
COMET: NEURAL COST MODEL EXPLANATION FRAMEWORK

Isha Chaudhary 1 Alex Renda 2 Charith Mendis 1 Gagandeep Singh 1 3

ABSTRACT

Cost models predict the cost of executing given
assembly code basic blocks on a specific microar-
chitecture. Recently, neural cost models have
been shown to be fairly accurate and easy to con-
struct. They can replace heavily engineered ana-
lytical cost models used in mainstream compiler
workflows. However, their black-box nature dis-
courages their adoption. In this work, we de-
velop the first framework, COMET, for generat-
ing faithful, generalizable, and intuitive explana-
tions for neural cost models. We generate and
compare COMET’s explanations for the popular
neural cost model, Ithemal against those for an
accurate CPU simulation-based cost model, uiCA.
Our empirical findings show an inverse correla-
tion between the prediction errors of Ithemal and
uiCA and the granularity of basic block features in
COMET’s explanations for them, thus indicating
potential reasons for the higher error of Ithemal
with respect to uiCA.

1 INTRODUCTION

Cost models predict the cost (memory, time, energy, etc)
that an assembly code basic block, a sequence of assembly
instructions with no jumps or loops, takes while executing
on a specific microarchitecture. They are used to guide
compiler optimization (Mendis et al., 2019b; Cummins et al.,
2017) and superoptimization (Schkufza et al., 2013). They
can be traditional or learned models.

Traditional cost models are typically simulation and static-
analysis based models. Simulation-based cost models gen-
erate their predictions by simulating program execution for
a given CPU. They are hand-engineered using released doc-
umentation and micro-benchmarking the CPU under study.
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Examples of these cost models are uiCA (Abel and Reineke,
2022) and LLVM-MCA (Di Biagio and Davis, 2018). As
these models are traditional programs, domain experts can
intuitively understand and debug them, and hence they are
commonly deployed in practical settings. However, they
require significant engineering effort to construct and must
be manually re-engineered to reflect changes across CPU
microarchitectures. Static-analysis based cost models, such
as IACA (Intel, 2017) and OSACA (Laukemann et al., 2018)
predict the cost of executing a program on a given microar-
chitecture by developing a model of the target CPU and
deploying static analysis methods to predict the cost of a
given basic block with the model. These cost models often
have a high error in their predictions (Abel and Reineke,
2022; Chen et al., 2019).

Alternatively, machine learning techniques can be used to
learn a cost model (Mendis et al., 2019a; Kaufman et al.,
2021; Baghdadi et al., 2021; Sýkora et al., 2022). Develop-
ment of ML-based cost models requires the one-time effort
of collecting a dataset of representative programs, collecting
the end-to-end cost for the execution of those programs on
the CPU under study, and training a selected type of ML
model. While simple and interpretable ML models could
be used for constructing cost models, prior work (Mendis
et al., 2019a; Sýkora et al., 2022; Kaufman et al., 2021;
Baghdadi et al., 2021) has used neural networks as cost
predictors to precisely approximate the complex function
mapping basic blocks to their costs. An instance of such
neural cost models is Ithemal (Mendis et al., 2019a), which
is an LSTM model trained on the BHive (Chen et al., 2019)
dataset of x86 basic blocks to predict basic block throughput
(average number of CPU clock cycles to execute the block
when looped in steady state). Ithemal is more accurate on
the BHive dataset than most throughput models (Chen et al.,
2019). Ithemal needs less manual effort to construct than
any simulation-based or static-analysis-based cost model.
However neural models generally have the downside that
they are uninterpretable (Molnar, 2022).

This work. Our goal is to bring interpretability to inherently
black-box but accurate neural cost models, by developing
a general framework that can generate trustworthy and in-
tuitive explanations of their predictions. These neural cost
models could have arbitrary architectures (Mendis et al.,
2019a; Sýkora et al., 2022), requiring custom explanation
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methods, and could also be proprietary. To avoid engineer-
ing custom explanation methods for each model, we develop
a common explanation framework that is agnostic to the type
or structure of the model. Apart from saving manual en-
gineering effort, a common framework would facilitate a
comparison between neural and other types of cost models
with respect to the explanations of their predictions. To
achieve our goals, we develop our explanation framework
to generate explanations that (i) assume just query-access
to the cost model, which may be available for some propri-
etary cost models too, (ii) faithfully reflect the cost model’s
behavior, (iii) generalize across multiple basic blocks, and
(iv) are simple and interpretable for domain experts.

Key challenges. For building trustworthy explanations, we
need to formalize the desirable properties of faithfulness,
generalizability, and simplicity (Subhash et al., 2022). There
is a tradeoff between the degree to which a given explanation
satisfies the above desirable properties and its computational
cost. Therefore, we need to design efficient algorithms that
can balance this tradeoff. Prior works (Ribeiro et al., 2016;
2018) in domains such as Vision or NLP have used per-
turbed inputs to efficiently generate explanations with only
query-access to the model. However, their perturbation al-
gorithms heavily utilize local neighborhoods of their inputs
while creating their explanations. In the discrete domain
of basic blocks, there is no well-defined concept of local-
ity. Hence, we need specialized perturbation algorithms to
handle this domain-specific challenge and derive close ap-
proximations to the complex behavior of a given cost model
in a reasonable number of queries.

Our approach. We identify that global explanations with
desirable properties may be computationally intractable or
even may not exist for complex cost models. Hence, we
focus on explaining a given model’s prediction for a tar-
get basic block. We first formalize the ideal, query-based,
block-specific explanations with desirable properties as an
optimization problem. We observe that generating such
ideal explanations is intractable. To practically generate ex-
planations, we relax our requirements and develop COMET,
a perturbation-based explanation framework based on the
design of (i) novel primitives for explanations that capture
both coarse-grained (e.g. number of instructions) and fine-
grained (e.g., instructions and data dependencies) features
of the basic block, and (ii) new custom perturbation algo-
rithms for generating a diverse set of basic blocks that help
gauge the complex behaviors of cost models.

Contributions. We make the following contributions:

1. We formalize the ideal query-based explanations having
desirable properties for cost models for any target basic
block as an optimization problem that is agnostic to any
particular Instruction Set Architecture (ISA).

2. We relax the problem to make it practically solvable.
Building on our relaxation, we present COMET (COst
Model ExplanaTion framework), a novel and efficient
explanation framework for neural cost models. As
COMET depends on the ISA, we have implemented
it for the popular x86 ISA, and it can be extended to
other ISAs with non-trivial engineering effort. We open-
source our implementation at https://github.
com/uiuc-focal-lab/COMET. COMET’s expla-
nations identify the features of a target basic block that
are important for a given cost model’s prediction.

3. We systematically analyze COMET’s accuracy and use
it to gain insights into the working of common cost
models. We explain basic blocks in the popular BHive
dataset (Chen et al., 2019). We empirically observe that
COMET’s explanations for the neural cost model Ithe-
mal more often consist of coarser-grained features of
the basic block, such as the block’s number of instruc-
tions, as compared to the explanations for the lowest
error simulation-based cost model uiCA, indicating po-
tential sources of the relatively higher error in Ithemal’s
predictions with respect to uiCA.

COMET aims to help our stakeholders, i.e. compiler and
performance engineers, develop an intuition about and de-
bug neural cost models in a simple yet precise way. We
anticipate this work to go a long way in developing better
neural cost models and making them trustworthy.

2 RELATED WORK

Explanation techniques. Explanations for ML models
consist of either building inherently interpretable ML mod-
els (Lakkaraju et al., 2016) or creating post-hoc explana-
tions for the models (Ribeiro et al., 2016; 2018; Lakkaraju
et al., 2019; Martens and Provost, 2014). Post-hoc explana-
tions are preferred as accurate cost modeling for the CPU’s
pipelined architecture makes complex models more suit-
able. These can either describe a model globally (Lundberg
and Lee, 2017) or for specific inputs (Ribeiro et al., 2016;
2018). Explanation techniques can also be broadly clas-
sified as black-box (Ribeiro et al., 2016; 2018; Lundberg
and Lee, 2017) and white-box techniques (Simonyan et al.,
2014; Seo et al., 2018). Further classifications of explana-
tion techniques can be as perturbation/example-based (Bui
et al., 2019; Liu et al., 2018; Zeiler and Fergus, 2014) and
symbolic explanation techniques (Boumazouza et al., 2021;
Marques-Silva, 2023; Ignatiev et al., 2019; Arenas et al.,
2021). While symbolic methods give formal guarantees on
the explanations, they do not scale to complex models yet.
(Ritter and Hack, 2022) is a differential-testing tool to ana-
lyze the inconsistencies between multiple cost models. This
tool, unlike COMET, is not meant to explain a particular
prediction of a cost model to enable case analysis.

https://github.com/uiuc-focal-lab/COMET
https://github.com/uiuc-focal-lab/COMET
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Input perturbation algorithms. For domains wherein the
input is a sequence of discrete entities such as NLP and
code, the prior perturbation-based explanation algorithm by
Ribeiro et al. (2018) has used generative models (Devlin
et al., 2019; Feng et al., 2020) to obtain input perturba-
tions. These perturbations might not be syntactically correct
and can result in erroneous explanations (Cito et al., 2022).
Hence, we have not used such unconstrained perturbation
techniques in our explanation framework. Moreover, as
mentioned above, there is no well-defined concept of local-
ity in this domain. Thus, we can not use the perturbation
algorithms from prior work in other domains which gener-
ally perturb the input in some local regions. Stoke (Schkufza
et al., 2013) is a stochastic superoptimizer that perturbs in-
put x86 assembly programs to optimize them. While Stoke
does not operate on embedding spaces, it can generate syn-
tactically incorrect perturbations.

3 OVERVIEW AND MOTIVATING EXAMPLE

Consider the x86 basic block in Listing 1(a), represented in
the Intel assembly syntax (Bartlett, 2021) (default syntax
throughout the paper). The throughput cost of this basic
block predicted by the neural cost model Ithemal for the
Haswell microarchitecture is 1.3 cycles. We use COMET to
explain the prediction made by Ithemal. An explanation is a
small set of features of the input basic block whose presence
is sufficient to get a prediction from the cost model close
to its original prediction. COMET identifies the feature
corresponding to Read-after-Write (RAW) data dependency
between instructions 1 and 2 as an explanation for Ithemal’s
throughput prediction. Please refer to Appendix B for in-
formation on the types of common data dependencies in
assembly basic blocks.

1 add rcx , r a x
2 mov rdx , r c x
3 pop rbx

(a) Input basic block

1 add rcx , r a x
2 mov rdx , r c x
3 push rbx

(b) Perturbed basic block

Listing 1. Motivating Example

Figure 1 illustrates COMET’s working on the above exam-
ple. COMET first extracts the candidate features, i.e., in-
dividual instructions, their count, and data dependencies
between instruction pairs, as shown in Figure 1(iii). It
searches over all possible combination sets of the candi-
date features for an explanation that is simple, faithful to
the cost model’s behavior, and extends to other basic blocks
as well. COMET evaluates any feature set through pertur-
bations of the input basic block that retain the features in
the set [Figure 1(c)]. For example, for the singleton set con-
sisting of just the RAW dependency in the block, a possible
perturbation is shown in Listing 1(b), which preserves the

Table 1. Notation
Notation Meaning

M Cost model
β Basic block
P Set of all block features
P̂ Block features used to form explanations
F Given set of features
Prec(F) Precision of F
1-δ Precision threshold
Cov(F) Coverage of F
Π(F) All perturbations of β retaining F
DF Distribution over blocks in Π(F)
G Multigraph of β
Γ COMET’s perturbation algorithm

dependency. COMET obtains the predictions of the given
cost model for each perturbed basic block and uses them for
the estimation of the faithfulness (precision) and generaliz-
ability (coverage) of a set of features. The set with precision
higher than a threshold and maximum coverage is output as
COMET’s explanation for the given cost model and basic
block [Figure 1(d)].

As per Abel and Reineke (2019), for Haswell, the canonical
forms of the individual instructions in the block have similar
throughputs. The RAW data dependency will disable the
independent, parallel execution of instructions 1 and 2, and
hence intuitively be a bottleneck for the block’s execution.
As COMET’s explanation matches our intuition, we can be
confident that Ithemal predicts throughput focusing on the
correct features for this and similar blocks.

4 FORMALIZING COST MODEL
EXPLANATIONS

In this section, we formalize our notion of explanations for
cost models and discuss the desirable properties of the expla-
nations. Our objective is to develop an explanation frame-
work that only queries a given cost model (query-access
only) to explain its behavior. Table 1 presents the important
notation used when discussing the following formalism.

We first formalize the cost model as a functionM that maps
valid basic blocks in a given Instruction Set Architecture
(ISA) to real-valued costs. Let T be a set ofM’s predictions
that we want to explain over the set of valid basic blocks
(global explanation).

An explanation for the behavior ofM over T is the common
features of basic blocks having cost prediction in T , that are
not present in other basic blocks.

For example, consider a hypothetical, crude throughput-
predicting cost modelM1 that assigns a throughput of 2



COMET: Neural Cost Model Explanation Framework

Figure 1. COMET is given a cost model M and a basic block β as input. COMET identifies the features of β that explain the prediction
M(β). COMET first converts β to a multigraph G in (a). G has the instructions and data dependencies of β as its vertices and edges
respectively. The features P̂ of β, are then extracted from G in (b). Sets of these features are fed into COMET’s perturbation algorithm Γ
(c) that generates several perturbations that preserve the features in the corresponding retained input feature set F . COMET obtains the
predictions of cost model M for each perturbed basic block, which are then used for the estimation of the precision and coverage of a
feature set F . F having precision higher than (1− δ) with maximum coverage is identified by the precision and coverage optimizer in (d)
and is output as COMET’s explanation for M(β).

cycles if and only if a basic block has 8 instructions. If T =
{2}, then all the blocks having prediction in T will have 8
instructions while the rest will not. Hence the distinguishing
factor and therefore a correct global explanation of the cost
model’s behavior in T will be the number of instructions
equal to 8.

While it might be possible for simple cost models such
as M1 to have global concepts for their predictions that
can explain them in certain T , generally cost models are
complex and specialized to exploit features of the input
basic block. Hence, as it may be infeasible to generate
global explanations with desirable properties, we focus on
generating block-specific explanations for cost modelM.
To explain the cost prediction for the basic block β, we
specialize T to be an ϵ−ball aroundM(β), where ϵ > 0
is a small constant. Our generated explanations are sets of
features of the block whose presence is sufficient for the
cost model to make its prediction.

The smallest meaningful units (basic features) of an assem-
bly basic block are its tokens (opcodes and operands). Let
Pβ be the set of all basic features and all functions of basic
features, which we cumulatively call features, of the basic
block β. Some elements of Pβ for the input basic block in
Figure 1 are shown in Figure 1(iii). Note that, as Pβ cap-
tures all the features of the basic block, there is a one-to-one
correspondence between Pβ and the block. The remain-
ing discussion in this paper will describe our approach for
generating explanations for the cost model M when pre-

dicting the cost for a basic block β. To simplify notation,
unless mentioned otherwise, we will omitM and β from
the subscripts of symbols, e.g., Pβ will be written as P .

4.1 Ideal query-only explanation

Let the set of features F∗ ⊆ P be the ideal explanation
forM(β) based on queries toM. Desirable properties of
F∗ are that it should be faithful to cost model’s behavior,
generalizable to multiple basic blocks, and simple (Subhash
et al., 2022), which we formalize next.

Let Π be a perturbation function that is given a set of fea-
tures F of basic block β as input, and returns a set of valid
assembly basic blocks BF , where each basic block β′ ∈ BF
differs from β only by some perturbations to the features in
P \ F in β. Output of Π(F) includes β also. Consider the
block in Figure 1(i). If the set {instruction 1: add rcx rax}
is input into Π, then the basic block shown in Figure 1(v) is
an element in the output set of basic blocks, as it perturbs
some features not in the input set of features.

Faithfulness. A set of features F ⊆ P will be a faithful
explanation for the prediction ofM(β) if perturbations of
features of β that are not in F cannot change the cost predic-
tion ofM significantly, i.e., by more than ϵ. Otherwise, F
does not completely capture the features used byM for its
prediction for β, and hence is not faithful toM’s behavior.
(1) presents the above notion as a logical statement φ(F)
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that must be satisfied by the ideal, faithful explanation F∗.

φ(F) ≜ (F ⊆ P) and (∀α ∈ Π(F).M(α) ∈ T ) (1)

A trivially faithful set of features is P , as it would contain all
the basic block features that are important for cost prediction.
But this explanation is not useful, as P can faithfully explain
β for any cost model but it does not precisely distinguish
features according to the behavior of a target cost model.

Generalizability and simplicity. To overcome the above
issue, we require that faithful explanations of basic block β
should also explain other blocks that contain the features in
the explanation and where the cost modelM makes predic-
tions close toM(β) (generalizable). Every set F ⊆ P will
have a corresponding set of basic blocks (potentially empty),
ΩF (2) containing basic blocks with similar predictions as β
and having F as faithful explanations. For faithful explana-
tions with maximum generalizability, we need to maximize
the cardinality of ΩF over the set of faithful explanations.

ΩF ≜ {α ∈ Π(F) andM(α) ∈ T and φα(F)} (2)

For higher interpretability, ideal explanation F∗ should be
simple. While there are many metrics for simplicity of ex-
planations, a common metric for sets of features used as
explanations is their cardinality (Robnik-Šikonja and Bo-
hanec, 2018; Molnar, 2022). Hence, for simple, faithful, and
generalizable explanations F∗, we solve the optimization
problem (3), where λ > 0 is a regularization parameter.

F∗ ≜ argmax
F s.t. φ(F)

(|ΩF | − λ.|F|) (3)

4.2 Practical query-only explanations

There are two levels of intractability in the above formula-
tion of ideal explanations (3). First, the evaluation of the
faithfulness condition (1) for a given set of features F re-
quires queryingM for the cost prediction of all the basic
blocks in the large set, Π(F). We refer the reader to Ap-
pendix F for examples of some estimates of the cardinality
of Π(F). Second, the computation in (2) requires predicting
the cost and computing faithful explanations for all basic
blocks in Π(F). Hence, to practically solve the explanation
problem, we relax it as described next.

Probabilistic faithfulness. To simplify the faithfulness con-
dition in (1), we relax the requirement of the cost prediction
for all perturbed basic blocks to be in T with the requirement
that the probability of the cost of perturbed blocks being in
T to be higher than a threshold. This threshold will denote
the degree of faithfulness of our explanations. This probabil-
ity can be represented as Prα∼DF (M(α) ∈ T ), where DF
is a distribution over all perturbed basic blocks that retain

the features in F , Π(F). We identify that the probability is
analogous to precision (4) used in prior work (Ribeiro et al.,
2018), and hence we adopt this terminology. Thus, proba-
bilistic faithful explanations F must satisfy the condition
φ̂(F), given by (5), where 0 ≤ δ ≤ 1.

Prec(F) ≜ Prα∼DF (M(α) ∈ T ) (4)

φ̂(F) ≜ (F ⊆ P) and (Prec(F) ≥ (1− δ)) (5)

As the distribution over basic blocks, DF in (4) should be
such that φ̂(F) closely approximates the ideal faithfulness
condition (1) which has no prioritization over the perturbed
basic blocks, it should ideally be a uniform distribution over
its sample space Π(F) and hence depend on F .

Probabilistic generalizability and simplicity. To relax the
computation in (2) we overapproximate it with the perturbed
basic blocks’ set, Π(F). Thus, for higher generalizability,
we maximize |Π(F)|. Note that Π is a monotonically de-
creasing function (proof in Appendix A). Thus, for sim-
plicity of explanations too we can maximize |Π(F)|. We
normalize |Π(F)| with the number of all possible perturba-
tions of the basic block, |Π(∅)| where ∅ denotes an empty
set of features to preserve. Π(∅) is independent of F and
hence the normalization will not affect the optimization
problem’s output. Intuitively, the resultant fraction in the op-
timization objective would denote the fraction of all possible
perturbations that preserve the feature set F . We relax this
computation by replacing it with the probability of finding
the features in F in a randomly selected valid perturbation
of the basic block. We identify that this probability is analo-
gous to coverage in prior work (Ribeiro et al., 2018), and
hence we adopt this terminology. Coverage constitutes a
probabilistic notion of generalizability and simplicity of
explanations, and hence we maximize the coverage in our
optimization objective. (6) defines the coverage of a set of
features F , where D is a distribution over all perturbations
of the input basic block, Π(∅). To obtain an unbiased mea-
sure of coverage, D should ideally be a uniform distribution.

Cov(F) ≜ Prα∼D(F ⊆ Pα) (6)

Overall practical optimization problem. Thus, our opti-
mization problem to practically find the desirable explana-
tion F̂∗ forM(β) becomes (7).

F̂∗ ≜ argmax
F s.t. F⊆P

|Cov(F)| s.t. Prec(F) ≥ (1− δ) (7)

5 COMET: NEURAL COST MODEL
EXPLANATION FRAMEWORK

This section presents COMET, our novel framework for
efficiently generating desirable explanations for the predic-
tions made by a given cost model for a target basic block.
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The core operation of COMET is to efficiently solve the
optimization problem in (7). While COMET is not concep-
tually limited to any particular Instruction Set Architecture
(ISA), we develop the framework for one of the most pop-
ular ISA —x86 and leave the development for other ISAs
to future work. An overview of COMET’s algorithm on an
example x86 basic block is shown in Figure 1. To create
interpretable explanations, COMET first decomposes the
input basic block β into its features. We restrict P , which
consists of all possible features of a basic block, to block
features P̂ ⊂ P [Section 5.1], to reduce the possible sets
of features to evaluate in the optimization problem in (7).
Next, we need to evaluate the precision of each subset of
P̂ to identify a subset F that has Prec(F) ≥ (1 − δ) and
has maximum Cov(F). To efficiently solve this constrained
optimization problem, COMET adapts the Anchors expla-
nation algorithm (Ribeiro et al., 2018), which has a similar
optimization objective [Section 5.2].

5.1 Extracting block features

COMET casts the input basic block into a multigraph
G = (V, E), which we describe next. Figure 1(ii) shows the
multigraph for the example block. We define V as the set of
vertices of the multigraph, corresponding to all the instruc-
tions, annotated with their positions in the block. E consists
of directed edges between instructions that have data depen-
dencies, labeled by the types of data dependency hazards
between them. Please refer to Appendix B for information
on the different types of data dependencies commonly found
in assembly basic blocks. Figure 1(ii) shows the RAW type
of hazard that is present in the example block. Separate
edges for different dependencies help identify specific de-
pendencies as bottlenecks in explanations. Distinguishing
dependencies can be crucial to debugging cost models. If a
cost model is found to base its predictions on dependencies
that are optimized by the compiler, developers can debug
the cost model to eradicate any spurious correlations.

We constitute P̂ with the instructions, data dependencies,
and number of instructions of the block. Figure 1(iii) shows
the features in P̂ for the example basic block. These fea-
tures are used in the design of popular hand-engineered cost
models (Abel and Reineke, 2022; Intel, 2017; Di Biagio and
Davis, 2018), correspond better with the neural cost mod-
els (Mendis et al., 2019a), and hence are interpretable for
our stakeholders. We restrict to these common features used
in popular cost models to make COMET focus on the im-
portant set of features and generate explanations efficiently.

5.2 Efficiently computing explanations

To efficiently compute explanations, COMET empirically
estimates Prec(F) and Cov(F) with samples from basic
block distributions, DF and D respectively. We have de-

signed basic block perturbation algorithms to sample from
DF andD, which essentially perturb basic block β to obtain
blocks β′ according to the corresponding distribution from
the underlying sample space. As discussed in Section 4.2,
we want both DF and D to be uniform distributions over
their respective sample spaces to compute unbiased approxi-
mations of the ideal desirable explanations. Observe that, D
is hence a special case of DF with F = ∅. Thus, a common
perturbation algorithm can be used for both DF and D.

Basic block perturbation algorithm. COMET’s core ba-
sic block perturbation algorithm Γ takes a set of features
F ⊆ P̂ of basic block β as input and randomly perturbs β
to obtain β′ ∼ DF such that β′ retains the features in F and
has some of the other features in P̂ perturbed to values valid
according to the underlying ISA. Opcodes can be perturbed
only to those that can accept the original set of operands, ac-
cording to the ISA. Operands can be perturbed to only those
having the same type and size. We elaborate on the perturba-
tion algorithm further in this section. Figure 1(v) shows an
example perturbation of β created by Γ when preserving the
features in the retained features set [Figure 1(iv)]. While we
ideally want DF to be a uniform distribution, its underlying
sample space of perturbed basic blocks which preserve fea-
tures in F is large (check Appendix F to get an idea of the
magnitude of these sample spaces) and complex without a
closed-form characterization and is also defined differently
for individual F . This makes designing an algorithm to
generate uniform samples for each F hard. Hence we relax
the requirement of sampling from a uniform distribution to
the ability of Γ to produce diverse perturbed basic blocks so
that the probability of obtaining a given basic block is small.
Algorithm 1 in Appendix C presents the pseudocode of Γ to
perturb a given basic block.

Γ perturbs the multigraph corresponding to the basic block,
G to obtain G′, which uniquely corresponds to the perturbed
basic block, such that the features in F are preserved. To ob-
tain G′, Γ attempts to perturb every feature that is allowed to
be perturbed, independent of the others. This is because any
dependence will restrict the possible choices for perturbed
blocks and hence disproportionately increase the probabili-
ties of some possible perturbations. To create independence
between the basic block features, Γ perturbs vertices of the
basic block graph G independent of each other. Γ also per-
turbs the data dependency edges that do not have any vertex
in common, independent of each other. However, when two
data dependency edges have at least one vertex in common
if they are caused by a common operand in the instruction
corresponding to the common vertex, then all perturbations
to edges can not be made completely independent, other-
wise they are perturbed independently. For independence
between vertex and data dependency edge perturbations, Γ
perturbs only the opcode of the corresponding instruction
of the vertex to denote vertex perturbation and only the
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operands of the instructions connected by edge to denote
edge perturbations. Γ preserves the opcodes of the instruc-
tions corresponding to every data dependency in F but can
perturb other data dependencies between the instructions by
operand changes.

Perturbing vertices of G. Γ perturbs vertices by either delet-
ing or replacing them with other valid vertices. Deletion is
permissible when the number of instructions is not required
to be preserved. When a vertex is deleted, all incoming
and outgoing edges of the vertex are removed from G. To
replace a vertex, the corresponding instruction’s opcode is
replaced with another opcode in the ISA that can produce a
valid assembly basic block instruction (an instruction that
does not contain certain opcodes such as call or jmp) with
the operands of the original instruction. Overall, Γ indepen-
dently perturbs or retains every vertex with equal probability,
where a vertex is perturbed by either deleting or replacing
it, again with equal probability.

Perturbing edges of G. Γ perturbs data dependency edges
by deleting the corresponding dependency. The dependency
is deleted by perturbing some operands corresponding to
the dependency to other operands of the same type and size.
The type of an operand could be memory, register, or im-
mediate/constant, while its size could be any power of 2
between 8− 512 bits. Hence, we change the operand regis-
ters/memory addresses to other registers/memory addresses
to break the data dependencies. Overall, Γ either perturbs or
retains a data dependency by similar probabilities. The ex-
act probabilities of perturbation and retention will be basic
block specific and are discussed in Appendix D.

Computing explanations. With the basic block perturba-
tion algorithm, Prec(F) is estimated using KL-divergence-
based confidence intervals (Kaufmann and Kalyanakrishnan,
2013) and Cov(F) is estimated by its empirical value, for a
given set of features F ⊆ P̂ . Similar to the Anchors’ con-
struction (Ribeiro et al., 2018), COMET iteratively builds
its explanation feature set using a beam search wherein the
maximum (estimated) precision feature sets at each level
are iteratively expanded to larger feature sets till the pre-
cision threshold of (1 − δ) is exceeded. The maximum
coverage feature set with precision > (1− δ) is COMET’s
explanation forM(β).

6 EVALUATION

We evaluate COMET to answer two main questions:

Correctness. Do COMET’s explanations accurately reflect
the given cost model’s behavior?

Utility. Can COMET’s explanations be used to understand
the behavior of cost models?

Experimental setup. All our experiments were conducted

on a 12th Gen 20-core Intel i9 processor (cache size: 24MB,
RAM: 32GB, clock speed: 2.5GHz, with AVX support).
We set the precision threshold (1 − δ) in (4) as 0.7. We
have set the probabilities of retention and perturbation of
every feature in a basic block as 0.5. For instruction-type
features where there are two possible perturbations, deletion
and replacement, we assign probabilities to the perturba-
tion operations based on an extensive hyperparameter study
(Appendix E). We have used the default hyperparameters
in the Anchor algorithm (Ribeiro et al., 2018) for the beam-
search-based iterative explanation construction method. We
study the sensitivity of COMET to its hyperparameters in
Appendix E. We have developed and tested COMET for
the x86 microarchitecture. We use basic blocks from the
popular BHive dataset (Chen et al., 2019). We randomly
pick 200 basic blocks with number of instructions between
4 and 10 from BHive, to make our explanation test set for
testing COMET’s explanation. We run each experiment for
5 different seeds and report the average results, with their
standard deviations.

Computing the accuracy of COMET’s explanations. To
evaluate the correctness of COMET’s explanations, we have
developed a crude, but non-trivial, interpretable, analytical
cost model, C. The advantage of such a model is that it
gives us reliable ground truth of explanations with which
we can compare COMET’s explanations and compute their
accuracy. We are not aware of any actual intricate ana-
lytical cost models that have a closed-form representation
that could give us ground truth explanations to objectively
compute COMET’s accuracy, which is why we had to de-
sign C for COMET’s evaluation. We define costinst(inst),
costdep(δij), and costη(n) as the costs of the instruction
inst, data dependency δij between instructions i and j, and
number of instructions η = n respectively in a given basic
block. (8) presents the functional form of C. C identifies the
features of the basic block β which have the maximum cost
and hence are bottlenecks for its execution, and predicts
their cost as β’s cost. Our rationale behind C is derived from
a throughput prediction baseline analytical model in (Abel
and Reineke, 2022) whose throughput prediction is the max-
imum of the individual costs for the number of instructions,
the number of memory reads, and the number of memory
writes in the input basic blocks. In C we have instead picked
up basic block features such as its instructions and data de-
pendencies to make the cost predictions more specific to a
given block. Thus, C serves as a realistic, interpretable cost
model, to measure the accuracy of COMET’s explanations.
Custom C models can be developed for each microarchi-
tecture when the individual cost functions vary with the
microarchitecture. The exact, microarchitecture-dependent
forms of the 3 cost functions used in our experiments are
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Table 2. Accuracy of COMET’s explanations.

Explanation Acc.(%) over CHSW Acc.(%) over CSKL

Random 26.56± 20.30 26.60± 20.34
Fixed 72.33 74.0
COMET 96.90± 0.92 98.00± 0.80

Table 3. Average Precision and Coverage for COMET’s explana-
tions for Ithemal (I) and uiCA (U) for Haswell and Skylake.

Model Av. Precision Av. Coverage

I (HSW) 0.79± 0.005 0.19± 0.007
I (SKL) 0.81± 0.004 0.19± 0.014
U (HSW) 0.78± 0.006 0.18± 0.012
U (SKL) 0.79± 0.006 0.18± 0.012

given in Appendix G.

C(β) = max{costη(n),max
i
{costinst(insti)},

max
δij
{costdep(δij)}}

(8)

The ground truth explanation for C(β) is given by
GT (β) (9), where type(f) is the type of the feature f which
would be one of inst, dep, and η. GT (β) essentially is the
set of basic block features that have the maximum cost
among the costs for all the features.

GT (β) = {f | f ∈ P̂, cost⟨type(f)⟩(f) = C(β)} (9)

Note that GT (β) may not be a singleton set, as there can
be multiple features that are equally important and lead to
the same C(β). We consider an explanation for C’s predic-
tion for β to be accurate if it identifies at least one feature
from GT (β) and nothing outside GT (β). We are not aware
of any other competent cost model explanation methods
to compare COMET’s accuracy against, hence we design
two natural baseline explanation algorithms: random and
fixed. The random explanation baseline includes features f
of β based on the probability of occurrence of a feature of
type(f) in the set of all ground truth explanations of all ba-
sic blocks in the explanation test set. The fixed explanation
baseline identifies the most frequent feature type in the set
of ground truth explanations for all blocks in the explanation
test set and assigns the first feature of that type in the block
to be the fixed explanation.

6.1 Accuracy-based evaluation of COMET

Table 2 presents the explanation accuracy achieved by
COMET and the explanation baselines over C for the
Haswell (HSW) and Skylake (SKL) microarchitectures. The
accuracy values indicate a significant improvement in the
correctness of explanations given by COMET over the base-
lines and testify the correctness of COMET’s explanations.

Note that as the fixed explanation baseline does not have
any randomness, it does not have any uncertainty.

The high accuracy of COMET’s explanations over C, which
makes its cost predictions using the same set of features
as COMET, indicates that COMET can faithfully identify
the set of features that lead to the prediction when they are
within the set of features that it uses to compose explana-
tions. Note that this high accuracy has been achieved with
just query access to the cost model. However, for actual cost
models, it may not be the case that COMET’s explanation
features are used directly for cost prediction. Generally,
some complex functions of these basic features will be used
to obtain the cost. Hence, we next estimate the precision of
COMET’s explanations for actual cost models.

6.2 Precision and coverage evaluation

Next, we study the average precision and coverage of
COMET’s explanations for state-of-the-art throughput-
predicting cost models: neural model Ithemal (Mendis
et al., 2019a), and simulation-based model uiCA (Abel and
Reineke, 2022) over the basic blocks in the explanation
test set. We selected Ithemal and uiCA as representative
cost models due to their high prediction accuracy and pop-
ularity among our stakeholders. COMET is applicable to
other models as well, as it requires just query access to
them. The average precision and average coverage are met-
rics to indicate COMET’s potential for generating faithful
and generalizable explanations respectively of a target cost
model for individual basic blocks in our explanation test
set. As these cost models are not analytical, they do not
have ground-truth explanations, and hence we use average
precision and average coverage as proxies to evaluate the
explanations, similar to (Ribeiro et al., 2018). The average
time taken to explain a block for each model is roughly
a minute. Table 3 presents our findings for Ithemal and
uiCA developed for Haswell (HSW) and Skylake (SKL)
microarchitectures.

We observe that the explanations for all the cost models
have fairly high average precision (probability of being
faithful). We estimate the coverage (generalizability) of
each explanation over 10k perturbed basic blocks. Thus,
an average coverage of 0.19 means that the explanation
for 1 block generalizes to 1900 sampled blocks on average,
making it significant for the complex domain of basic blocks.
The coverage values obtained are similar to the coverage
achieved while explaining models in NLP (Ribeiro et al.,
2018). These results indicate that the high accuracy of
COMET over our custom cost model C transfers to state-of-
the-art cost models as well and COMET can be deployed to
obtain high-quality explanations for common cost models.
Next, we study how COMET can become an essential model
analysis tool for our stakeholders.
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Figure 2. Variation of Mean Absolute Percentage Error (MAPE) in Ithemal and uiCA alongside variation in the % of explanations
consisting: number of instructions η, specific instructions inst and data dependencies δ. Figure (a): Haswell, (b): Skylake

Figure 3. Variation of Mean Absolute Percentage Error (MAPE) in Ithemal and uiCA with the % of explanations consisting: number of
instructions η, instructions inst and data dependencies δ. BHive sources: (a) Clang, (b) OpenBLAS

6.3 Evaluating utility of COMET

We show a use case of COMET wherein we investigate the
variation in the prediction errors of Ithemal and uiCA and
empirically check its correlation with the dependence of
the model’s output on different types of block features. We
hypothesize that as the error of the cost model decreases,
its dependence on the finer-grained features of the block
will increase. Out of the 3 types of features over which
COMET composes its explanations, we identify the block’s
instructions and data dependencies as more specific, finer-
grained features when compared to the feature correspond-
ing to the number of instructions in the block. We use
COMET’s explanations to identify the block features on
which the model’s prediction depends. Note that our hypoth-
esis is not obvious even for arbitrary traditional cost models
(let alone the black-box neural cost models), as is evident
from the performance of a baseline cost model in Abel and
Reineke (2022), Table 1, that uses coarse-grained features
of a basic block and achieves higher accuracy than LLVM-
MCA (Di Biagio and Davis, 2018) which uses finer-grained
features. Figure 2 shows the results of our investigation. It
shows the variation of mean absolute percentage error of
Ithemal and uiCA. Alongside the error, it shows the percent-
age of COMET’s explanations over the entire explanation

test set that contain features corresponding to the number of
instructions η, instructions inst, and data dependencies δ in
the explained basic block.

The trends in Figure 2 for both Haswell and Skylake confirm
our hypothesis. Interpret this insight as follows: as the
cost model becomes more accurate, it focuses more on
the finer-grained features of the basic block, as indicated
by COMET’s explanations. We discuss similar insights
obtained for blocks derived from different partitions of the
BHive dataset, as described in Appendix H.1 next. We omit
the error bars for clarity, as the standard deviations in our
results are generally low [Figure 2].

BHive partitions by source. We study the explanations for
blocks in BHive derived from the Clang and OpenBLAS
sources. We select 100 unique blocks from each source to
separately analyze our hypothesis. Figure 3 presents our
findings and confirms our hypothesis for both partitions.

BHive partitions by category. We conduct a similar study
on 50 unique basic blocks corresponding to each category
in the BHive dataset. Figure 4 presents our findings and con-
firms our hypothesis for all categories. Interestingly, for the
Store category, as the error in throughput predictions of both
cost models is similar, we observe similar prominence of
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Figure 4. Mean Absolute Percentage Error (MAPE) in Ithemal and uiCA and the % of explanations having: number of instructions η,
instructions inst and data dependencies δ. BHive categories: (a) Load, (b) Load/Store, (c) Store, (d) Scalar, (e) Vector, (f) Scalar/Vector

all types of features in COMET’s explanations for both cost
models. This observation further supports our hypothesis.

6.4 Case studies

Next, we show another use case of COMET’s explanations
—to conduct analyses of cost prediction of individual basic
blocks. Similar analyses can be useful to understand the cost
model’s behavior in corner cases. We discuss COMET’s
explanations for the predictions of Ithemal and uiCA for
Haswell on randomly picked blocks from the BHive dataset.

Case study 1. The block in Listing 2 is predicted to have a
throughput of 2 cycles by both cost models which matches
the throughput on actual hardware reported in the BHive
dataset. Instructions 2 and 3 write to the memory and are
thus the highest throughput instructions (Abel and Reineke,
2019; Fog et al., 2011). Hence intuitively, for correct predic-
tion, these instructions are important. COMET’s explana-
tions for both cost models match this intuition, thus suggest-

ing that both cost models actually consider the intuitive set
of features to correctly predict throughput for this block.

1 l e a rdx , [ r a x + 1]
2 mov qword ptr [ r d i + 2 4 ] , rdx
3 mov byte ptr [ r a x ] , 80
4 mov r s i , qword ptr [ r14 + 32]
5 mov r d i , rbp

Prediction Explanation
Ithemal 2 cycles {inst2, inst3}
uiCA 2 cycles {inst2, inst3}

Listing 2. Case Study 1

Case study 2. The block in Listing 3 has a division in-
struction and many data dependencies such as a RAW data
dependency between instructions 3 and 6 due to register
rax and a WAR dependency between instructions 1 and 2
due to register edx. A div instruction is a very expensive
instruction in general (Abel and Reineke, 2019; Fog et al.,
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2011). The actual throughput of the basic block is 39 cycles.
Thus, both cost models have made incorrect predictions, but
the prediction of Ithemal is more erroneous as compared to
uiCA. COMET’s explanation for Ithemal consists of just the
feature corresponding to the number of instructions in the
basic block, while that for uiCA consists of the div instruc-
tion and a data dependency. These explanations suggest that
Ithemal does not sufficiently prioritize costly instructions
such as div and data dependencies, unlike the actual microar-
chitecture that Ithemal is trained to mimic, thus indicating
potential sources of its throughput-prediction error.

1 mov ecx , edx
2 xor edx , edx
3 l e a rax , [ r c x + r a x − 1]
4 div r c x
5 mov rdx , r c x
6 imul rax , r c x

Prediction Explanations
Ithemal 23 cycles {η(num insts)}
uiCA 36 cycles {δRAW,3,6, inst4}

Listing 3. Case Study 2

7 DISCUSSION AND FUTURE WORK

We demonstrated how COMET’s explanations can be used
to gain both high-level [Section 6.3] and case-specific [Sec-
tion 6.4] insights about cost models and compare their be-
haviors against other cost models. These insights can be
useful for repairing high-error neural models with domain-
specific insights and developing more generalizable models
in the future. As indicated by these insights, neural ar-
chitectures that explicitly utilize the finer-grained features
of blocks can achieve better cost prediction performance.
COMET’s explanations can be used to select a model from
a collection of similar performing neural models. COMET
can be extended to run on GPUs to make it amenable to
integration with cost model training and inference proce-
dures, in the future. COMET’s feedback can be leveraged
to update the model parameters during training to have the
predictions rely on finer-grained features. COMET can be
augmented to existing cost models to guide compiler opti-
mizations with information on what parts of the basic block
need to be optimized for better performance.

While explanation features employed by COMET currently
capture the commonly used properties of a block, it will
produce approximations for the most important factors be-
hind a model’s predictions when they cannot be captured
by the current features. We will investigate expanding the
explanation features in future work. Finally, COMET can
be extended to other open-source ISAs, including those for
GPUs and TPUs, by mapping the current perturbation al-

gorithm to the new ISA. We need to define the opcodes
(operands) that could replace each opcode (operand) to gen-
erate a valid perturbation. While the high-level formalism
can be carried over, instance-specific challenges can arise.

8 CONCLUSION

We presented COMET, the first approach for efficiently
generating faithful, generalizable, and interpretable explana-
tions for neural cost models. Our results show that COMET
can generate accurate and useful explanations that indicate
potential sources of errors. We believe that COMET’s ex-
planations can be used to improve trust in the workings of
neural cost models and accelerate their real-world adoption.
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A MONOTONICITY OF PERTURBATION
FUNCTION

Theorem 1. Π is a monotonically decreasing function.

Proof. Let F1, F2 ∈ ℘(P) such that F1 ⊆ F2.

Π(F1) ={β′ | β′ ∈ B,

F1 ⊆ Pβ′ ,Pβ′ \ F1 are obtained from P \ F1}
={β′ | β′ ∈ B,F2 ⊆ Pβ′ ,

Pβ′ \ F2 are obtained from P \ F2}
∪ {β′ | β′ ∈ B,F1 ⊆ Pβ′ , F2 ̸⊆ Pβ′ ,

Pβ′ \ F1 are obtained from P \ F1}
=Π(F2) ∪ {β′ | β′ ∈ B,F1 ⊆ Pβ′ , F2 ̸⊆ Pβ′ ,

Pβ′ \ F1 are obtained from P \ F1}

Hence, Π(F2) ⊆ Π(F1)

Note that in the above proof, features in feature sets such as
Pβ′ \ F1 are obtained by either retaining or perturbing the
features in P \ F1.

A similar proof can be used to prove the monotonicity of Π̂
as well.

B TYPES OF DATA DEPENDENCIES IN BASIC
BLOCKS

While each instruction is processed sequentially by the dif-
ferent components of the CPU, an instruction instj can get
stalled due to the requirement for a previous instruction
insti to get completed, creating a data dependency haz-
ard (Patterson and Hennessy, 1998). A Read-After-Write
(RAW) data-dependency hazard arises when instj reads the
value in an operand that is written by insti. instj can not
get executed until insti ends to ensure correct execution. A
Write-After-Read (WAR) hazard occurs when instj writes
to an operand that is read by insti. A Write-After-Write
(WAW) hazard arises when instj writes to an operand that
is written to by insti. There can be multiple data depen-
dency hazards, possibly of different kinds, between a given
pair of instructions.

C BASIC BLOCK PERTURBATION
ALGORITHM

Algorithm 1 presents our stochastic perturbation algorithm
Γ to conditionally perturb a given basic block β to β′. The
perturbation algorithm creates the graph G′ of β′ while pre-
serving a set of instructions/their corresponding vertices V ,
a set of data dependencies/their corresponding edges E and

possibly the number of instructions/the number of vertices,
denoted by the boolean preserveη which is set to true when
the number of instructions η is to be kept constant. If the
number of vertices is to be kept constant, then the vertex/in-
struction deletion operation is forbidden [lines 1-1]. The
vertices at the ends of the edges in E are preserved as well
[line 1] by adding them to V . Then each vertex of G is per-
turbed with a probability of (1− pI,ret) if it is not required
to be retained [lines 1-1]. If the deletion perturbation opera-
tion is in vertexPertOps, then a vertex is deleted or replaced
with probabilities of pdel and (1− pdel) respectively. Oth-
erwise, it is replaced with a valid vertex. The replacement
of a vertex/corresponding instruction involves changing its
opcode to another opcode that can take the original operands
and still constitute valid x86 syntax according to the x86 In-
struction Set Architecture. Similarly, each data-dependency
edge is perturbed with a probability of (1− pD,ret) if it is
not required to be retained [lines 1-1], to form G′ [line 1].
The only perturbation of any data dependency is its dele-
tion, which is conducted by the perturbation of the operands
involved in the data dependency.

Algorithm 1 Basic Block Perturbation Algorithm

1: Input: basic block graph G, vertices to preserve V , data-
dependency edges to preserve E , preserveη, pI,ret,
pD,ret, pdel

2: Output: perturbed basic block graph, G′
3: vertexPertOps = {replacement, deletion}
4: if preserveη then
5: vertexPertOps.remove({deletion})
6: end if
7: V ← addV erticesForPreservedDeps(V, E)
8: for v ∈ GetV ertices(β) do
9: if v ̸∈ V and rand([0, 1]) > pI,ret then

10: v ← PerturbV ertex(G, v, vertexPertOps, pdel)
11: end if
12: end for
13: for ε ∈ GetDepEdges(β) do
14: if ε ̸∈ E and rand([0, 1]) > pD,ret then
15: ε← PerturbEdge(G, ε)
16: end if
17: end for
18: G′ ← G

D CASE SPECIFICITY OF PERTURBATION
PROBABILITIES

COMET’s perturbation algorithm Γ consists of primarily
3 probability terms: pI,ret, pD,ret, and pdel as described
in Appendix C. pI,ret and pD,ret are the probabilities of
retention of a given instruction and a given data dependency
respectively, in the perturbed basic block. pdel is the prob-
ability of deletion of an instruction when the deletion per-
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turbation operation is allowed for instructions. The deletion
perturbation operation will not be allowed for instructions
when the number of instructions is to be kept constant.

Γ perturbs a basic block β by essentially perturbing every
instruction while preserving certain tokens of the instruction
from getting perturbed. These preserved tokens correspond
to the features that are required to be preserved by Γ and also
the features that Γ voluntarily does not attempt to perturb.
Γ has voluntary retention of randomly selected basic block
features to output perturbed basic blocks β′ that are very
similar to the original basic block β. Γ attempts to perturb
the other tokens of β to obtain β′.

Γ can delete an instruction in case none of its tokens are
required to be preserved. Otherwise, Γ replaces a token with
another token that can form a basic block with valid x86 syn-
tax alongside the other tokens. Thus, every token has a set
of potential replacements. Perturbations to opcode tokens
are counted as changes to the instruction features, while per-
turbations to the operand tokens are considered as changes
to any data dependency features. As the perturbation space
consists of only valid basic blocks, the overall probabilities
of the primitive perturbation operations (instruction deletion,
instruction replacement, and data dependency deletion) vary
with the target basic block.

Following is an example of this variation. Several tokens of
x86 assembly have no possible replacements resulting in no
probability of replacement, such as the opcode lea. This is a
special opcode that loads the effective memory address of
its source operand into the destination register. There is no
other x86 opcode that shows similar behavior. Hence, the
lea can not be replaced with any other opcode. Such failed
attempts at opcode replacement lead to the retention of the
instruction, thus leading to an increase in the probability of
retention of specific features of the basic block. This change
in probabilities is specific to the basic blocks having the lea
opcode in its instructions.

Another example of basic-block-specific probability settings
occurs due to data dependencies. The data dependencies in
a basic block can be varied with changes in just the opcodes
of the corresponding instructions. Thus, while we keep the
perturbation probability of a data dependency (1− pD,ret)
to be 0.5 in the general case, it can vary with the basic
block. A basic block having all the potential replacements
for the opcodes involved in a data dependency with similar
behavior as the original opcodes will have 0.5 probability of
perturbation of the data dependency, while the opcodes for
which we have potential replacements show variable behav-
iors, the data dependency perturbation probability can be
more than 0.5. (Opcodes add and sub have similar behavior
as they read the value in the source operand and read-write
the value in the destination operand. They have different
behavior from mov that reads the source operand value and

Figure 5. Variation in explanation accuracy with the precision
threshold (1− δ) setting in COMET

writes to the destination operand. All 3 opcodes could be
potential replacements for each other in instructions having
certain pairs of operands.)

E ABLATION AND SENSITIVITY STUDIES

In this section, we study the variations in our results, with
COMET’s hyperparameters and design choices. We use
our explanation accuracy-based evaluation scheme based
on our crude but interpretable cost model that is presented
in Section 6, to study the effects of the different hyperpa-
rameters and design choices. For this study, we have used
the crude cost model for the Haswell microarchitecture. We
have randomly selected 100 basic blocks from the BHive
dataset (Chen et al., 2019) for which we generate COMET’s
explanations with different settings. We have dropped the
error bars for clarity of the results, as we note from Table 2
that the standard deviations in our results are generally low.

E.1 Precision threshold

In this section, we study the variation in the explanations’
accuracy with the precision threshold set in COMET, above
which we consider the explanation feature set to be approxi-
mately faithful to the cost model’s predictions. We want the
precision threshold to be high such that the most precise and
accurate explanations are given as output. Figure 5 presents
the variation in the accuracy of COMET’s explanations with
various values for the precision threshold (1−δ) in COMET.
We observe that 0.7 is the highest precision threshold that
gives the highest accuracy and hence we have set it as the
precision threshold in our experiments.

E.2 Perturbation probabilities for instructions

Γ attempts to perturb a given instruction inst in a basic
block β only when it is not required to be preserved. Γ
retains inst with a probability of pI,ret and perturbs it oth-
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Figure 6. Variation in explanation accuracy with the probability of
instruction deletion in Γ

erwise. There are 2 potential operations for perturbing inst:
Deletion and Replacement (with valid x86 instruction), each
probabilities pdel and (1 − pdel) respectively. We have
set pdel = 0.33 based on a sensitivity study that we con-
ducted with respect to this hyperparameter, for all of our
experiments. Figure 6 presents our findings. We find that
our choice of pdel = 0.33 leads to the maximum accuracy
among other candidates.

E.3 Perturbation probabilities for data dependencies

Similar to the case for instructions, Γ attempts to perturb
a given data dependency δ in a basic block β with proba-
bility (1 − pD,ret). As discussed in Section D, the exact
probabilities of the retention/deletion of data dependencies
are basic-block-specific. However, we vary these proba-
bilities by varying the probability of explicit retention of
a data dependency, i.e. the probability by which a data
dependency will be retained for sure. This probability is
a lower bound for pD,ret and higher values of this lower
bound imply higher values for pD,ret for any given basic
block. Figure 7 shows our findings. We have shown the
variation in explanation precision as well, as we observe pre-
cision to have a trend different from explanation accuracy
in this case. We find that a value of 0.1 for this probability
parameter leads to optimum values for both explanation
accuracy and precision. Thus, we have selected the explicit
data dependency retention probability to be 0.1 in COMET.

E.4 Replacement of instructions

Γ considers only the changes to an instruction’s opcode
as changes to the feature corresponding to the instruction.
However, another possibility could be to consider operand
changes (such that their types and sizes are preserved) as
well as changes to the instruction feature. We analyze the
effects of the two instruction changing/replacement schemes
in Figure 8. We observe that the accuracy of the explana-
tions is higher with just the opcode replacement method,

Figure 7. Variation in explanation accuracy and precision with the
probability of explicit data dependency retention

Figure 8. Variation in explanation accuracy with just opcode and
whole instruction replacement schemes.

justifying our choice of this instruction replacement scheme.

An important hyperparameter that we have set according
to our intuitive understanding is the ϵ error, which marks
the radius of the ball of acceptable cost predictions around
the prediction of cost modelM for basic block β (M(β)).
For our crude cost model C, we have kept ϵ to be a quarter
of one unit of its cost prediction, as the least change in its
cost prediction can be a quarter unit (∆n

4 = 0.25). For the
practical cost models such as Ithemal and uiCA, we have set
ϵ as 0.5 cycles of throughput prediction, as that is the least,
significant change in practically-useful throughput values.

F PERTURBATION FUNCTION OUTPUT
SIZES

The perturbation function, Πβ : ℘(Pβ) → ℘(B) maps a
given set of basic block features F to the set of basic blocks
BF that have F and where the other features are obtained
from perturbations to the features in Pβ \ F . In this section,
we provide estimates of cardinalities of BF for some basic
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blocks β and feature sets F . With this analysis, we allude
to the practical intractability of generating ideal black-box
explanations for cost models.

Note that, as Pβ is the set of all features (all basic features
and all of their functions) of β, it can be an infinite set
itself. P̂β ⊂ Pβ , hence for F ⊆ P̂β , Π̂β(F) ⊆ Πβ(F).
Hence, |Π̂β(F)| ≤ |Πβ(F)|. Thus, we provide estimates
for |Πβ(F)| by reporting the rough values for |Π̂β(F)|.

First, consider the basic block β1 in Listing 4, for F = ∅.
|Π̂β1(∅)| ≈ 1.94 × 1038. As we add more elements to
F , the size of |Π̂β1

(F)| will reduce due to the constraints
introduced to the perturbations.

1 v d i v s s xmm0, xmm0, xmm6
2 vmulss xmm7, xmm0, xmm0
3 v xo rp s xmm0, xmm0, xmm5
4 v ad ds s xmm7, xmm7, xmm3
5 vmulss xmm6, xmm6, xmm7
6 v d i v s s xmm6, xmm3, xmm6
7 vmulss xmm0, xmm6, xmm0

Listing 4. Basic block β1 for perturbation function size estimation

Next, for F = {inst1} i.e. with no perturbations to instruc-
tion 1 in β1, |Π̂β1(F)| ≈ 6.58× 1029.

Similarly, consider the basic block β2 in Listing 5, for F =
∅. |Π̂β2(∅)| ≈ 1.63 × 1032. For F = {inst2} i.e. with
no perturbations to instruction 2 in β2, |Π̂β2

(F)| ≈ 2.77×
1028.

1 s h l eax , 3
2 imul rax , r15
3 xor edx , edx
4 add rax , 7
5 shr rax , 3
6 l e a rax , [ rbp + r a x − 1]
7 div rbp
8 imul rax , rbp
9 mov rbp , qword ptr [ r s p + 8]

10 sub rbp , r a x

Listing 5. Basic block β2 for perturbation function size estimation

Thus, we find that the perturbation function’s output set can
have very high cardinality, posing a challenge for generating
desirable explanations.

G CRUDE INTERPRETABLE COST MODEL
DETAILS

We define costinst(inst) as the throughput of the instruc-
tion inst on actual hardware. We obtain the throughputs

of instructions over actual hardware from https://www.
uops.info/table.html. We define costdep(δij) as
in (10). Our intuition behind keeping the costs of WAR
and WAW type of dependencies to be 0 is that these de-
pendencies are not true dependencies and can be generally
resolved by the compiler by register renaming (Patterson
and Hennessy, 1998). The RAW data dependency, on the
other hand, is a true dependency. As the two instructions
forming a RAW dependency will be executed sequentially
on hardware, the addition of their individual costs would be
a good proxy for the actual throughput cost brought in by
the data dependency.

costdep(δij)

=

{
0, δij = WAR/WAW
costinst(insti) + costinst(instj), δij = RAW

(10)

We define the costη(n) = η/4 as the cost for having n
number of instructions (denoted by η) in a given basic block
β. We derive the expression for the cost of number of
instructions from the simple baseline model presented in
(Abel and Reineke, 2022).

Our choice of C is microarchitecture-specific as the costs
of individual instructions vary across microarchitectures.
We have developed C models for the Haswell and Sky-
lake microarchitectures, only for the purposes of evaluating
COMET’s explanations.

H STUDIED DATASET AND COST MODELS

H.1 BHive dataset

BHive dataset1 (Chen et al., 2019) is a benchmark suite of
x86 basic blocks. It contains roughly 300,000 basic blocks
annotated with their average throughput over multiple execu-
tions on actual hardware for 3 microarchitectures: Haswell,
Skylake, and Ivy Bridge. We have generated explanations
for basic blocks in this dataset.

The dataset can be partitioned by 2 criteria: by source and by
category of its basic blocks. Partition by source annotates
each block with the real-world code base from which it
has been derived. Examples of BHive sources are Clang
and OpenBLAS. Partition by category annotates each basic
block by its type, characterized by the semantics of the
instructions in the block. There are 6 types of blocks: Scalar,
Vector, Scalar/Vector, Load, Store, and Load/Store.

H.2 Ithemal

Ithemal2 (Mendis et al., 2019a) is an ML-based cost model,
which predicts the throughput of input x86 basic blocks for

1https://github.com/ithemal/bhive
2https://github.com/ithemal/Ithemal

https://www.uops.info/table.html
https://www.uops.info/table.html
https://github.com/ithemal/bhive
https://github.com/ithemal/Ithemal
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a given microarchitecture. It is open-source and is currently
trained for the Haswell, Skylake, and Ivy Bridge microar-
chitectures on the BHive dataset. A separate instance of
Ithemal needs to be trained for every microarchitecture, due
to the difference in the actual throughput values obtained
over different hardware. Ithemal’s throughput prediction is
a floating point number, as it is trained on the BHive dataset.

Ithemal consists of a hierarchical multiscale RNN structure.
The first RNN layer takes embeddings of tokens of the input
basic block and combines them to create embeddings for
the instructions in the basic block. The second RNN layer
takes the instruction embeddings as input and combines
them to create an embedding for the basic block. The basic
block embedding is passed through a linear regressor layer
to compute the throughput prediction for the basic block.

Ithemal exhibits roughly 9% Mean Absolute Percentage Er-
ror for the Haswell microarchitecture on the BHive dataset.
As Ithemal outputs only its throughput prediction and no
insights into why the prediction was made, it can not be
reliably deployed in mainstream compiler optimizations.

H.3 uiCA

uiCA3 (Abel and Reineke, 2022) is an analytical simulation-
based cost model for several latest microarchitectures re-
leased by Intel over the last decade. uiCA’s simulation
model is hand-engineered to accurately match the model of
each Intel microarchitecture and must be manually tuned
to reflect new microarchitectures. It can output detailed
insights into its process of computing its throughput predic-
tion of input x86 basic blocks, such as where in the CPU’s
pipeline its simulator identified a bottleneck for the execu-
tion of the basic block.

3https://github.com/andreas-abel/uiCA

https://github.com/andreas-abel/uiCA

