode for a ∈ D, the application order is TP (T∗(TCf

(Tf (a)))) while for
reverse mode the order is TP (TCf

(T∗(Tf (a)))) since the entire primal
must be abstracted before any derivatives can be. In our setting, the
input abstract element a ∈ D captures the precondition φ. Our goal is
to verify the final abstract element satisfies a desired postcondition ψ.

Pasado’s abstract transformer synthesis involves a combination of
linear regression at uniformly spaced points and solving a nonlinear
optimization problem to ensure soundness.

6.4.1 Chain Rule Synthesized Transformer

The first rule of Calculus for which we want to synthesize a precise
abstraction is the Chain Rule. For functions f, g : R → R, the chain
rule is mathematically given as:

f(g(u))′ = f ′(g(u)) · g′(u) (6.18)

Forward-mode chain rule. In forward-mode AD, this rule is imple-
mented via:

1 z . r e a l = f ( x . r e a l ) ;
2 z . dual = f ’ ( x . r e a l )∗x . dual // chain r u l e
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where intuitively, x.real = g(u), x.dual = g′(u), z.real = f(g(u)),
and z.dual = f(g(u))′.
Reverse-mode chain rule. Likewise in reverse-mode AD, this rule is
implemented as:

1 z = f ( x ) ; . . .
2 z = . . . ;
3 x += f ’ ( x )∗z ; // chain r u l e

where the "..." at the end of the first line represents the break between
the end of the primal part of the differentiable program and the start
of the adjoint part of the same differentiable program, which computes
all the derivatives (e.g. z, x).

Chain rule abstraction pattern. Based on these implementations,
the main expression, present in both forward and reverse AD, for which
we want to synthesize an abstract transformer, TCf

, is:

g(x, y) = f ′(x) · y

The benefit of synthesizing an abstraction for this chain rule pat-
tern is that this pattern could have multiple nonlinear operations. For
instance, if f(x) = σ(x), then f ′(x) = σ(x) · (1 − σ(x)), which has a
nonlinear multiplication, in addition to the nonlinear multiplication
with y. Thus naively composing the abstract transformers for each
nonlinear operation e.g., T∗(T∗(T−(Tσ(a)))) as in Laurel et al. (2022b)
can lead to imprecision. When using zonotopes, each of those nonlinear
operations introduces a new noise symbol which adds additional over-
approximation. In contrast, TCf

introduces only a single noise symbol
for the entire chain rule derivative expression.

Abstraction. We now present how to abstract the chain rule pat-
tern. Algorithm 2 presents the abstract transformer TCf

and Figure 6.4
presents a geometric intuition. The core idea is to sample uniformly
spaced points that lie within the range of the input intervals and then
solve a linear regression problem to find the best linear approximation
of f ′(x) · y at those points. However, the most critical step for proving
soundness is solving a challenging multidimensional, nonconvex opti-
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(a) (b) (c)

Figure 6.4: Visualization of Pasado’s abstract transformer synthesis for the Chain
rule pattern g(x, y) = σ(x) · (1 − σ(x)) · y on [−1, 1] × [−1, 1]. In (a), the blue surface
represents g(x, y). In (b), blue dots on the blue surface represent evaluations of g(x, y)
at grid sampled points. The yellow hyperplane in (b) is computed by performing
linear regression with these blue points and has equation Ax+By + C. In (c), the
red lines show the difference between g(x, y) and the plane and D represents the
maximum such difference. The lower and upper orange planes in (c) are the enclosing
linear bounds given by Ax+By + C ±D. The enclosing bounds are parallel for the
Zonotope domain and here the maximum difference D occurs at a corner point.

mization problem, to soundly enclose the linear approximation, which
we next describe.

Optimization problem. The core technical difficulty of the Chain
Rule abstract transformer lies in solving the following equation for the
maximum deviation between the linear approximation (Ax+By + C)
and the function f ′(x) · y itself (example shown in Figure 6.4). This
maximum deviation is needed to obtain the tightest enclosure around
the linear approximation (Ax+By+C) such that this enclosure provably
contains the range of f ′(x) · y. This deviation D is computed as:

D = max
x∈[lx,ux],y∈[ly ,uy ]

|f ′(x) · y − (Ax+By + C)| (6.19)

Pasado reduces this multivariate, non-convex optimization problem
into two simpler univariate problems as well as simply checking the
four corner points: {lx, ux} × {ly, uy}. For the correctness of our proof
which is shown in Theorem 4.1 of Laurel et al. (2023), it is a technical
requirement that A ≠ 0. If linear regression obtains A = 0, we perturb A
by a small quantity, δ < 10−9. To solve the two univariate optimization
problems, we compute all x∗ ∈ [lx, ux] such that f ′′(x∗) = A

ly
and all

x∗∗ ∈ [lx, ux] such that f ′′(x∗∗) = A
uy

. Thus we must also examine
the points (x∗, ly) and (x∗∗, uy). We can solve for all x∗ and x∗∗ using
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Algorithm 2: Chain Rule Abstract Transformer TCf

Input: Abstract state a ∈ D where x̂ = a[x].x̂ and ŷ = a[y].ŷ
Output: Affine form and optimal interval enclosing f ′(x) · y
lx, ux ← Range(a[x]);
ly, uy ← Range(a[y]);
grid← GridSample([lx, ux]× [ly, uy]);
pts← {f ′(x) · y : (x, y) ∈ grid};
A,B,C ← LinearRegression(grid, pts);
if A = 0 then A← A+ δ;
D ← max

x∈[lx,ux],y∈[ly ,uy ]
|f ′(x) · y − (Ax+By + C)|;

l, u← min
x∈[lx,ux],y∈[ly ,uy ]

f ′(x) · y, max
x∈[lx,ux],y∈[ly ,uy ]

f ′(x) · y ;

return Ax̂+Bŷ + C +Dϵnew , [l, u]

the guaranteed root solver that we required in Section 6.4. Hence the
optimization problem ultimately reduces to:

D = max
(x,y)∈

(
{lx1 ,ux1 }×{ly1 ,uy1 }

)
∪{(x∗,ly),(x∗∗,uy)}

|f ′(x) · y− (Ax+By+C)|

The generality of our approach also stems from expanding this proof
technique to other patterns arising from AD. We also show how to
adapt this proof to obtain precise interval domain transformers. The
key benefit is that we can use virtually the same proof to get the exact
lower and upper bounds of f ′(x) · y for the given input intervals. Hence
we can compute optimal lower and upper bounds, l and u, as follows:

l = min
(x,y)∈

(
{lx1 ,ux1 }×{ly1 ,uy1 }

)
∪{(x∗,ly),(x∗∗,uy)}

f ′(x) · y (6.20)

u = max
(x,y)∈

(
{lx1 ,ux1 }×{ly1 ,uy1 }

)
∪{(x∗,ly),(x∗∗,uy)}

f ′(x) · y (6.21)

The core benefit of having both zonotope affine forms and separately
computed interval lower and upper bounds is that not only does the
same proof strategy give us sound abstractions for both domains, but by
taking their reduced product, we can always use the interval results to
refine the zonotope to enhance precision. Further, Pasado’s approach to
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synthesize linear bounds is applicable to any abstract domain that can
exactly represent linear expressions. Hence Pasado’s technique would
yield sound abstract transformers for other domains like Polynomial
Zonotopes (Kochdumper et al., 2023) or DeepPoly (Singh et al., 2019b).

6.5 Higher-order AD and AD with Branching

To generalize abstract interpretation of AD to support nondifferentia-
bility, our work also built DeepJ (Laurel et al., 2022a). DeepJ grapples
with non-differentiability by defining the first abstract semantics based
on Clarke Generalized Jacobians. This generality allows DeepJ to reason
about gradient properties for both differentiable and non-differentiable
(but Lipschitz continuous) functions. This generality also means DeepJ
is the first to obtain Lispchitz robustness guarantees on neural networks
(DNNs) that are adversarially perturbed by non-differentiable perturba-
tions like image rotations, a threat model no prior work addressed.

Additionally, the need for generality also extends to higher deriva-
tives. Hence, our prior work also developed the first general construction
for abstract interpretation of higher-order AD (Laurel et al., 2022b).
Our work creates a general framework for building sound abstract
interpreters for arbitrary orders of derivatives and general classes of
abstract domains. This approach removes the programmer’s burden
of reformalizing their abstract semantics each time they want to use
a different abstract domain or compute a different derivative. Instead,
programmers only specify a small set of abstract transformers for primi-
tive functions (e.g. exp(x)) and the highest desired derivative to obtain
both a sound concrete and sound abstract semantics which abstractly
interprets all derivatives up to that chosen order.

6.6 Case Study: Monotonicity Analysis of an Adult Income Network

To highlight a practical use of verifying differentiable programs for safe
and trustworthy AI, we show a case study (Laurel et al., 2023). In this
case study, we conduct a monotonicity analysis on a multilayer percep-
tron (MLP) trained on the Adult dataset (Becker and Kohavi, 1996).
Our MLP takes 87 input features (where 81 of the 87 features result from



6.6. Monotonicity Analysis of an Adult Income Network 367

one-hot encodings of the original dataset’s categorical variables), passes
these features through two hidden layers (each containing 10 neurons
and applying tanh activation), and outputs a single binary classification
score predicting the income level. Our goal is to verify the monotonicity
(both increasing and decreasing) of the MLP’s output with respect to 5
continuous input features which are: Age, Education-Num, Capital Gain,
Capital Loss, and Hours per week. The monotonicity specifications we
verify are the same as those presented in (6.15) and (6.16). Whereas
prior work (Shi et al., 2022) varied one feature at a time while holding
the value of all other features as fixed, our experiments allow all 5 of the
aforementioned continuous features to simultaneously vary within inter-
val bounds. Hence we abstractly interpret the continuous features with
a 5D L∞-ball, with a radius ϵ ∈ [0, 1], while holding all the remaining
features as fixed. This input ball represents the precondition φ. Since
training data is normalized to have zero mean and unit variance, passing
a 5D L∞-ball with ϵ = 0.4 through the MLP is equivalent to exploring
an infinite set of inputs that satisfy Age ∈ [33.2, 44.1], Education-Num ∈
[9.05, 11.1], Capital Gain ∈ [−1900, 4060], Capital Loss ∈ [−73.7, 249],
and Hours per week ∈ [35.5, 45.4]. For this analysis, we used Pasado’s
reverse-mode AD abstract transformers. Hence in a single (abstract)
pass, Pasado computes bounds on the partial derivatives of the output
with respect to each of the five input features.

For each L∞-ball radius ϵ, Pasado abstractly computes bounds on
the five partial derivatives when the original input is perturbed by
the L∞-ball for 100 different inputs, computing 500 partial derivative
bounds in total. In addition, we compare Pasado against interval AD
and zonotope AD. For a given input L∞-ball, to verify monotonicity
with respect to a chosen feature, the partial derivative bound with
respect to that feature should provably exclude 0, meaning the interval
should be strictly positive (monotonically increasing) or strictly negative
(monotonically decreasing). This condition ensures that the MLP is
monotonic with respect to that feature for all input points in the given
L∞-ball. Hence in Figure 6.5, we show the total number of partial
derivative bounds that exclude 0 over 100 test inputs, for different-sized
L∞-balls.
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Figure 6.5: Counts of verifiably monotonic features of Adult MLP over 100 test-set
inputs.

Figure 6.5 shows that the ability of interval AD to prove monotonicity
sharply decreases for ϵ ≥ 0.05 due to the inherent imprecision of the
interval domain. For small ϵ such as 0 ≤ ϵ ≤ 0.2, zonotope AD and
Pasado produce similar counts, meaning both can prove monotonicity.
However, their respective performances diverge as ϵ increases. When
0.2 ≤ ϵ ≤ 0.6, the counts for zonotope AD decline rapidly to nearly zero,
whereas the counts for Pasado remain high. Hence, in these cases Pasado
can prove monotonicity in significantly more instances. For ϵ > 0.6, all
three analyses struggle to prove monotonicity for most continuous input
features. The average runtimes for the interval AD, zonotope AD, and
Pasado are 0.079, 12, and 39 seconds, respectively. In summary, Pasado
is able to prove the most monotonicity specifications across all inputs.

6.7 Related Work

While a general formalization of abstract interpretation of automatic
differentiation emerged from our work (Laurel et al., 2022a; Laurel
et al., 2022b; Laurel et al., 2023; Laurel, 2024), prior work served as an
important forerunner.

Using interval analysis for AD goes back to at least the 1990s
(Mitchell and Hanrahan, 1992; Bendtsen and Stauning, 1996; Corliss
and Rall, 1991), and continues to exist in other, more recent works
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(Vassiliadis et al., 2016). Additionally, while they do not bound AD
specifically, other works (Misailovic et al., 2014; Mangal et al., 2020)
certify interval bounds on derivatives computed symbolically. However
these works do not support more expressive abstract domains like
zonotopes or polyhedra.

RecurJac (Zhang et al., 2019) first considers neural network veri-
fication of properties involving gradients and Jacobians, such as local
optimization landscapes and Lipschitz constants, with a customized
bound propagation algorithm derived from CROWN (Zhang et al.,
2018a). However, its derivation is limited to feedforward ReLU networks
only. Shi et al. (2022) generalized RecurJac to more general computation
graphs with Clarke Jacobians, proposed specialized, precision-enhancing
abstract transformers for DNN activations, and also conducted branch-
ing for refining bounds on derivatives and Jacobians.

In addition, several papers discussed computing Lipschitz constants
(Fazlyab et al., 2019b; Jordan and Dimakis, 2020; Jordan and Dimakis,
2021). These works typically formulate this specific problem as an
optimization problem, rather than considering an abstract interpretation
on a general computation graph; thus, they are often restricted to the
Lipschitz constant scenario and cannot be directly used to verify general
properties of derivatives or extended to higher derivatives.

Furthermore, most works (with the exception of Shi et al., 2022;
Laurel et al., 2022a; Jordan and Dimakis, 2020; Sherman et al., 2021)
lack a method for soundly reasoning about conditional branches, since
branches induce nondifferentiability.

Besides Laurel et al. (2022b), there is limited work on certifying
properties over higher derivatives. One notable work that can still
support higher derivatives is Deussen (2021). The author used bounds
on second derivatives to aid optimization solvers and bounds on higher
derivatives for significance analysis of neural networks. However that
work uses only the interval domain instead of other abstract domains.

Lastly, only a few works (Laurel et al., 2023; Shi et al., 2022; Zhang
et al., 2019) employ custom or hand-crafted abstract transformers,
thus virtually all other works including Bendtsen and Stauning (1996),
Vassiliadis et al. (2016), and Mangal et al. (2020) use standard abstract
transformers which leads to imprecision.



7
Conclusion

DNNs are generated directly from data, which makes their inner work-
ings less transparent to potential users than classical programs, hindering
their trustworthy deployment in real-world applications. To unlock the
transformative benefits of DNN technology, it is essential to look beyond
measuring accuracy on standard benchmarks and instead train DNNs
that are not only accurate but also trustworthy and transparent. In this
monograph, we showed how the classical framework of abstract interpre-
tation, originally designed for analyzing programs, can be successfully
leveraged for building state-of-the-art solutions for verifying, training,
explaining, and interpreting DNNs. Next, we discuss the limitations of
existing works and potential ways to move the field forward.

Limitations. While significant progress has been made in recent years,
the use of formal methods for trustworthy DNN development is still
not as widespread as it should be. This is because:

• Significant manual effort. Efficient abstract interpreters must
balance the precision/scale tradeoff, which requires substantial
expertise in algorithm design, formal methods, and performance
optimizations. Existing interpreters are constructed from scratch,
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requiring developers to design the necessary logic, prove its cor-
rectness, and take care of low-level implementation details.

• Inflexible design. Existing interpreter implementations are
tailored to handle the composition of DNN layers in a particular
way to verify specific trustworthy properties (like robustness) on
simple DNN architectures (like fully connected, convolutional). In
several practical cases, verification requires handling an arbitrary
composition that these implementations cannot handle, like when
verifying new complex state-of-the-art architectures, or properties
beyond robustness or simple combinations of output neurons on
existing architectures. This manual construction of specialized
implementations for a limited set of DNN architectures and prop-
erties cannot keep pace with the rapid development of new DNN
architectures and the need to prove more diverse properties in
different domains.

• Lack of scalability. Existing implementations of abstract in-
terpreters are suboptimal and do not fully exploit available paral-
lelization and performance optimization opportunities on modern
hardware specialized for DNN workloads. As a result, even if the
abstraction is theoretically efficient, the implementations are often
too slow or run out of memory when handling larger models (e.g.,
transformers or diffusion models).

• Lack of precision on large models. Although efficient abstract
interpretations such as Box/IBP and DeepPoly/CROWN exist
and can theoretically scale to very large models with a good
implementation, these methods lack precision and provide vacuous
bounds on large models and difficult properties. The fundamental
tradeoff between precision and scalability is not fully addressed,
which hinders the practical verification of very large DNNs, such
as large language models.

• Inaccessibility. Even inefficient implementations require writing
substantial expert code. This is impractical for many end users
of deep learning frameworks who lack the necessary background.
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To achieve wider adoption of formal methods in deep learning,
minimizing the amount of code an end user needs to write to run
an abstract interpreter on their trained model is important. This
can be accomplished by having an API that intuitively exposes
only the relevant functionality while hiding the algorithmic details.
Further, the API should be familiar to the existing practitioners
of deep learning frameworks so that they can start using formal
methods without requiring extra learning or training.

• Weak system-level guarantees. DNNs are often employed
inside a larger AI-enabled systems. Existing approaches focusing
on verifying end-to-end systems do not efficiently exploit the
interactions between DNN and system/program level verifiers and
therefore cannot prove complex properties of large systems.

Future work. To address some of these limitations, we believe that an
optimizing compiler framework can be developed to make it easier to
generate efficient implementations (Singh et al., 2024; Singh et al., 2025).
In this framework, the developer can specify the logic of the abstract
interpreter as a minimal, high-level specification written in a domain-
specific language. The compiler can then generate code optimized for
specialized hardware to support arbitrary combinations of diverse use
cases, application domains, properties, and DNN architectures. To
enable stronger system-level guarantees, specialized abstractions for
neurosymbolic computations can be designed that efficiency capture
the interactions between DNNs and other system components.
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