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Abstract. We consider verifying relational properties defined over deep
neural networks (DNNs) such as robustness against universal adversarial
perturbations (UAP), certified worst-case hamming distance for binary
string classifications, etc. Precise verification of these properties necessi-
tates reasoning about multiple executions of the same DNN. However,
most existing works in DNN verification only handle properties defined
over single executions and as a result, are imprecise for relational proper-
ties. Though few recent works for relational DNN verification, capture
linear dependencies between the inputs of multiple executions, they do
not leverage dependencies between the outputs of hidden layers producing
imprecise results. We develop a scalable relational verification framework
that utilizes cross-execution dependencies at all layers of the DNN gaining
substantial precision over SOTA baselines on a wide range of datasets,
networks, and relational properties. Orthogonally, we propose a certifiable
training method for relational properties to learn network parameters for
facilitating relational verification on the trained network.

Keywords: Neural Network Verification · Relational Verification · Cer-
tifiable Training.

1 Introduction

Deep neural networks (DNNs) have gained widespread prominence across various
domains, including safety-critical areas like autonomous driving [6] or medical
diagnosis [1], etc. Especially in these domains, the decisions made by these
DNNs hold significant importance, where errors can lead to severe consequences.
However, due to the black-box nature and highly nonlinear behavior of DNNs,
reasoning about them is challenging. Despite notable efforts in identifying and
mitigating DNN vulnerabilities [18,31,36,44,59,52], these methods cannot guar-
antee safety. Consequently, significant research has been dedicated to formally
verifying the safety properties of DNNs. Despite advancements, current DNN
verification techniques can not handle relational properties prevalent in prac-
tical scenarios. Most of the existing efforts focus on verifying the absence of
input-specific adversarial examples within the local neighborhood of test inputs.
However, recent studies [27] highlight the impracticality of attacks targeting
individual inputs. In practical attack scenarios [30,28,27], there is a trend towards
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developing universal adversarial perturbations (UAPs) [36] designed to affect
a significant portion of inputs from the training distribution. Since the same
adversarial perturbation is applied to multiple inputs, the executions on different
perturbed inputs are related, and exploiting the relationship between different
executions is important for designing precise relational verifiers. Existing DNN
verifiers working on individual executions lack these capabilities and as a result,
lose precision. Beyond UAP verification, other relevant relational properties in-
clude measuring the worst-case hamming distance for binary string classification
and bounding the worst-case absolute difference between the original number
and the number classified using a digit classifier where inputs perturbed with
common perturbation [45].
Key challenges: For precise relational verification, we need scalable algorithms
to track the relationship between DNN’s outputs across multiple executions.
Although it is possible to exactly encode DNN executions with piecewise linear
activation functions (e.g. ReLU) over input regions specified by linear inequalities
as MILP (Mixed Integer Linear Program), the corresponding MILP optimization
problem is computationally expensive. For example, MILP encoding of k execu-
tions of a DNN with nr ReLU activations in the worst case introduces O(nr × k)
integer variables. Considering the cost of MILP optimization grows exponentially
with the number of integer variables, even verifying small DNNs w.r.t a relational
property defined over k execution with MILP is practically infeasible. For scala-
bility, [23] completely ignores the dependencies across executions and reduces
relational verification over k executions into k individual verification problems
solving them independently. SOTA relational verifier [65] first obtains provably
correct linear approximations of the DNN with existing non-relational verifier [61]
without tracking any cross-execution dependencies then adds linear constraints
at the input layer capturing linear dependencies between inputs used in different
executions. In this case, ignoring cross-execution dependencies while computing
provably correct linear approximations of the DNN for each execution leads to the
loss of precision (as confirmed by our experiments in Section 6). This necessitates
developing scalable algorithms for obtaining precise approximations of DNN
outputs over multiple executions that benefit from cross-execution dependencies.
Similarly, existing certified training methods work for training neural networks
with properties defined over single executions. The training problem for the UAP
robustness (Section 4.1) involves maximizing the expected loss under a single
perturbation applied to multiple inputs. The maximization requires relational
cross-executional reasoning. In this work, we lift these existing training methods
for training neural networks with properties defined over k executions such as
robustness against UAP.
Our contributions: We make the following contributions to improve the
precision of relational DNN verification:

– In contrast to the SOTA baselines, we compute a provably correct parametric
linear approximation of the DNN for each execution using parametric bounds
of activation functions (e.g. ReLU) as done in existing works [62,46]. Instead
of learning the parameters for each execution independently as done in [62],
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we refine the parametric bounds corresponding to multiple executions together.
In this case, the bound refinement at the hidden layer takes into account
the cross-execution dependencies so that the learned bounds are tailored for
verifying the specific relational property.

– For scalable cross-executional bound refinement, we (a) formulate a linear
programming-based relaxation of the relational property, (b) find a provably
correct differentiable closed form of the corresponding Dual function that
preserves dependencies between parameters from different executions while
being suitable for scalable differentiable optimization techniques, (c) using the
differentiable closed form refine the parametric bound with scalable differential
optimization methods (e.g. gradient descent).

– We develop RACoon (Relational DNN Analyzer with Cross-Excutional Bound
Refinement) that formulates efficiently optimizable MILP instance with cross-
executional bound refinement for precise relational verification.

– We perform extensive experiments on popular datasets, multiple DNNs (stan-
dard and robustly trained), and multiple relational properties showcasing that
RACoon significantly outperforms the current SOTA baseline.

– Additionally we propose CITRUS (Cross-Input certified TRaining for Universal
perturbationS) a certified training method for relational properties that ex-
ploits the dependencies between different executions while training. We show
DNNs trained with CITRUS achieve SOTA clean and worst case UAP accuracy
compared to existing non-relational certified training methods.

Outline: We discuss necessary background in Section 2, describe the key
components of RACoon in Section 3 and CITRUS in Section 4. The experimental
results and related works are in Section 6 and Section 7 respectively.

2 Background

We provide the necessary background on approaches for non-relational DNN
verification, DNN safety properties that can be encoded as relational properties,
and existing works on parametric bound refinement for individual executions.
For certified training, we discuss existing training methods for input-specific
adversarial perturbation.
Non-relational DNN verification: For individual execution, DNN verification
involves proving that the network outputs y = N(x + δδδ) corresponding to all
perturbations x+ δδδ of an input x specified by ϕ, satisfy a logical specification ψ.
For common safety properties like local DNN robustness, the output specification
(ψ) is expressed as linear inequality (or conjunction of linear inequalities) over
DNN output y ∈ Rnl . e.g. ψ(y) = (cTy ≥ 0) where c ∈ Rnl . In general, given
a DNN N : Rn0 → Rnl and a property specified by (ϕ, ψ), scalable sound but
incomplete verifiers compute a linear approximation specified by L ∈ Rn0 , b ∈ R
such that for any input x ∈ ϕt ⊆ Rn0 satisfying ϕ the following condition holds
LTx+ b ≤ cTN(x). To show cTN(x) ≥ 0 for all x ∈ ϕt DNN verifiers prove for
all x ∈ ϕt, LTx+ b ≥ 0 holds.
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DNN relational properties: For a DNN N : Rn0 → Rnl , relational properties
defined over k executions of N are specified by the tuple (Φ, Ψ) where the input
specification Φ : Rn0×k → {true, false} encodes the input region Φt ⊆ Rn0×k

encompassing all potential inputs corresponding to each of the k executions of
N and the output specification Ψ : Rnl×k → {true, false} specifies the safety
property we expect the outputs of all k executions of N to satisfy. Formally, in
DNN relational verification, given N , an input specification Φ and an output
specification Ψ we require to prove whether ∀x∗

1, . . . ,x
∗
k ∈ Rn0 .Φ(x∗

1, . . . ,x
∗
k) =⇒

Ψ(N(x∗
1), . . . N(x∗

k)) or provide a counterexample otherwise. Here, x∗
1, . . . ,x

∗
k are

the inputs to the k executions of N and N(x∗
1), . . . , N(x∗

k) are the corresponding
outputs. Commonly, the input region ϕit for the i-th execution is a L∞ region
around a fixed point xi ∈ Rn0 defined as ϕit = {x∗

i ∈ Rn0 | ∥x∗
i −xi∥∞ ≤ ϵ} while

the corresponding output specification ψi(N(x∗
i )) =

∧m
j=1(ci,j

TN(x∗
i ) ≥ 0). Sub-

sequently, Φ(x∗
1, . . . ,x

∗
k) =

∧k
i=1(x

∗
i ∈ ϕit)

∧
Φδ(x∗

1, . . . ,x
∗
k) where Φδ(x∗

1, . . . ,x
∗
k)

encodes the relationship between the inputs used in different execution and
Ψ(N(x∗

1), . . . , N(x∗
k)) =

∧k
i=1 ψ

i(N(x∗
i )). Next, we describe relational properties

that can encode interesting DNN safety configurations over multiple executions.

UAP verification: Given a DNN N , in a UAP attack, the adversary tries to
find an adversarial perturbation with a bounded L∞ norm that maximizes the
misclassification rate of N when the same adversarial perturbation is applied to
all inputs drawn from the input distribution. Conversely, the UAP verification
problem finds the provably correct worst-case accuracy of N in the presence of
a UAP adversary (referred to as UAP accuracy in the rest of the paper). [65]
showed that it is possible to statistically estimate (Theorem 2 in [65]) UAP
accuracy of N w.r.t input distribution provided we can characterize the UAP
accuracy of N on k randomly selected images e.g. the k-UAP problem. For the
rest of the paper, we focus on the k-UAP verification problem as improving the
precision of k-UAP verification directly improves UAP accuracy on the input
distribution. The k-UAP verification problem fundamentally differs from the
commonly considered local L∞ robustness verification where the adversary can
perturb each input independently. Since the adversarial perturbation is common
across a set of inputs, the UAP verification problem requires a relational verifier
that can exploit the dependency between perturbed inputs. We provide the input
specification Φ and the output specification Ψ of the UAP verification problem
in Appendix A.1.

Worst case hamming distance: The hamming distance between two strings
with the same length is the number of substitutions needed to turn one string
into the other [21]. Given a DNN N , a binary string (a list of images of binary
digits), we want to formally verify the worst-case bounds on the hamming
distance between the original binary string and binary string recognized by
N where a common perturbation can perturb each image of the binary digits.
Common perturbations are a natural consequence of faulty input devices that
uniformly distort the inputs already considered in verification problems in [40].
The input specification Φ and the output specification Ψ are in Appendix A.2.
Beyond hamming distance and k-UAP, RACoon is a general framework capable
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of formally analyzing the worst-case performance of algorithms that rely on
multiple DNN executions [45]. For example, the absolute difference between the
original and the number recognized by a digit classifier.
Parametric bound refinement: Common DNN verifiers [68,51] handle non-
linear activations σ(x) in DNN by computing linear lower bound σl(x) and
upper bound σu(x) that contain all possible outputs of the activation w.r.t
the input region ϕt i.e. for all possible input values x, σl(x) ≤ σ(x) ≤ σu(x)
holds. Common DNN verifiers including the SOTA relational verifier [65] also
compute the linear bounds σl(x) and σu(x) statically without accounting for
the property it is verifying. Recent works such as [62], instead of static linear
bounds, use parametric linear bounds and refine the parameters with scalable
differential optimization techniques to facilitate verification of the property (ϕ, ψ).
For example, for ReLU(x), the parametric lower bound is ReLU(x) ≥ α × x
where the parameter α ∈ [0, 1] decides the slope of the lower bound. Since for
any α ∈ [0, 1], α× x is a valid lower bound of ReLU(x) it is possible to optimize
over α while ensuring mathematical correctness. Alternatively, [46] showed that
optimizing α parameters is equivalent to optimizing the dual variables in the LP
relaxed verification problem [58]. However, existing works can only optimize the
α parameters w.r.t individual executions independently making these methods
sub-optimal for relational verification. The key challenge here is to develop
techniques for jointly optimizing α parameters over multiple DNN executions
while leveraging their inter-dependencies.
Adversarial perturbations and robustness training: Given an input, output
pair (x, y) ∈ X ⊆ Rdin × Z, and a classifier f : Rdin → Rdout which gives score,
fk(x), for class k (let f̂(x) = argmaxk fk(x)). An additive perturbation, v ∈ Rdin ,
is adversarial for f on x if f̂(x+ v) ̸= y. A classifier is adversarially robust on x
for an lp-norm ball, Bp(0, ϵ), if it classifies all elements within the ball added to x

to the correct class. Formally, ∀v ∈ Bp(0, ϵ).f̂(x+v) = y. In this paper, we focus
on l∞-robustness, i.e. balls of the form B∞(x, ϵ) := {x′ = x+ v|∥v∥∞ ≤ ϵ}, so
will drop the subscript ∞. Note, our method can be extended to other lp balls.
Training for robustness: For single-input robustness, we minimize the expected
worst-case loss due to adversarial examples leading to the following optimization
problem [37,33,32]:

θ = argmin
θ

E
(x,y)∈X

[
max

x′∈B(x,ϵ)
L(fθ(x′), y)

]
(1)

Where L is a loss over the output of the DNN. As exactly solving the inner
maximization is computationally impractical, in practice, it is approximated.
Underapproximating the inner maximization is typically called adversarial train-
ing, a popular technique for obtaining good empirical robustness [32], but these
techniques do not give good formal guarantees and are potentially vulnerable to
stronger attacks [53]. We will focus on the second type of training, called certified
training which overapproximates the inner maximization.
Certified training: One popular and effective method for non-relational
verification is interval bound propagation (IBP) or Box propagation [34,19].



6 D. Banerjee et al.

IBP first over-approximates the input region, b0 = B(x, ϵ), as a Box [x0,x0]
where each dimension is an interval with center x and radius ϵ. Let our network,
f = L1 ◦ L2 ◦ · · · ◦ Ln, be the composition of n linear or ReLU activation layers
(for this paper we consider networks of this form, although our methods could be
extended to other architectures). We then propagate the input region b0 through
each layer. For details of this propagation see [34,19]. At the output layer, we
would like to show that the lower bound of the true class is greater than all upper
bound of all other classes, i.e. ∀i ∈ dout, i ≠ y.oi − oy < 0. The IBP verification
framework above adapts well to training. The Box bounds on the output can be
encoded nicely into a loss function:

LIBP(x, y, ϵ) := ln

1 +
∑
i ̸=y

eoi−oy

 (2)

To address the large approximation errors arising from Box analysis, SABR
[37], a SOTA certified training method, obtains better standard and certified
accuracy by propagating smaller boxes through the network. They do this by first
computing an adversarial example, x′ ∈ B(x, ϵ− τ) in a slightly truncated L∞-
norm ball. They then compute the IBP loss on a small ball around the adversarial
example, B(x′, τ), rather than on the entire ball, B(x, ϵ), where τ ≪ ϵ.

LSABR(x, y, ϵ, τ) := max
x′∈B(x,ϵ−τ)

LIBP(x
′, y, τ) (3)

Even though this is not a sound approximation of adversarial robustness,
SABR accumulates fewer approximation errors due to its more precise Box
analysis thus reduces overregularization improving standard/certified accuracy.

3 RACoon

3.1 Cross-executional bound refinement

Before delving into the details, first, we describe why it is essential to leverage
cross-execution dependencies for relational verification. For illustrative purposes,
we start with the k-UAP verification problem on a pair of executions i.e. k = 2.
Note that bound refinement for worst-case hamming distance can be handled
similarly. For 2-UAP, given a pair of unperturbed input x1,x2 ∈ Rn0 first
we want to prove whether there exists an adversarial perturbation δδδ ∈ Rn0

with bounded L∞ norm ∥δδδ∥∞ ≤ ϵ such that N misclassifies both (x1 + δδδ) and
(x2 +δδδ). Now, consider the scenario where both x1 and x2 have valid adversarial
perturbations δ1δ1δ1 and δ2δ2δ2 but no common perturbation say δδδ that works for both
x1 and x2. In this case, non-relational verification that does not account for cross-
execution dependencies can never prove the absence of a common perturbation
given that both x1,x2 have valid adversarial perturbations. This highlights the
necessity of utilizing cross-execution dependencies. Next, we detail three key
steps for computing a provably correct parametric linear approximation of N
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over multiple executions. So that the parameters from different executions are
jointly optimized together to facilitate relational verification. Note that the
SOTA relational verifier [65] statically computes linear approximations of N
independently without leveraging any dependencies.
LP formulation: Let, N correctly classify (x1 + δδδ) if c1TN(x1 + δδδ) ≥ 0 and
(x2 + δδδ) if c2

TN(x2 + δδδ) ≥ 0 where c1, c2 ∈ Rnl . Then N does not have a
common adversarial perturbation iff for all ∥δδδ∥∞ ≤ ϵ the outputs y1 = N(x1+δδδ)
and y2 = N(x2 + δδδ) satisfy Ψ(y1,y2) = (c1

Ty1 ≥ 0) ∨ (c2
Ty2 ≥ 0). Any

linear approximations specified with L1,L2 ∈ Rn0 and b1, b2 ∈ R of N satisfying
L1

T (x1+δδδ)+ b1 ≤ c1
Ty1 and L2

T (x2+δδδ)+ b2 ≤ c2
Ty2 for all δδδ with ∥δδδ∥∞ ≤ ϵ

allow us to verify the absence of common adversarial perturbation with the
following LP (linear programming) formulation.

min t s.t. ∥δδδ∥∞ ≤ ϵ

L1
T (x1 + δδδ) + b1 ≤ t, L2

T (x2 + δδδ) + b2 ≤ t (4)

Let t∗ be the optimal solution of the LP formulation. Then t∗ ≥ 0 proves the ab-
sence of a common perturbation. For fixed linear approximations {(L1, b1), (L2, b2)}
of N , the LP formulation is exact i.e. it always proves the absence of common
adversarial perturbation if it can be proved with {(L1, b1), (L2, b2)} (see Theo-
rem 1). This ensures that we do not lose any precision with the LP formulation
and the LP formulation is more precise than any non-relational verifier using the
same {(L1, b1), (L2, b2)}.
Theorem 1. ∨2

i=1(Li
T (xi + δδδ) + bi ≥ 0) holds for all δδδ ∈ Rn0 with ∥δδδ∥∞ ≤ ϵ if

and only if t∗ ≥ 0.

Proof: The proof follows from Appendix Theorem 6.
However, the LP formulation only works with fixed {(L1, b1), (L2, b2)} and as

a result, is not suitable for handling parametric linear approximations that can
then be optimized to improve the relational verifier’s precision. Instead, we use the
equivalent Lagrangian Dual [7] which retains the benefits of the LP formulation
while facilitating joint optimation of parameters from multiple executions as
detailed below.
Dual with parametric linear approximations: Let, for a list of parametric
activation bounds specified by a parameter list ααα = [α1, . . . , αm] we denote
corresponding parametric linear approximation of N with the coefficient L(ααα)
and bias b(ααα). First, for 2-UAP, we obtain (L1(ααα1),b1(ααα1)) and (L2(ααα2),b2(ααα2))
corresponding to the pair of executions using existing works [62]. For i ∈ {1, 2},
∥δδδ∥∞ ≤ ϵ and li ⪯ αααi ⪯ ui the parametric linear bounds satisfy Li(αααi)

T (xi +
δδδ) + bi(αααi) ≤ ci

Tyi where li,ui are constant vectors defining valid range of
the parameters αααi. For fixed αααi the Lagrangian Dual of the LP formulation
in Eq. 4 is as follows where λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1 are the Lagrange
multipliers relating linear approximations from different executions (details in
Appendix D.1).

max
0≤λi≤1

min
∥δδδ∥∞≤ϵ

∑2

i=1
λi ×

(
Li(αααi)

T (xi + δδδ) + bi(αααi)
)
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Let, for fixed ααα1,ααα2 the optimal solution of the dual formulation be t∗(ααα1,ααα2).
Then we can prove the absence of common perturbation provided the maximum
value of t∗(ααα1,ααα2) optimized over ααα1,ααα2 is ≥ 0. This reduces the problem
to the following: max t∗(ααα1,ααα2) s.t. l1 ⪯ ααα1 ⪯ u1 l2 ⪯ ααα2 ⪯ u2. However,
the optimization problem involves a max-min formulation and the number of
parameters in ααα1,ααα2 in the worst-case scales linearly with the number of activation
nodes in N . This makes it hard to apply gradient descent-based techniques
typically used for optimization [62]. Instead, we reduce the max-min formulation
to a simpler maximization problem by finding an optimizable closed form of the
inner minimization problem.
Deriving optimizable closed form : We want to characterize the closed form
G(λλλ) = min

∥δδδ∥∞≤ϵ

∑2
i=1 λi ×

(
Li(αααi)

T (xi + δδδ) + bi(αααi)
)

where λλλ = (ααα1,ααα2, λ1, λ2)

and use it for formulating the maximization problem. Note, G(λλλ) is related
to the dual function from optimization literature [7]. Naively, it is possible to
solve the inner minimization problem for two different executions separately
and then optimize them over ααα = (ααα1,ααα2) using G(ααα) = max(G1(ααα1), G2(ααα2))
as shown below. However, G(ααα) produces a suboptimal result since it ignores
cross-execution dependencies and misses out on the benefits of jointly optimizing
(ααα1,ααα2).

Gi(αααi) = min
∥δδδ∥∞≤ϵ

Li(αααi)
T (xi + δδδ) + bi(αααi) (5)

Since ∥δδδ∥∞ is bounded by ϵ, it is possible to exactly compute the closed form
of G(λλλ) as shown below where for j ∈ [n0], Li(αααi)[j] ∈ R denotes the j-th
component of Li(αααi) ∈ Rn0 and ai(αααi) = Li(αααi)

Txi + bi(αααi)

G(λλλ) = min
∥δδδ∥∞≤ϵ

2∑
i=1

λi ×
(
Li(αααi)

T (xi + δδδ) + bi(αααi)
)

G(λλλ) =

2∑
i=1

λi × ai(αααi) + min
∥δδδ∥∞≤ϵ

2∑
i=1

λi × Li(αααi)
Tδδδ

G(λλλ) =

2∑
i=1

λi × ai(αααi)− ϵ×
n0∑
j=1

∣∣∣∣∣
2∑

i=1

λi × Li(αααi)[j]

∣∣∣∣∣
Unlike G(ααα), G(λλλ) relates linear approximations from two different executions
using (λ1, λ2) enabling joint optimization over (ααα1,ααα2). With the closed formG(λλλ),
we can use projected gradient descent to optimize maxλλλG(λλλ) while ensuring
the parameters in λλλ satisfy the corresponding constraints. Next, we provide
theoretical guarantees about the correctness and efficacy of the proposed technique.
For efficacy, we show the optimal solution t∗(G) obtained with G(λλλ) is always
as good as t∗(G) i.e. t∗(G) ≥ t∗(G) (Theorem 2) and characterize sufficient
condition where t∗(G) is strictly better i.e. t∗(G) > t∗(G) (Appendix Theorem 9).
Experiments substantiating the improvement in the optimal values (t∗(G) vs.
t∗(G)) are in Section 6.



Scalable Relational Verification and Training for Deep Neural Networks 9

Theorem 2. If t∗(G) = maxλλλG(λλλ) and t∗(G) = maxααα1,ααα2
G(ααα) then t∗(G) ≤

t∗(G).

Proof: For any l1 ⪯ ααα1 ⪯ u1 l2 ⪯ ααα2 ⪯ u2, consider λλλ1 = (ααα1,ααα2, λ1 = 1, λ2 =
0) and λλλ2 = (ααα1,ααα2, λ1 = 0, λ2 = 1), then G(λλλ1) = min

∥δδδ∥∞≤ϵ
L1(ααα1)

T (x1 + δδδ) +

b1(ααα1) and G(λλλ2) = min
∥δδδ∥∞≤ϵ

L2(ααα2)
T (x2 + δδδ) + b2(ααα2). Since, t∗(G) ≥ G(λλλ1)

and t∗(G) ≥ G(λλλ2) then t∗(G) ≥ max
1≤i≤2

G(λλλi) = G(ααα1,ααα2). Hence, t∗(G) ≥

maxααα1,ααα2
G(ααα1,ααα2) = t∗(G). The correctness proof for bound refinement between

two executions is in Appendix D.1. Note that correctness does not necessitate
the optimization technique to identify the global maximum, especially since
gradient-descent-based optimizers may not always find the global maximum.
Genralization: Instead of a pair of executions considered above, we now
generalize the approach to any set of n executions where n ≤ k (Appendix B).
Until now, we assume for each execution the output specification is defined as
a linear inequality i.e. ciTN(xi + δδδ) ≥ 0. Next, we generalize our method to
any output specification for each execution defined with conjunction of m linear
inequalities (Appendix C).

3.2 RACoon algorithm
The cross-executional bound refinement learns parameters over any set of n
executions. However, for a relational property defined over k executions, since
there are 2k − 1 non-empty subsets of executions, refining bounds for all possible
subsets is impractical. Instead, we design a greedy heuristic to pick the subsets of
executions so that we only use a small number of subsets for bound refinement.
Eliminating individually verified executions: First, we run existing non-
relational verifiers [68,51] without tracking any dependencies across executions.
RACoon eliminates the executions already verified with the non-relational verifier
and does not consider them for subsequent steps. (lines 5 – 9 in Algo. 1) For
example, for the k-UAP property, we do not need to consider those executions
that are proved to have no adversarial perturbation δδδ such that ∥δδδ∥∞ ≤ ϵ. For
relational properties considered in this paper, we formally prove the correctness
of the elimination technique in Appendix Theorem 12 and showcase eliminating
verified executions does not lead to any loss in precision of RACoon.
Greedy selection of unverified executions: For each execution that remains
unverified with the non-relational verifier (V), we look at si = min1≤j≤m ci,j

Tyi

estimated by V where yi = N(xi + δδδ) and ci,j ∈ Rnl defines the correspond-
ing output specification ψi(yi) =

∧m
j=1(ci,j

Tyi ≥ 0). Intuitively, for unveri-
fied executions, si measures the maximum violation of the output specification
ψi(yi) and thus leads to the natural choice of picking executions with smaller
violations for cross-executional refinement. We sort the executions in decreas-
ing order of si and pick the first k0 (hyperparameter) executions on input
regions X = {ϕ1t , . . . , ϕ

k0
t } having smaller violations si where for all i ∈ [k0],

ϕit = {x′
i + δδδ | x′

i, δδδ ∈ Rn0 ∧ ∥δδδ∥∞ ≤ ϵ} and x′
i is the unperturbed input. (line

11 of Algo. 1) In general, k0 is a small constant i.e. k0 ≤ 10. Further, we limit
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Algorithm 1 RACoon
1: Input: N , (Φ, Ψ), k, k0, k1, non-relational verifier V.
2: Output: sound approximation of worst-case k-UAP accuracy or worst-case ham-

ming distance M(Φ, Ψ).
3: I ← {}. {Indices of executions not verified by V}
4: L ← {} {Map storing linear approximations}
5: for i ∈ [k] do
6: (si,Li, bi)← V(ϕi, ψi).
7: if V can not verify (ϕi, ψi) then
8: I ← I ∪ {i}; L[i]← L[i] ∪ (Li, bi).
9: I0 ← top-k0 executions from I selected based on si.

10: for I0 ⊆ I0, I0 ̸= {} and |I0| ≤ k1 do
11: LI0

← CrossExcutionalRefinement(I0, Φ, Ψ).
12: L ← Populate(L,LI0

). {Storing LI0
in L}

13: M←MILPFormulation(L, Φ, Ψ , k, I).
14: return Optimize(M).

the subset size to k1 (hyperparameter) and do not consider any subset of X with
a size more than k1 for cross-executional bound refinement. (lines 12 – 15 in
Algo. 1) Overall, we consider

∑k1

i=1

(
k0

i

)
subsets for bound refinement.

MILP formulation: RACoon MILP formulation involves two steps. First,
we deduce linear constraints between the input and output of N for each un-
verified execution using linear approximations of N either obtained through
cross-executional refinement or by applying the non-relational verifier. Secondly,
similar to the current SOTA baseline [65] we encode the output specification Ψ
as MILP objective that only introduces O(k × nl) integer variables. Finally, we
use an off-the-shelf MILP solver [20] to optimize the MILP.

For the i-th unverified execution, let ϕit = {x′
i + δδδ | x′

i, δδδ ∈ Rn0 ∧ ∥δδδ∥∞ ≤ ϵ}
be the input region and for yi = N(x′

i + δδδ), ψi(yi) =
∧m

i=1(ci,j
Tyi ≥ 0) be the

output specification. Subsequently for each clause (ci,j
Tyi ≥ 0) in ψi(yi) let

{(L1
i,j , b

1
i,j), . . . , (L

k′

i,j , b
k′

i,j)} be set of linear approximations. Then for each l ∈ [k′]
we add the following linear constraints where oi,j is a real variable.

Ll
i,j(x

′
i + δδδ) + bli,j ≤ oi,j ; ∥δδδ∥∞ ≤ ϵ

Next, similar to [65] we encode output specification (ψi) as zi = (min1≤j≤m oi,j) ≥
0 where zi ∈ {0, 1} are binary variables and zi = 1 implies ψi(yi) = True.
Encoding of each ψi introduces O(m) binary (integer) variables. Since for k-UAP
and worst-case hamming distance, m = nl the total number of integer variables is
in the worst case O(k× nl). MILP encoding for k-UAP and worst-case hamming
distance verification are shown in Appendix D.4. We prove the correctness of
RACoon in Appendix Theorem 13 and show it is always at least as precise as
[65] (Appendix Theorem 14). Worst-case time complexity analysis of RACoon is
in Appendix E.
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4 CITRUS

In this section, we introduce our formal training objective for certified UAP
robustness. This objective is hard to compute so we instead seek to bound this
objective. Lower bounds are akin to adversarial training and, as we show, in
Section 6 do not obtain good certified accuracy against universal perturbations.
Therefore, we define upper bounds that can be efficiently computed. These form
the backbone for the CITRUS algorithm.

4.1 UAP Training Objective

Equation (1) gives the training objective for standard single-input adversarial
robustness: minimizing the expected loss over the data distribution due to
worst-case adversarial perturbations crafted separately for each input. For UAP
robustness, we minimize the worst-case expected loss from a single perturbation
applied to all points in the data distribution.

θ = argmin
θ

max
u∈B(0,ϵ)

(
E

(x,y)∈X
[L(fθ(x+ u), y)]

)
(6)

Here, since UAPs are input-agnostic we maximize the expected value over
u ∈ B(0, ϵ). Solving this maximization exactly is computationally impractical
[36,43]. To create an efficient training algorithm for certified UAP robustness we
need an efficiently computable upper bound for the maximization. It is necessary
to reduce the approximation error due to the upper bound as existing research
has shown that training with a looser upper bound leads to more regularization
and a reduction in clean accuracy [37].

4.2 k-Common Perturbations

In this section, we introduce the idea of k-common perturbations (k-cp) and show
that the maximization of Equation (6) can be upper bounded by the expected
loss over the dataset due to the worst-case k-cp (Theorem 3). By doing this, we
get a set of losses based on k-cps. In Section 5 we use the upper bounds derived
in this section to create an algorithm for certified UAP training which we show
experimentally (Section 6.2) reduces regularization and increases accuracy while
also achieving certified UAP accuracy.

We first define a boolean predicate, Af : Rdin × N → {true, false} which is
true when f is adversarial for x, y:

Af (x, y) =

{
true if f̂(x) ̸= y

false otherwise

Definition 1. u ∈ Rdin is a k-common perturbation on a data distribution X
for a network f , if there exists a set of k inputs for which u is adversarial. That
is, if ∃{(xi, yi)|i ∈ [k]} ⊆ X .

∧k
i=1Af (xi + u, yi).
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Note that if u is a k-cp than u is also a (k − 1)-cp, . . . , 1-cp. Next, we define
a boolean predicate function ΨX ,f : Rdin × N → {true, false} which computes
whether a given perturbation u is a k-cp w.r.t. X and f

ΨX ,f (u, k) =

{
true if ∃{(xi, yi)|i ∈ [k]} ⊆ X .

∧k
i=1Af (xi + u, yi)

false otherwise

Since Ψ is monotonic w.r.t. k, there is a unique j for each u where ΨX ,f (u, j)
transitions from 1 → 0, i.e. ∃j ∈ N s.t. ∀i ≤ j.ΨX ,f (u, i) and ∀i > j.ΨX ,f (u, i).

Definition 2. Ψ̂X ,f : Rdin → N is a function which computes the transition point
of ΨX ,f for u. That is, Ψ̂X ,f (u) = argmaxk∈N k · ΨX ,f (u, k).

For ease of notation, we refer to Ψ(·) := ΨX,f (·) and Ψ̂(·) := Ψ̂X,f (·).

Definition 3. A k-cp set, CX ,f (k, ϵ), is all perturbations in B(0, ϵ) that are k-cps
w.r.t. X and f. That is, CX ,f (k, ϵ) = {u|u ∈ B(0, ϵ), Ψ(u, k)}.

Let u∗ ∈ B(0, ϵ) be the point at which the expectation of Equation (6) is
maximized (without loss of generality, we assume u∗ is unique). Formally,

E
(x,y)∈X

[L(f(x+ u∗), y)] = max
u∈B(0,ϵ)

(
E

(x,y)∈X
[L(f(x+ u), y)]

)
(7)

If u∗ is a k-cp then the loss for an individual input when perturbed by u∗ is
bounded by maximizing the loss for that input over the entire k-cp perturbation
set (Lemma 5). We also know that all j-cps are k-cps for k < j so C(j, ϵ) ⊆ C(k, ϵ)
(Lemma 6). These two lemmas allow us to bound L(f(x+ u∗), y) for each pair
(x, y). Formal statements and proofs of these lemmas can be seen in Appendix G.1.
We can now show that the maximization in Equation (6) can be upper bounded
by an increasing sequence of values. Each value is an expectation, over the full
data distribution, of the worst-case loss achievable by a k-cp. Formally,

Theorem 3. Given X ⊆ Rdin × N, network f : Rdin → Rdout , u∗ as defined
in Equation (7), and norm-bound ϵ ∈ R. Let κ∗ = Ψ̂X ,f (u

∗) and E(k, ϵ) =

E(x,y)∈X
[
maxu∈CX ,f (k,ϵ) L(f(x+ u), y)

]
, then

max
u∈B(0,ϵ)

(
E

(x,y)∈X
[L(f(x+ u), y)]

)
≤ E(κ∗, ϵ) ≤ E(κ∗ − 1, ϵ) ≤ · · · ≤ E(1, ϵ)

Proof Sketch. LHS equals E(x,y)∈X [L(f(x+ u∗), y)] via Equation (7) which is
upperbounded by E(κ∗, ϵ) by Lemma 5 applied to each element in the distribution.
E(κ∗, ϵ) is upperbounded by E(κ∗ − 1, ϵ), . . . , E(1, ϵ) by Lemma 6 applied to each
element in the distribution. Full proof is in Appendix G.1.

5 CITRUS

In this section, we will leverage Theorem 3 to develop our CITRUS algorithm for
certified training against UAPs.
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Fig. 1: Upper bounding L2CP. For each image, perturbations are shown on x0. a)
shows the 2-cp set ( ). b) shows the intersection of 2-cp set with the adversarial
perturbation set for x0 ( ). c) shows the adversarial perturbation set for all
inputs in the batch (□, ). d) shows the adversarial perturbation set for all
inputs except for x0 (□)

5.1 k-CP Guided Losses

Theorem 3 gives us a sequence of upper bounds for the maximization of the
UAP robustness objective. We will now focus on a batch-wise variant of these
upper bounds for training. Given a batch of inputs XB ⊆ Rdin ×Z, current input
(x, y) ∈ XB , and for each k ∈ [κ∗] we get the following loss functions

LkCP(XB ,x, y, ϵ) = max
u∈CX ,f (k,ϵ)

L(f(x+ u), y) (8)

However, in practice, computing κ∗ is intractable as it would either require
computing individual adversarial regions [13] and intersecting them or require
finding u∗ [36]. LkCP is only an upper bound when k ≤ κ∗ as if k > κ∗ then κ∗
does not fall in the k-cp region.

Ideally, we would use the tightest upper bound (Lκ∗CP), to induce the least
amount of overapproximation; however, in practice, we do not know κ∗. For
this paper, we consider L2CP as it leads to efficient training algorithms. L1CP
is akin to standard certified training for single-input adversarial perturbations.
Current research shows that networks trained by SOTA standard certified training
can not eliminate single-input adversarial perturbations altogether [37,33,48],
i.e. κ∗ ≥ 1 for these networks. Thus, when training networks to be certifiably
robust to UAPs it is safe to assume that κ∗ ≥ 1. L2CP penalizes perturbations
affecting multiple inputs while still having a high chance of being an upper
bound to the UAP robustness problem (if κ∗ = 1 then we likely do not have
any adversarial perturbations which affect multiple inputs and have succeded in
training a network certifiably robust to UAPs).

5.2 CITRUS Loss

L2CP is still not usable for training as it is expensive to compute C(2, ϵ) (which
would require intersecting single-input adversarial regions [13]). To make this
usable, we first show that for a given input L2CP can be upper bounded by
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computing the maximum loss over the 1-cp perturbation sets from the other
inputs in the batch. Formally, we have

Theorem 4. Given XB ⊆ Rdin × Z, a network f : Rdin → Rdout , a given input
(x0, y0), and norm-bound ϵ ∈ R. Then,

L2CP(XB ,x0, y0, ϵ) ≤ max
Cu∈X/(x0,y0),f (1,ϵ)

L(f(x0 + u), y0)

Proof Sketch. Figure 1 gives a simplified visual guide for our proof, where |XB | =
5. The light red region ( ) represents the set of adversarial perturbations for x0.
In Figure 1 a) we see the 2-cp set ( ) on top of x0, L2CP maximizes the loss over .
Assuming that we have a standard loss function where adversarial perturbations
( ) have greater loss than safe perturbations ( ) (∀v,v′ ∈ B(0, ϵ).¬Af (x0 +
v, y)∧Af (x0 + v′, y) =⇒ L(f(x0 + v), y0) ≤ L(f(x0 + v′), y0)), then for x0 the
maximum loss over (LHS) occurs where and intersect (Figure 1 b). We can
compute an upper bound on the LHS by maximizing over an overapproximation
of the intersection set. This overapproximation can be computed by considering
all the single-input adversarial perturbation sets (Figure 1 c). Finally, a key
observation is that since we are trying to overapproximate the intersection set
we do not have to include the set of adversarial perturbations for x0 reducing
overregularization (Figure 1 d). This loss in overregularization is significant as
seen in Appendix I. The formal proof can be found in Appendix G.2.

Although we cannot exactly compute CX/(x,y),f (1, ϵ), SABR [37] shows that
we can approximate this set in certified training with small boxes around a
precomputed adversarial perturbation. This observation leads to our final loss.

Definition 4. For batch XB, current input (xi, yi) ∈ XB, norm-bound ϵ ∈ R,
and small box norm-bound τ ∈ R, we define the CITRUS loss as

LCITRUS(XB ,xi, yi, ϵ, τ) :=
∑

(xj ,yj)∈XB ,i̸=j

LIBP(xi + argmax
v∈B(0,ϵ−τ)

L(xj , yj), yi, τ)

5.3 CITRUS Algorithm

In this section, we show how to take the CITRUS loss function and turn it into
an algorithm. Further details on box propagation can be found in Appendix H
and a study on adding same-input boxes can be found in Appendix I.
From Loss to Algorithm. Figure 2 provides a simplified example to aid visual
intuition for the CITRUS algorithm. On the LHS, we show the exact adversarial
perturbation sets ( ) for each input in the batch and view these sets collocated
on the origin. As discussed in Section 5.2, it is expensive to compute the exact
adversarial sets [13]. Instead, on the RHS, we approximate these regions with
small bounding boxes (□) around cross-input adversarial perturbations (not
including the same-input perturbation).
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Fig. 2: Intuition behind CITRUS. UAPs occur where adversarial regions ( ) from
multiple inputs overlap ( ). To approximate this, adversarial examples (⋆) are
computed for each input, xi, the corresponding perturbation vectors, vi, (dark
gray ) and adversarial regions are collocated to B(0, ϵ). To approximate
we take cross-input adversarial perturbations and draw l∞ balls around them,
b0i,j = B(xi + vj , τ).

CITRUS Algorithm. In Algorithm 2, we show training with CITRUS. For
each batch, XB, we first compute a set of adversarial perturbations vi for each
input xi ∈ XB (Line 4). We then iterate through each input in the batch, xi and
through each cross-input adversarial perturbation, vj , not from the current input
(i ̸= j). For each input perturbation pair, we update the loss by computing the
IBP loss on a box centered at xi + vj with radius τ (Line 8). CITRUS is the first
algorithm specialized for certified training against universal perturbations.

Algorithm 2 CITRUS Algorithm
1: Initialize θ
2: for each Epoch do
3: for XB ⊂ X do
4: Compute an adversarial perturbation vi for xi ∈ XB

5: LCITRUS ← 0
6: for i ∈ [|XB |] do
7: for j ∈ [|XB |], j ̸= i do
8: LCITRUS = LCITRUS + LIBP(xi + vj , yi, τ)
9: Update θ using LCITRUS

6 Experimental evaluation

6.1 RACoon evaluation

We evaluate the effectiveness of RACoon on a wide range of relational properties
and a diverse set of DNNs and datasets. We consider the following relational prop-
erties: k-UAP, worst-case hamming distance as formally defined in Appendix A.
The baselines we consider are the SOTA relational verifier [65] (referred to as I/O
Formulation) and the non-relational verifier [61] from the SOTA auto_LiRPA
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toolbox [61]. used by [65]. We also analyze the efficacy of cross-executional bound
refinement in learning parametric bounds that can facilitate relational verification
(Section 6.1). Note that we instantiate RACoon with the same non-relational
verifier [61] used in I/O formulation [65].

Experiment setup and networks . We use standard convolutional archi-
tectures (ConvSmall, ConvBig, etc.) commonly seen in other neural network
verification works [68,51] (see Table 1). Details of DNN architectures used in exper-
iments are in Appendix F. We consider networks trained with standard training,
robust training: DiffAI [35], CROWN-IBP [66], projected gradient descent (PGD)
[31], and COLT [4]. We use pre-trained publically available DNNs: CROWN-IBP
DNNs taken from the CROWN repository [66] and all other DNNs are from the
ERAN repository [51]. The details regarding the frameworks RACoon uses, and
the CPU and GPU information are in Appendix F.1.

Evaluating cross execution bound refinement Appendix Fig. 5 shows the
values t∗i (G) and t∗i (G) after i-th iteration of Adam optimizer computed by cross-
executional and individual refinement (using α-CROWN) respectively over a pair
of executions (i.e. k = 2) on randomly chosen images. We used ConvSmall PGD
and DiffAI DNNs trained on MNIST and CIFAR10 for this experiment. The ϵs
used for MNIST PGD and DiffAI DNNs are 0.1 and 0.12 respectively while ϵs used
for CIFAR10 PGD and DiffAI DNNs are 2.0/255 and 6.0/255 respectively. For
each iteration i, t∗i (G) > t∗i (G) shows that cross-executional refinement is more
effective in learning parametric bounds that can facilitate relation verification.
Since, for proving the absence of common adversarial perturbation, we need to
show t∗ ≥ 0, in all 4 cases in Fig. 5 individual refinement fails to prove the absence
of common adversarial perturbation while cross-executional refinement succeeds.
Moreover, in all 4 cases, even the optimal solution of the LP (Eq. 14) formulated
with linear approximations from individual refinement remains negative. For
example, for MNIST DiffAI DNN, with LP, t∗(G) improves to −0.05 from −0.2 but
remains insufficient for proving the absence of common adversarial perturbation.
This shows the importance of leveraging dependencies across executions.
Verification results: For k-UAP, both the baselines: non-relational verifier
[61], I/O formulation [65] and RACoon computes a provably correct lower bound
M(Φ, Ψ) on the worst-case UAP accuracy. In this case, larger M(Φ, Ψ) values
produce a more precise lower bound tightly approximating the actual worst-
case UAP accuracy. In contrast, for worst-case hamming distance M(Φ, Ψ) is
a provably correct upper bound and smaller M(Φ, Ψ) values are more precise.
Table 1 shows the verification results on different datasets (column 1), DNN
architectures (column 3) trained with different training methods (column 4)
where ϵ values defining L∞ bound of δδδ are in column 5. The relational properties:
k-UAP and worst-case hamming distance on MNIST DNNs use k = 20 while
k-UAP on CIFAR10 DNNs uses k = 10. For each DNN and ϵ, we run relational
verification on k randomly selected inputs and repeat the experiment 10 times.
We report worst-case UAP accuracy and worst-case hamming distance averaged
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Table 1: RACoon Efficacy Analysis
Dataset Property Network Training Perturbation Non-relational Verifier I/O Formulation RACoon

Structure Method Bound (ϵ) Avg. UAP Acc. (%) Avg. Time (sec.) Avg. UAP Acc. (%) Avg. Time (sec.) Avg. UAP Acc. (%) Avg. Time (sec.)

UAP ConvSmall Standard 0.08 38.5 0.01 48.0 2.65 54.0 (+6.0) 5.20
UAP ConvSmall PGD 0.10 70.5 0.21 72.0 0.92 77.0 (+5.0) 4.33
UAP IBPSmall IBP 0.13 74.5 0.02 75.0 1.01 89.0 (+14.0) 2.01

MNIST UAP ConvSmall DiffAI 0.13 56.0 0.01 61.0 1.10 68.0 (+7.0) 3.98
UAP ConvSmall COLT 0.15 69.0 0.02 69.0 0.99 85.5 (+16.5) 2.68
UAP IBPMedium IBP 0.20 80.5 0.1 82.0 0.99 93.5 (+11.5) 2.30
UAP ConvBig DiffAI 0.20 81.5 1.85 81.5 2.23 91.5 (+10.0) 7.60

UAP ConvSmall Standard 1.0/255 52.0 0.02 55.0 3.46 58.0 (+3.0) 7.22
UAP ConvSmall PGD 3.0/255 21.0 0.01 26.0 1.57 29.0 (+3.0) 5.56
UAP IBPSmall IBP 6.0/255 17.0 0.02 17.0 2.76 39.0 (+22.0) 6.76

CIFAR10 UAP ConvSmall DiffAI 8.0/255 16.0 0.01 20.0 2.49 30.0 (+10.0) 7.09
UAP ConvSmall COLT 8.0/255 18.0 0.04 21.0 2.41 26.0 (+5.0) 11.02
UAP IBPMedium IBP 3.0/255 46.0 0.15 50.0 2.13 71.0 (+21.0) 6.12
UAP ConvBig DiffAI 3.0/255 17.0 1.33 20.0 3.42 25.0 (+5.0) 11.92

Dataset Property Network Training Perturbation Non-relational Verifier I/O Formulation RACoon
Structure Method Bound (ϵ) Avg. Hamming distance Avg. Time (sec.) Avg. Hamming distance Avg. Time (sec.) Avg. Hamming distance Avg. Time (sec.)

Hamming ConvSmall Standard 0.10 19.0 0.01 18.0 2.68 16.0 (-2.0) 4.43
Hamming ConvSmall PGD 0.12 17.0 0.01 16.0 0.99 14.0 (-2.0) 3.20
Hamming ConvSmall DiffAI 0.15 16.0 0.01 16.0 0.98 14.0 (-2.0) 3.46

MNIST Hamming IBPSmall IBP 0.14 11.0 0.01 10.0 1.13 5.0 (-5.0) 2.56
Hamming ConvSmall COLT 0.20 17.0 0.01 17.0 0.89 10.0 (-7.0) 1.88
Hamming IBPMedium IBP 0.30 12.0 0.02 11.0 0.87 3.0 (-8.0) 1.75

over all 10 runs. Results in Table 1 substantiate that RACoon outperforms
current SOTA baseline I/O formulation on all DNNs for both the relational
properties. RACoon gains up to +16.5% and up to +22% improvement in the
worst-case UAP accuracy (averaged over 10 runs) for MNIST and CIFAR10
DNNs respectively. Similarly, RACoon reduces the worst-case hamming distance
(averaged over 10 runs) up to 8 which is up to 40% reduction.
Runtime analysis: Table 1 shows that RACoon is slower than I/O formulation.
However, even for ConvBig architectures, RACoon takes less than 8 seconds (for
20 executions) for MNIST and takes less than 12 seconds (for 10 executions)
for CIFAR10. The timings are much smaller compared to the timeouts allotted
for similar architectures in the SOTA competition for verification of DNNs
(VNN-Comp [8]) (200 seconds per execution).

6.2 CITRUS evaluation

We implemented CITRUS in Python [54] and PyTorch [39]. We compare CITRUS
to existing SOTA single-input certified training methods. In Appendix L, we
compare CITRUS to existing robust UAP training techniques. In Appendix M,
we perform additional ablation studies on CITRUS.
Experimental Setup. We consider three popular image recognition datasets for
certified training: MNIST [12], CIFAR-10 [25], and TinyImageNet [26]. We use
a variety of challenging l∞ perturbation bounds common in verification/robust
training literature [63,56,51,50,48,37,33]. Unless otherwise indicated, we use a
7-layer convolutional architecture, CNN7, used in many prior works we compare
against [48,37,33]. All experiments were performed on a desktop PC with a
GeForce RTX(TM) 3090 GPU and a 16-core Intel(R) Core(TM) i9-9900KS
CPU @ 4.00GHz. We use RACoon for worst-case UAP certification (note that
this is an incomplete verifier so all results are underapproximations of true
certified accuracy). Further evaluation, training/verification times, and training
parameters can be found in Appendix K.
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Table 2: Comparison of standard accuracy (Std) and certified average UAP
accuracy (UCert) for different certified training methods on the full MNIST,
CIFAR-10, and TinyImageNet test sets. A variation on [64] is used for certified
average UAP accuracy.

Dataset ϵ Training Method Source Std [%] UCert [%]

MNIST

0.1

IBP Shi et al. [48] 98.84 98.12
SABR Müller et al. [37] 99.23 98.37
TAPS Mao et al. [33] 99.19 98.65
CITRUS this work 99.27 98.41

0.3

IBP Shi et al. [48] 97.67 94.76
SABR Müller et al. [37] 98.75 95.37
TAPS Mao et al. [33] 98.53 95.24
CITRUS this work 99.04 95.61

CIFAR-10

2
255

IBP Shi et al. [48] 66.84 59.41
SABR Müller et al. [37] 79.24 65.38
TAPS Mao et al. [33] 79.76 66.62
CITRUS this work 83.45 66.98

8
255

IBP Shi et al. [48] 48.94 39.05
SABR Müller et al. [37] 52.38 41.57
TAPS Mao et al. [33] 52.82 40.90
CITRUS this work 63.12 39.88

TinyImageNet 1
255

IBP Shi et al. [48] 25.92 18.50
SABR Müller et al. [37] 28.85 21.53
TAPS Mao et al. [33] 28.98 24.71
CITRUS this work 35.62 26.27

6.3 Main Results

We compare CITRUS to SOTA certified training methods in Table 2. Existing
certified training methods train for single-input adversarial robustness. For each
method, we report the best results achieved under any architecture presented in
the respective paper. Across all datasets and ϵs we observe that CITRUS obtains
better standard accuracy than existing methods (up to 10.3% increase for CIFAR-
10 ϵ = 8/255). CITRUS obtains SOTA performance for certified average UAP
accuracy, obtaining better performance in 3 out of 5 cases than existing baselines
(i.e. CITRUS obtains 26.27% certified average UAP accuracy on TinyImageNet
vs. 24.71% from TAPS [33]) and comparable performance (CITRUS’s certified
average UAP accuracy is within 1.69% of SOTA baselines) on the rest. Our
results show that CITRUS indeed decreases regularization and increases standard
accuracy while maintaining good certified average UAP accuracy.
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7 Related works

Non-relational DNN verifiers: DNN verifiers are broadly categorized into
three main categories - (i) sound but incomplete verifiers which may not always
prove property even if it holds [17,50,51,49,68,61,62], (ii) complete verifiers that
can always prove the property if it holds [55,17,9,10,3,14,15,16,57,38,2,67] and
(iii) verifiers with probabilistic guarantees [11,29].
Relational DNN verifier: Existing DNN relational verifiers can be grouped
into two main categories - (i) verifiers for properties (UAP, fairness, etc.) defined
over multiple executions of the same DNN, [65,23], (ii) verifiers for properties
(local DNN equivalence [41]) defined over multiple executions of different DNNs on
the same input [41,42]. For relational properties defined over multiple executions
of the same DNN the existing verifiers [23] reduce the verification problem into
L∞ robustness problem by constructing product DNN with multiple copies of
the same DNN. However, the relational verifier in [23] treats all k executions of
the DNN as independent and loses precision as a result of this. The SOTA DNN
relational verifier [65] (referred to as I/O formulation in the rest of the paper)
although tracks the relationship between inputs used in multiple executions
at the input layer, does not track the relationship between the inputs fed to
the subsequent hidden layers and can only achieve a limited improvement over
the baseline verifiers that treat all executions independently as shown in our
experiments. There exist, probabilistic verifiers, [60,69] based on randomized
smoothing [11] for verifying relational properties. However, these works can only
give probabilistic guarantees on smoothed models with high inference costs.

8 Conclusion

In this work, we present RACoon, a general framework for improving the precision
of relational verification of DNNs through cross-executional bound refinement.
Our experiments, spanning various relational properties, DNN architectures, and
training methods demonstrate the effectiveness of utilizing dependencies across
multiple executions. Furthermore, RACoon with cross-executional bound refine-
ment proves to exceed the capabilities of the current state-of-the-art relational
verifier [65]. Additionally, we propose CITRUS a certified training method for
training DNNs with relational properties. We show that the CITRUS can leverage
cross-executional dependencies while training producing higher clean and certified
accuracies compared to existing SOTA certifiable robust training methods. While
our focus has been on relational properties within the same DNN across multiple
executions, both RACoon and CITRUS can be extended to properties involving
different DNNs, such as local equivalence of DNN pairs [41] or properties defined
over an ensemble of DNNs. We leave that as future work.
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A Formal encoding of relational properties

A.1 k-UAP verification

Given a set of k points X = {x1, ...,xk} where for all i ∈ [k], xi ∈ Rn0 and ϵ ∈ R
we can first define individual input constraints used to define L∞ input region
for each execution ∀i ∈ [k].ϕiin(x

∗
i ) = ∥x∗

i − xi∥∞ ≤ ϵ. We define Φδ(x∗
1, . . . ,x

∗
k)

as follows:

Φδ(x∗
1, . . . ,x

∗
k) =

∧
(i,j∈[k])∧(i<j)

(x∗
i − x∗

j = xi − xj) (9)

Then, we have the input specification as Φ(x∗
1, . . . ,x

∗
k) =

∧k
i=1 ϕ

i
in(x

∗
i ) ∧

Φδ(x∗
1, . . . ,x

∗
k).

Next, we define Ψ(x∗
1, . . . ,x

∗
k) as conjunction of k clauses each defined by

ψi(yi) where yi = N(x∗
i ). Now we define ψi(yi) =

∧nl

j=1(ci,j
Tyi ≥ 0) where

ci,j ∈ Rnl is defined as follows

∀a ∈ [nl].ci,j,a =


1 if a ̸= j and a is the correct label for yi

−1 if a = j and a is not the correct label for yi

0 otherwise
(10)

In this case, the tuple of inputs (x∗
1, . . . ,x

∗
k) satisfies the input specification

Φ(x∗
1, . . . ,x

∗
k) iff for all i ∈ [k], x∗

i = xi + δδδ where δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ.
Hence, the relational property (Φ, Ψ) defined above verifies whether there is an
adversarial perturbation δδδ ∈ Rn0 with ∥δδδ∥∞ ≤ ϵ that can misclassify all k inputs.
Next, we show the formulation for the worst-case UAP accuracy of the k-UAP
verification problem as described in section 2. Let, for any δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ,
µ(δ) denotes the number of clauses (ψi) in Ψ that are satisfied. Then µ(δ) is
defined as follows

zi(δδδ) =

{
1 ψi(N(xi + δδδ)) is True
0 otherwise

(11)

µ(δδδ) =

k∑
i=1

zi(δδδ) (12)

Since ψi(N(xi + δδδ)) is True iff the perturbed input xi + δδδ is correctly classified
by N , for any δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ, µ(δδδ) captures the number of correct
classifications over the set of perturbed inputs {x1 + δδδ, . . . ,xk + δδδ}. The worst-
case k-UAP accuracy M0(Φ, Ψ) for (Φ, Ψ) is as follows

M0(Φ, Ψ) = min
δδδ∈Rn0 , ∥δδδ∥≤ϵ

µ(δδδ) (13)
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A.2 Worst case Hamming distance verification

We consider a set of k unperturbed inputs X = {x1, ...,xk} where for all i ∈ [k],
xi ∈ Rn0 , a peturbation budget ϵ ∈ R, and a binary digit classifier neural network
N2 : Rn0 → R2. We can define a binary digit string S∗ ∈ {0, 1}k as a sequence of
binary digits where each input xi to N2 is an image of a binary digit. We are
interested in bounding the worst-case hamming distance between S, the binary
digit string classified by N2, and S∗ the actual binary digit string corresponding
to the list of perturbed images ∀i ∈ [k].x∗

i = xi + δδδ s.t. δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ.
Given these definitions, we can use the Φ, Ψ and µ(δδδ) defined in section A.1
defined for k-UAP verification. In this case, the worst case hamming distance
M0(Φ, Ψ) is defined as M0(Φ, Ψ) = k − min

δδδ∈Rn0 , ∥δδδ∥≤ϵ
µ(δδδ).

B Genralization to multiple executions

Instead of a pair of executions considered above, we now generalize the approach
to any set of n executions where n ≤ k. With parametric linear approximations
{(L1, b1), . . . , (Ln, bn)} of N for all n executions, we formulate the following LP
to prove the absence of common adversarial perturbation that works for all n
executions. The proof of exactness of the LP formulation is in Appnedix Theo-
rem 6.

min t s.t. ∥δδδ∥∞ ≤ ϵ

Li
T (xi + δδδ) + bi ≤ t ∀i ∈ [n] (14)

Similar to a pair of executions, we first specify the Lagrangian dual of the LP
(Eq. 14) by introducing n lagrangian multipliers λ1, . . . , λn that satisfy for all
i ∈ [n] λi ∈ [0, 1] and

∑n
i=1 λi = 1. Subsequently, we obtain the closed form G(λλλ)

where λλλ = (ααα1, . . . ,αααn, λ1, . . . , λn) and ai(αααi) = Li(αααi)
Txi + bi(αααi) as shown

below.

G(λλλ) =

n∑
i=1

λi × ai(αααi)− ϵ×
n0∑
j=1

∣∣∣∣∣
n∑

i=1

λi × Li(αααi)[j]

∣∣∣∣∣
Theoretical results regarding the correctness and efficacy of bound computation
over n executions are in Appendix D.1.

C Genralization to a conjunction of linear inequalities

Until now, we assume for each execution the output specification is defined as
a linear inequality i.e. ciTN(xi + δδδ) ≥ 0. Next, we generalize our method to
any output specification for each execution defined with conjunction of m linear
inequalities. For example, if yi denotes the output of the i-th execution yi =
N(xi+δδδ) then the output specification ψi(yi) is given by ψi(yi) =

∧m
j=1(ci,j

Tyi ≥
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0) where ci,j ∈ Rnl . In this case, ψ(yi) is satisfied iff (min1≤j≤m ci,j
Tyi) ≥ 0.

Using this observation, we first reduce this problem to subproblems with a
single linear inequality (see Appendix Theorem 10) and subsequently characterize
the closed form G(λλλ) for each subproblem separately. However, the number of
subproblems in the worst case can be mn which is practically intractable for large
m and n. Hence, we greedily select which subproblems to use for bound refinement
to avoid exponential blow-up in the runtime while ensuring the bound refinement
remains provably correct (see Appendix D.2). Since most of the common DNN
output specification can be expressed as a conjunction of linear inequalities [68]
RACoon generalizes to them. Moreover, cross-excution bound refinement is not
restricted to L∞ input specification where ∥δδδ∥∞ is bounded and can work for
any ∥ · ∥p norm bounded perturbation (see Appendix D.3).

D Theorectical guarantees for cross-execution bound
refinement

We obtain the theoretical guarantees of cross-execution bound refinement over
n executions. Note that we do not show the theoretical guarantees for a pair of
executions separately as it is just a special case with n = 2.

D.1 Theorectical guarantees for n of executions

Theorems for LP formulation First, we show the correctness of the LP
formulation in Eq. 14 or for pair of execution in Eq. 4 (Theorem 5). We also
show that for fixed linear approximations {(L1, b1), . . . , (Ln, bn)} of N , the LP
formulation is exact i.e. it always proves the absence of common adversarial
perturbation if it does not exist (Theorem 6). In this case, Ψ(y1, . . . ,yn) =∨n

i=1(ci
Tyi ≥ 0) where the outputs of N are yi = N(xi + δδδ). Let, t∗ be the

optimal solution of the LP in Eq. 14.

Lemma 1. t∗ = min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

max
1≤i≤n

Li
T (xi + δδδ) + bi.

Proof. t∗ = min
δδδ∈Rn0 , ∥δδδ∥≤ϵ

t(δδδ) where if ∥δδδ∥∞ ≤ ϵ then t(δ) satisfies the following

constraints t(δ) ≥ Li
T (xi+δδδ)+bi for all i ∈ [n] then t(δ) ≥ max

1≤i≤n
Li

T (xi+δδδ)+bi.

Let, l∗ = min
δδδ∈Rn0 , ∥δδδ∥≤ϵ

max
1≤i≤n

Li
T (xi + δδδ) + bi.

t∗ ≥ min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

max
1≤i≤n

Li
T (xi + δδδ) + bi = l∗ (15)

Next, we show that l∗ ≥ t∗. l∗ = max1≤i≤n Li
T (xi + δδδ∗) + bi for some δδδ∗ where

δδδ∗ ∈ Rn0 and ∥δδδ∗∥∞ ≤ ϵ, then l∗ satisfies the constraints l∗ ≥ Li
T (xi + δδδ∗) + bi

for all i ∈ [n]. Since l∗ is a valid feasible solution of the LP in Eq. 14 then l∗ ≥ t∗

as t∗ is the optimal solution of the LP.
l∗ ≥ t∗ and from Eq. 15 l∗ ≤ t∗ implies l∗ = t∗.
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Theorem 5. For all δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ, if for all i ∈ [n], Li
T (xi +δδδ)+ bi ≤

ci
Tyi then (t∗ ≥ 0) =⇒ (∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒ Ψ(y1, . . . ,yn)) holds.

Proof. Since, for all i ∈ [n], Li
T (xi+δδδ)+bi ≤ ci

Tyi, for all δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ,
then min

δδδ∈Rn0 , ∥δδδ∥∞≤ϵ
max
1≤i≤n

Li
T (xi + δδδ) + bi ≤ min

δδδ∈Rn0 , ∥δδδ∥∞≤ϵ
max
1≤i≤n

ci
Tyi

t∗ = min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

max
1≤i≤n

Li
T (xi + δδδ) + bi ≤ min

δδδ∈Rn0 , ∥δδδ∥∞≤ϵ
max
1≤i≤n

ci
Tyi Using lemma 1

(t∗ ≥ 0) =⇒
(

min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

max
1≤i≤n

ci
Tyi

)
≥ 0

(t∗ ≥ 0) =⇒ (∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒ Ψ(y1, . . . ,yn))

Theorem 6.
(
∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒

∨n
i=1(Li

T (xi + δδδ) + bi ≥ 0)
)

holds if
and only if t∗ ≥ 0.

Proof. From lemma 1, t∗ = min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

max
1≤i≤n

Li
T (xi + δδδ) + bi.

(t∗ ≥ 0) =⇒
(

min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

max
1≤i≤n

Li
T (xi + δδδ) + bi

)
≥ 0

=⇒

(
∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒

n∨
i=1

(Li
T (xi + δδδ) + bi ≥ 0)

)
(16)

(t∗ < 0) =⇒
(

min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

max
1≤i≤2

Li
T (xi + δδδ) + bi

)
< 0

=⇒

(
∃δδδ ∈ Rn0 .

n∧
i=1

(Li
T (xi + δδδ) + bi < 0)

∧
(∥δδδ∥∞ ≤ ϵ)

)

¬(t∗ ≥ 0) =⇒ ¬

(
∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒

n∨
i=1

(Li
T (xi + δδδ) + bi ≥ 0)

)
(17)

Using Eq. 16 and Eq. 17, (t∗ ≥ 0) ⇐⇒
(
∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒

∨n
i=1(Li

T (xi + δδδ) + bi ≥ 0)
)
.

Details for computing the Lagrangian Dual Next, we provide the details for
computing the Lagrangian Dual of the LP formulation in Eq. 14. The Lagrangian
Dual is as follows where for all i ∈ [n], λi ≥ 0 are Lagrange multipliers.

max
0≤λi

min
t∈R,∥δδδ∥∞≤ϵ

(1−
n∑

i=1

λi)× t+

n∑
i=1

λi ×
(
LT
i (xi + δδδ) + bi

)
We set the coefficient of the unbounded variable t to 0 to avoid cases where

min
t∈R,∥δδδ∥∞≤ϵ

(1−
∑n

i=1 λi)× t+
∑n

i=1 λi ×
(
LT
i (xi + δδδ) + bi

)
= −∞. This leads to
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the following Lagrangian Dual form

max
0≤λi

min
∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
LT
i (xi + δδδ) + bi

)
where

n∑
i=1

λi = 1

For all i ∈ [n], let parametric linear approximations of N are specified by
(Li(αααi),bi(αααi)) then the Lagrangian Dual is as follows

max
0≤λi

min
∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
Li(αααi)

T (xi + δδδ) + bi(αααi)
)

where
n∑

i=1

λi = 1

Theorems for cross-execution bound refinement over n of executions
Let, the t∗appx(G) denote the solution obtained by the optimization technique
and λλλ∗appx denote the value of λλλ corresponding to t∗appx(G). Note that t∗appx(G)
can be different from global maximum t∗(G) with t∗(G) > t∗appx(G). We show
that if t∗appx(G) ≥ 0 then ∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒ Ψ(y1, . . .yn) holds where
yi = N(xi+δδδ) for all i ∈ [n]. First, we prove the correctness of the characterization
of G(λλλ).

Lemma 2. For all i ∈ [n], 0 ≤ λi ≤ 1,
∑n

i=1 λi = 1, li ⪯ αααi ⪯ ui, if λλλ =

(ααα1, . . . ,αααn, λ1, . . . , λn) then ∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒ (G(λλλ) = min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

n∑
i=1

λi×(
Li(αααi)

T (xi + δδδ) + bi(αααi)
)

where G(λλλ) =
n∑

i=1

λi×ai(αααi)−ϵ×
n0∑
j=1

∣∣∣∣ n∑
i=1

λi × Li(αααi)[j]

∣∣∣∣
and ai(αααi) = Li(αααi)

Txi + bi(αααi).

Proof. First we rewriteG(λλλ) in Eq. 18 and find the closed form on min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

n∑
i=1

λi×

Li(αααi)
Tδδδ in Eq. 21.

n∑
i=1

λi ×
(
Li(αααi)

T (xi + δδδ) + bi(αααi)
)
=

n∑
i=1

λi × ai(αααi) +

n∑
i=1

λi × Li(αααi)
Tδδδ

min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
Li(αααi)

T (xi + δδδ) + bi(αααi)
)
=

n∑
i=1

λi × ai(αααi) + min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

n∑
i=1

λi × Li(αααi)
Tδδδ

(18)

Now for fixed αααi, both Li(αααi), δδδ ∈ Rn0 are constant real vectors. Suppose for
j ∈ [n0], Li(αααi)[j] and δδδ[j] denotes the j-th component of Li(αααi) and δδδ respectively.
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Then,

Li(αααi)
Tδδδ =

n0∑
j=1

Li(αααi)[j]× δδδ[j]

n∑
i=1

λi × Li(αααi)
Tδδδ =

n0∑
j=1

(
n∑

i=1

λi × Li(αααi)[j]

)
× δδδ[j]

−ϵ×

∣∣∣∣∣
n∑

i=1

λi × Li(αααi)[j]

∣∣∣∣∣ = min
−ϵ≤δδδ[j]≤ϵ

(
n∑

i=1

λi × Li(αααi)[j]

)
× δδδ[j] (19)

min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

n∑
i=1

λi × Li(αααi)
Tδδδ =

n0∑
j=1

min
−ϵ≤δδδ[j]≤ϵ

(
n∑

i=1

λi × Li(αααi)[j]

)
× δδδ[j]

(20)

min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

n∑
i=1

λi × Li(αααi)
Tδδδ = −ϵ×

n0∑
j=1

∣∣∣∣∣
n∑

i=1

λi × Li(αααi)[j]

∣∣∣∣∣ using Eq 19 and Eq. 20

(21)

Combing Eq. 18 and Eq. 21

min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
Li(αααi)

T (xi + δδδ) + bi(αααi)
)
=

n∑
i=1

λi × ai(αααi)− ϵ×
n0∑
j=1

∣∣∣∣∣
n∑

i=1

λi × Li(αααi)[j]

∣∣∣∣∣ = G(λλλ)

Theorem 7 (Correctness of bound refinement over n executions). If
t∗appx(G) ≥ 0 then (∀δδδ ∈ Rn0 .(∥δδδ∥ ≤ ϵ) =⇒ Ψ(y1, . . .yn)) holds where yi =
N(xi + δδδ) for all i ∈ [n].

Proof. t∗appx(G) = G(λλλ∗appx) where λλλ∗appx = (ααα∗
1, . . . ,ααα

∗
n, λ

∗
1, . . . , λ

∗
n) and for all

i ∈ [n], li ⪯ ααα∗
i ⪯ ui, 0 ≤ λ∗i ≤ 1,

n∑
i=1

λ∗i = 1. Then using lemma 2 we get

G(λλλ∗appx) = min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

n∑
i=1

λ∗i ×
(
Li(α

∗α∗α∗
i)

T (xi + δδδ) + bi(α
∗α∗α∗
i)
)

(22)



Scalable Relational Verification and Training for Deep Neural Networks 31

Next we show that G(λλλ∗appx) ≤ min
δδδ∈Rn0 ,∥δδδ∥∞≤ϵ

max
1≤i≤n

ci
Tyi where yi = N(xi + δδδ).

(
Li(α

∗α∗α∗
i)

T (xi + δδδ) + bi(α
∗α∗α∗
i)
)
≤ ci

Tyi ∀i ∈ [n], yi = N(xi + δδδ) and ∥δδδ∥∞ ≤ ϵ(
Li(α

∗α∗α∗
i)

T (xi + δδδ) + bi(α
∗α∗α∗
i)
)
≤ max

1≤i≤n
ci

Tyi ∀i ∈ [n] and ∥δδδ∥∞ ≤ ϵ

n∑
i=1

λ∗i ×
(
Li(α

∗α∗α∗
i)

T (xi + δδδ) + bi(α
∗α∗α∗
i)
)
≤ max

1≤i≤n
ci

Tyi ×
n∑

i=1

λ∗i since ∀i ∈ [n], λ∗i ≥ 0 and ∥δδδ∥∞ ≤ ϵ

n∑
i=1

λ∗i ×
(
Li(α

∗α∗α∗
i)

T (xi + δδδ) + bi(α
∗α∗α∗
i)
)
≤ max

1≤i≤n
ci

Tyi since
n∑

i=1

λ∗i = 1 and ∥δδδ∥∞ ≤ ϵ

G(λλλ∗appx) = min
δδδ∈Rn0 , ∥δδδ∥∞≤ϵ

n∑
i=1

λ∗i ×
(
Li(α

∗α∗α∗
i)

T (xi + δδδ) + bi(α
∗α∗α∗
i)
)
≤ min

δδδ∈Rn0 ,∥δδδ∥∞≤ϵ
max
1≤i≤n

ci
Tyi

(23)

Using Eq. 23 we show that

(t∗appx(G) ≥ 0) =⇒ (G(λλλ∗appx) ≥ 0) =⇒
(

min
δδδ∈Rn0 ,∥δδδ∥∞≤ϵ

max
1≤i≤n

ci
Tyi

)
≥ 0

=⇒ (∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒ Ψ(y1, . . .yn))

Similar to Theorem 2, we show the optimal solution t∗(G) obtained with G(λλλ) is
always as good as t∗(G) i.e. t∗(G) ≥ t∗(G) for n executions.

Theorem 8. If t∗(G) = maxλλλG(λλλ) and t∗(G) = max
ααα1,...,αααn

G(ααα1, . . . ,αααn) then

t∗(G) ≤ t∗(G).

Proof. For any (ααα1, . . . ,αααn) satisfying li ⪯ αααi ⪯ ui for all i ∈ [n], we consider λλλi =
(ααα1, . . . ,αααn, λ1 = 0, . . . , λi = 1, . . . , λn = 0). Then G(λλλi) = min

∥δδδ∥∞≤ϵ
Li(αααi)

T (xi +

δδδ) + bi(αααi). Since, t∗(G) ≥ G(λλλi) for all i ∈ [n] then t∗(G) ≥ max
1≤i≤n

G(λλλi) =

G(ααα1, . . . ,αααn). Hence, t∗(G) ≥ max
ααα1,...αααn

G(ααα1,ααα2) = t∗(G).

Next, we characterize one sufficient condition where t∗(G) is strictly better
i.e. t∗(G) > t∗(G). Note that Theorem 9 shows one possible case where t∗(G) is
strictly better and not the only possible condition where t∗(G) > t∗(G) i.e. it is
not necessary hold if t∗(G) > t∗(G). Let, (ααα∗

1, . . . ,ααα
∗
n) be the optimal parameters

corresponding to t∗(G).

Theorem 9. If for all i ∈ [n] there exists j ∈ [n] such that (aj(α∗α∗α∗
j)−ai(α∗α∗α∗

i)) >
ϵ × (∥Lj(α

∗α∗α∗
j)∥1 − ∥Li(α

∗α∗α∗
i)∥1) or 2 × ∥Li(α

∗α∗α∗
i)∥1 − ∥Li(α

∗α∗α∗
i) + Lj(α

∗α∗α∗
j)∥1 >

ai(α
∗α∗α∗
i)

ϵ − aj(α
∗α∗α∗
j)

ϵ holds then t∗(G) > t∗(G).

Proof. Since t∗(G) = max
1≤i≤k

min
δδδ∈Rn0 ,∥δδδ∥∞≤ϵ

Li(α
∗α∗α∗
i)

Tδδδ+ai(α
∗α∗α∗
i) = max

1≤i≤k
−ϵ×

(∑n0

j=1 |Li(α
∗α∗α∗
i)[j]|

)
+

ai(α
∗α∗α∗
i). This implies t∗(G) = max

1≤i≤k
−ϵ×∥Li(α

∗α∗α∗
i)∥1+ai(α∗α∗α∗

i). Now for any i0 ∈ [n]
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if t∗(G) = −ϵ× ∥Li0(α
∗α∗α∗
i0)∥1 + ai0(α

∗α∗α∗
i0) (there exists at least one such i0) then

− ϵ× ∥Li0(α
∗α∗α∗
i0)∥1 + ai0(α

∗α∗α∗
i0) ≥ −ϵ× ∥Lj(α

∗α∗α∗
j)∥1 + aj(α

∗α∗α∗
j) ∀j ∈ [n]

2× ∥Li0(α
∗α∗α∗
i0)∥1 − ∥Li0(α

∗α∗α∗
i0) + Lj0(α

∗α∗α∗
j0)∥1 >

ai0(α
∗α∗α∗
i0)

ϵ
− aj0(α

∗α∗α∗
j0)

ϵ
for some j0 ∈ [n]

1

2
× (−ϵ× (∥Li0(α

∗α∗α∗
i0) + Lj0(α

∗α∗α∗
j0)∥1) + ai0(α

∗α∗α∗
i0) + aj0(α

∗α∗α∗
j0)) > −ϵ× ∥Li0(α

∗α∗α∗
i0)∥1 + ai0(α

∗α∗α∗
i0) = t∗(G)

(24)

t∗(G) = max
λλλ

G(λλλ) now consider λλλ = (ααα∗
1, . . . ,ααα

∗
m, λ1 = 0, . . . , λi0 = 1

2 , . . . , λj0 =

1
2 , . . . λn = 0)

t∗(G) ≥ G(λλλ) =
1

2
× (−ϵ× (∥Li0(α

∗α∗α∗
i0) + Lj0(α

∗α∗α∗
j0)∥1) + ai0(α

∗α∗α∗
i0) + aj0(α

∗α∗α∗
j0))

t∗(G) > −ϵ× ∥Li0(α
∗α∗α∗
i0)∥1 + ai0(α

∗α∗α∗
i0) = t∗(G) Using Eq. 24

One simple example where this sufficient condition holds is ai(α∗α∗α∗
i) = aj(α

∗α∗α∗
j) = 0

and Li0(α
∗α∗α∗
i0) = −Lj0(α

∗α∗α∗
j0) and −Li0(α

∗α∗α∗
i0) and −Lj0(α

∗α∗α∗
j0) are non-zero vectors.

D.2 Cross-execution bound refinement for conjunction of linear
inequalities

We consider n executions of N on perturbed inputs given by {x1+δδδ, . . . ,xn+δδδ}.
In this case, to prove the absence of common adversarial perturbation we need to
show for all i ∈ [n] the outputs yi = N(xi+δδδ) satisfy Ψ(y1, . . . ,yn) =

∨n
i=1 ψ

i(yi).
Here, ψi(yi) =

∧m
j=1(ci,j

Tyi ≥ 0) and ci,j ∈ Rnl . First, we prove lemmas
necessary for characterizing the optimizable closed form that can be used for
bound refinement.

Lemma 3. ∀δδδ ∈ Rn0 . ((∥δδδ∥∞ ≤ ϵ) =⇒ Ψ(y1, . . . ,yn)) if and only if
(

min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

ci,j
Tyi

)
≥

0 where for all i ∈ [n], yi = N(xi + δδδ), Ψ(y1, . . . ,yn) =
∨n

i=1 ψ
i(yi) and

ψi(yi) =
∧m

j=1(ci,j
Tyi ≥ 0).

Proof. We first show if
(

min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

ci,j
Tyi

)
≥ 0 then ∀δδδ ∈

Rn0 . ((∥δδδ∥∞ ≤ ϵ) =⇒ Ψ(y1, . . . ,yn)).(
min

δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)
max
1≤i≤n

min
1≤j≤m

ci,j
Tyi

)
≥ 0 =⇒ (∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒ ( max

1≤i≤n
min

1≤j≤m
ci,j

Tyi) ≥ 0)

=⇒ (∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒ ∨n
i=1(( min

1≤j≤m
ci,j

Tyi) ≥ 0))

=⇒
(
∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒ ∨n

i=1 ∧m
j=1 (ci,j

Tyi ≥ 0)
)

=⇒ (∀δδδ ∈ Rn0 . ((∥δδδ∥∞ ≤ ϵ) =⇒ Ψ(y1, . . . ,yn)))
(25)
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Next, we show if ∀δδδ ∈ Rn0 . ((∥δδδ∥∞ ≤ ϵ) =⇒ Ψ(y1, . . . ,yn)) then
(

min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

ci,j
Tyi

)
≥

0.(
min

δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)
max
1≤i≤n

min
1≤j≤m

ci,j
Tyi

)
< 0 =⇒ (∃δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) ∧ (( max

1≤i≤n
min

1≤j≤m
ci,j

Tyi) < 0))

=⇒ (∃δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) ∧ ¬(∨n
i=1ψ

i(yi)))

=⇒ ¬(∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒ Ψ(y1, . . . ,yn))
(26)

Eq. 26 is equivalent to showing the following

(∀δδδ ∈ Rn0 . ((∥δδδ∥∞ ≤ ϵ) =⇒ Ψ(y1, . . . ,yn))) =⇒
(

min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

ci,j
Tyi

)
≥ 0

Lemma 4. min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

ci,j
Tyi = min

j1∈[m],...,jn∈[m]
S(j1, . . . , jn) where

for all i ∈ [n] and ji ∈ [m] S(j1, . . . , jn) is defined as S(j1, . . . , jn) = min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

ci,ji
Tyi.

Proof. First, we show min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

ci,j
Tyi ≤ min

j1∈[m],...,jn∈[m]
S(j1, . . . , jn).

ci,ji
Tyi ≥ min

1≤j≤m
ci,j

Tyi ∀i ∈ [n] and ∀ji ∈ [m]

S(j1, . . . , jn) = min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

ci,ji
Tyi ≥ min

δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)
max
1≤i≤n

min
1≤j≤m

ci,j
Tyi ∀j1 ∈ [m], . . . , jn ∈ [m]

min
j1∈[m],...,jn∈[m]

S(j1, . . . , jn) ≥ min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

ci,j
Tyi (27)

Next, we show min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

ci,j
Tyi ≥ min

j1∈[m],...,jn∈[m]
S(j1, . . . , jn).

There exists δδδ∗ ∈ Rn0 such that ∥δδδ∗∥∞ ≤ ϵ, yi
∗ = N(xi+δδδ

∗) and max
1≤i≤n

min
1≤j≤m

ci,j
Tyi

∗ =

min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

ci,j
Tyi. Let, j∗i = argmin

1≤j≤m
ci,j

Tyi
∗ then

S(j∗1 , . . . , j
∗
n) = min

δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)
max
1≤i≤n

ci,j∗i
Tyi

S(j∗1 , . . . , j
∗
n) ≤ max

1≤i≤n
ci,j∗i

Tyi
∗ = max

1≤i≤n
min

1≤j≤m
ci,j

Tyi
∗ since j∗i = argmin

1≤j≤m
ci,j

Tyi
∗

min
j1∈[m],...,jn∈[m]

S(j1, . . . , jn) ≤ S(j∗1 , . . . , j
∗
n) ≤ min

δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)
max
1≤i≤n

min
1≤j≤m

ci,j
Tyi

(28)

Combining Eq. 27 and Eq. 28 we show min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

ci,j
Tyi =

min
j1∈[m],...,jn∈[m]

S(j1, . . . , jn).

Theorem 10. ∀δδδ ∈ Rn0 . ((∥δδδ∥∞ ≤ ϵ) =⇒ Ψ(y1, . . . ,yn)) if and only if
(

min
j1∈[m],...,jn∈[m]

S(j1, . . . , jn)

)
≥

0 where for all i ∈ [n], yi = N(xi + δδδ), Ψ(y1, . . . ,yn) =
∨n

i=1 ψ
i(yi), ψi(yi) =∧m

j=1(ci,j
Tyi ≥ 0) and S(j1, . . . , jn) = min

δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)
max
1≤i≤n

ci,ji
Tyi.
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Proof. Follows from lemma 3 and lemma 4.

Reduction to bound refinement with single linear inequality Theo-
rem 10 allows us to learn parameters for each S(j1, . . . , jn) separately so that
S(j1, . . . , jn) ≥ 0 for each (j1, . . . , jn) where each ji ∈ [m]. For S(j1, . . . , jn),
let {(Lj1(αααj1),bj1(αααj1)), . . . , (Ljn(αααjn),bjn(αααjn))} denote the linear approxima-
tions satisfying Lji(αααji)

T (xi + δδδ) + bji(αααji) ≤ ci,ji
Tyi for any δδδ ∈ Rn0 such that

∥δδδ∥∞ ≤ ϵ and lji ⪯ αααji ⪯ uji . Then we can use cross-execution bound refinement
for n executions to learn the parameters (αααj1 , . . . ,αααjn). We repeat this process for
all (j1, . . . , jn). However, the number of possible choices for (j1, . . . , jn) is mn and
learning parameters (αααj1 , . . . ,αααjn) for all possible (j1, . . . , jn) is only practically
feasible when both (m,n) are small constants. For larger values of (m,n) we
greedily pick (j1, . . . , jn) for learning parameters to avoid the exponential blowup
as detailed below.

Avoiding exponential blowup: Instead of learning parameters for all pos-
sible (j1, . . . , jn) we greedily select only single tuple (j∗1 , . . . , j∗n). For the i-th execu-
tion with ψi(yi) = ∧m

i=1(ci,j
Tyi ≥ 0), let {(Li,1(ααα

0
i,1),bi,1(ααα

0
i,1)), . . . , (Li,m(ααα0

i,m),bi,m(ααα0
i,m))}

dentoes linear approximations satisfying Li,j(ααα
0
i,j)

T (xi + δδδ) + bi,j(ααα
0
i,j) ≤ ci,j

Tyi

for all j ∈ [m] and for all δδδ ∈ Rn0 and ∥δδδ∥ ≤ ϵ. Note that for all j ∈ [m],
li ⪯ ααα0

i,j ⪯ ui are the initial values of the parameters αααi,j . Now, for we select j∗i
for each execution as j∗i = argmin

j∈[m]

min
δδδ∈Rn0 ,∥δδδ∥∞≤ϵ

Li,j(ααα
0
i,j)

T (xi + δδδ) + bi,j(ααα
0
i,j).

Intuitively, we use j∗i to determine the linear inequality ci,j∗i
T yi ≥ 0 that is

likely to be violated. For the tuple (j∗1 , . . . , j∗n), let λλλ∗appx = (ααα∗
j∗1
, . . . ,ααα∗

j∗n
, λ∗j∗1 , . . . , λ

∗
j∗n
)

denote the learned parameters (which may not correspond to global optimum).
Then we use the same parameters across all m linear approximations for the i-th
execution i.e. {(Li,1(α

∗α∗α∗
j∗i
),bi,1(α

∗α∗α∗
j∗i
)), . . . , (Li,m(α∗α∗α∗

j∗i
),bi,m(α∗α∗α∗

j∗i
))}. In this case,

t∗appx(G) is defined as t∗appx(G) = min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

Li,j(α
∗α∗α∗
j∗i
)T (xi+δδδ)+

bi,j(α
∗α∗α∗
j∗i
). Next, we prove the correctness of the bound refinement.

Theorem 11 (Correctness of bound refinement for a conjunction of lin-
ear inequalities). If t∗appx(G) ≥ 0 then ∀δδδ ∈ Rn0 . ((∥δδδ∥∞ ≤ ϵ) =⇒ Ψ(y1, . . . ,yn))

where t∗appx(G) = min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

Li,j(α
∗α∗α∗
j∗i
)T (xi+δδδ)+bi,j(α

∗α∗α∗
j∗i
) and

for all i ∈ [n], yi = N(xi + δδδ).

Proof. First we show that t∗appx(G) ≤ min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

ci,j
Tyi

Li,j(α
∗α∗α∗
j∗i
)T (xi + δδδ) + bi,j(α

∗α∗α∗
j∗i
) ≤ ci,j

Tyi ∀i ∈ [n], ∀j ∈ [m] and for all δδδ ∈ Rn0 s.t ∥δδδ∥∞ ≤ ϵ

min
1≤j≤m

Li,j(α
∗α∗α∗
j∗i
)T (xi + δδδ) + bi,j(α

∗α∗α∗
j∗i
) ≤ min

1≤j≤m
ci,j

Tyi ∀i ∈ [n] and for all δδδ ∈ Rn0 s.t ∥δδδ∥∞ ≤ ϵ

max
1≤i≤n

min
1≤j≤m

Li,j(α
∗α∗α∗
j∗i
)T (xi + δδδ) + bi,j(α

∗α∗α∗
j∗i
) ≤ max

1≤i≤n
min

1≤j≤m
ci,j

Tyi for all δδδ ∈ Rn0 s.t ∥δδδ∥∞ ≤ ϵ

min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

Li,j(α
∗α∗α∗
j∗i
)T (xi + δδδ) + bi,j(α

∗α∗α∗
j∗i
) ≤ min

δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)
max
1≤i≤n

min
1≤j≤m

ci,j
Tyi

t∗appx(G) ≤ min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

ci,j
Tyi (29)
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Using lemma 3 and Eq 29

(t∗appx(G) ≥ 0) =⇒
(

min
δδδ∈Rn0 ,(∥δδδ∥∞≤ϵ)

max
1≤i≤n

min
1≤j≤m

ci,j
Tyi

)
≥ 0

=⇒ ∀δδδ ∈ Rn0 . ((∥δδδ∥∞ ≤ ϵ) =⇒ Ψ(y1, . . . ,yn))

D.3 Handling general ∥ · ∥p norm

For general ∥ · ∥p norm we can generalize the dual formulation G(λλλ) in the
following way. Since, ∥δδδ∥p ≤ ϵ and ai(αααi) = Li(αααi)

Txi + bi(αααi) then

G(λλλ) = min
∥δδδ∥p≤ϵ

n∑
i=1

λi ×
(
Li(αααi)

T (xi + δδδ) + bi(αααi)
)

G(λλλ) =

n∑
i=1

λi × ai(αααi) + min
δδδ∈Rn0 , ∥δδδ∥p≤ϵ

n∑
i=1

λi × Li(αααi)
Tδδδ

G(λλλ) =

n∑
i=1

λi × ai(αααi)− ϵ×

∥∥∥∥∥
n∑

i=1

λi × Li(αααi)

∥∥∥∥∥
q

Using Hölder’s Inequality with
1

q
= 1− 1

p

D.4 MILP formulations and correctness

In this section, we show the MILP formulations for the k-UAP and worst-case
hamming distance verification and present the theoretical results corresponding
to the correctness and efficacy of the MILP formulations.

Let I = {i | non-relational verifier does not verify (ϕi, ψi)} denotes the execu-
tions that remain unverified by the non-relational verifier. For all i ∈ I, j ∈ [m] let
(Lk′

i,j , b
k′

i,j) denote the linear approximations satisfying Lk′

i,j(xi +δδδ)+ b
k′

i,j ≤ ci,j
Tyi

for all δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ where k′ ≤
∑k1

i=1

(
k0

i

)
+1 and yi = N(xi+δδδ). Note

that each linear approximations (Lk′

i,j , b
k′

i,j) are obtained by the non-relational
verifier or by the cross-execution bound refinement.

MILP formulations MILP formulation for k-UAP:

min M

∥δδδ∥∞ ≤ ϵ

Lk′

i,j(xi + δδδ) + bk
′

i,j ≤ oi,j ∀i ∈ I, ∀j ∈ [m] ∀k′

zi =

((
min
j∈[m]

oi,j

)
≥ 0

)
for all i ∈ I zi ∈ {0, 1}

k = k − |I| [number of executions verified by non-relational verifier]

M =
∑
i∈I

zi + k (30)
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MILP formulation for worst-case hamming distance:

max M

∥δδδ∥∞ ≤ ϵ

Lk′

i,j(xi + δδδ) + bk
′

i,j ≤ oi,j ∀i ∈ I, ∀j ∈ [m] ∀k′

zi =

((
min
j∈[m]

oi,j

)
≥ 0

)
for all i ∈ I zi ∈ {0, 1}

M = |I| −
∑
i∈I

zi

Correctness for eliminating individually verified executions: We formally
prove that eliminating individually verified executions is correct and does not
lead to precision loss.

Theorem 12. M0(Φ, Ψ) = (k−|I|)+ min
δδδ∈Rn0 ,∥δδδ∥∞≤ϵ

∑
i∈I

zi(δδδ) where zi(δδδ) is defined

in Eq. 11, M0(Φ, Ψ) is defined in Eq. 13 and for all j ∈ [k]\I, ∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤
ϵ) =⇒ (zj(δ) = 1) holds.

Proof.

M0(Φ, Ψ) = min
δδδ∈Rn0 ,∥δδδ∥∞≤ϵ

k∑
i=1

zi(δδδ)

= min
δδδ∈Rn0 ,∥δδδ∥∞≤ϵ

∑
i∈([k]\I)

zi(δδδ) + min
δδδ∈Rn0 ,∥δδδ∥∞≤ϵ

∑
i∈I

zi(δδδ)

= (k − |I|) + min
δδδ∈Rn0 ,∥δδδ∥∞≤ϵ

∑
i∈I

zi(δδδ) since ∀δδδ ∈ Rn0 .(∥δδδ∥∞ ≤ ϵ) =⇒ (zj(δ) = 1)

Soundness of MILP formulation: For soundness, we show that the optimal
value of the MILP formulation (in Eq. 30) M(Φ, Ψ) is always a valid lower bound
of M0(Φ, Ψ). The soundness of the worst-case hamming distance formulation can
be proved similarly.

Theorem 13 (Sondness of the MILP formulation in Eq. 30). M(Φ, Ψ) ≤
M0(Φ, Ψ) where M(Φ, Ψ) is the optimal solution of the MILP in Eq. 30 and
M0(Φ, Ψ) is defined in Eq. 13.

Proof. We prove this by contradiction. Suppose, M(Φ, Ψ) >M0(Φ, Ψ) then there
exists δδδ∗ ∈ Rn0 such that ∥δδδ∗∥∞ ≤ ϵ and M(Φ, Ψ) > µ(δδδ∗) where µ(δδδ) defined in
Eq. 12.

For all i ∈ I, j ∈ [m] the linear approximation (Lk′

i,j , b
k′

i,j) satisfies Lk′

i,j(xi +

δδδ) + bk
′

i,j ≤ ci,j
Tyi for all δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ where k′ ≤

∑k1

i=1

(
k0

i

)
+ 1 and

yi = N(xi+δδδ). Let, z∗i (δδδ∗) =
(
min
j∈[m]

o∗i,j(δδδ
∗) ≥ 0

)
where o∗i,j(δδδ∗) = max

k′
Lk′

i,j(xi+



Scalable Relational Verification and Training for Deep Neural Networks 37

δδδ∗) + bk
′

i,j . Then M(Φ, Ψ) ≤ k +
∑
i∈I

z∗i (δδδ
∗) and µ(δδδ∗) < k +

∑
i∈I

z∗i (δδδ
∗).

µ(δδδ∗) < k +
∑
i∈I

z∗i (δδδ
∗)

=⇒
∑
i∈I

zi(δδδ
∗) <

∑
i∈I

z∗i (δδδ
∗) where zi(δδδ∗) defined in Eq. 11 (31)

Eq. 31 implies that there exist i0 ∈ I such that zi0(δδδ∗) = 0 and z∗i0(δδδ
∗) = 1.

Since zi0(δδδ∗) = 0 then there exists j0 ∈ [m] such that ci0,j0
Tyi0

∗ < 0 where
yi0

∗ = N(xi0 + δδδ∗)

min
j∈[m]

o∗i0,j(δδδ
∗) ≤ o∗i0,j0(δδδ

∗) ≤ ci0,j0
Tyi0

∗ < 0

( min
j∈[m]

o∗i0,j(δδδ
∗) < 0) =⇒ (z∗i0(δδδ

∗) = 0) Contradiction since z∗i0(δδδ
∗) = 1

Next, we show that RACoon is always at least as precise as the current SOTA
relational verifier [65]. Note that [65] uses the same MILP formulation (Eq. 30)
except instead of using k′ linear approximations {(L1

i,j , b
1
i,j), . . . , (L

k′

i,j , b
k′

i,j)} it
uses a single statically obtained linear approximation say {(L1

i,j , b
1
i,j)}.

Theorem 14 (RACoon is at least as precise as [65]). Mb(Φ, Ψ) ≤ M(Φ, Ψ)
where M(Φ, Ψ) is the optimal solution of the MILP in Eq. 30 and Mb(Φ, Ψ) is
the optimal solution from the baseline [65].

Proof. Now we show that for i ∈ I, ∀j ∈ [m] for every feasible value of the
variable oi,j in Eq. 30 is also a feasible value of the same variable oi,j in MILP
of [65]. Given ∀k′, Lk′

i,j(xi + δδδ) + bk
′

i,j ≤ oi,j then trivally oi,j satisfies condition
L1
i,j(xi+δδδ)+ b

1
i,j ≤ oi,j used by the baseline [65]. Subsequently for all i ∈ I every

feasible value of zi in Eq. 30 is also a feasible value of the same variable zi in the
MILP of [65]. Let. for all i ∈ I, Z and Zb denote the sets of all feasible values of
variables (z1, . . . , zI) from the MILP in Eq. 30 and the baseline [65] respectively.
Then Z ⊆ Zb which implies

Mb(Φ, Ψ) ≤ k − |I|+ min
(z1,...,zI)∈Zb

∑
i∈I

zi

≤ k − |I|+ min
(z1,...,zI)∈Z

∑
i∈I

zi = M(Φ, Ψ) Since Z ⊆ Zb

E Worst-case time complexity analysis of RACoon

Let, the total number of neurons in N be nt and the number of layers in N
is l. Then for each execution, the worst-case cost of running the non-relational
verifier [61] is O(l2 × n3t ). We assume that we run It number of iterations with
the optimizer and the cost of each optimization step over a set of n executions is
O(n× Co). In general, Co is similar to the cost of the non-relational verifier i.e.
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O(l2 × n3t ). Then the total cost of cross-execution refinement is O(T × It × Co)

where T =
∑k1

i=1

((
k0

i

)
× i
)
. Assuming MILP with O(k × nl) integer variables

in the worst-case takes CM (k × nl) time. Then the worst-case complexity of
RACoon is O(k × l2 × n3t ) +O(T × It × Co) + CM (k × nl).

F Details of DNN archietectures

Table 3: DNN architecture details
Dataset Model Type Train # Layers # Params

IBPSmall Conv IBP 4 60k
ConvSmall Conv Standard 4 80k
ConvSmall Conv PGD 4 80k

MNIST ConvSmall Conv DiffAI 4 80k
ConvSmall Conv COLT 4 80k
IBPMedium Conv IBP 5 400k

ConvBig Conv DiffAI 7 1.8M

IBP-Small Conv IBP 4 60k
ConvSmall Conv Standard 4 80k
ConvSmall Conv PGD 4 80k

CIFAR10 ConvSmall Conv DiffAI 4 80k
ConvSmall Conv COLT 4 80k
IBPMedium Conv IBP 5 2.2M

ConvBig Conv DiffAI 7 2.5M

F.1 Implementation Details

We implemented our method in Python with Pytorch V1.11 and used Gurobi
V10.0.3 as an off-the-shelf MILP solver. The implementation of cross-execution
bound refinement is built on top of the SOTA DNN verification tool auto_LiRPA
[62] and uses Adam [24] for parameter learning. We run 20 iterations of Adam
on each set of executions. For each relational property, we use k0 = 6 and k1 = 4
for deciding which set of executions to consider for cross-execution refinement
as discussed in section 3.2. We use a single NVIDIA A100-PCI GPU with 40
GB RAM for bound refinement and an Intel(R) Xeon(R) Silver 4214R CPU @
2.40GHz with 64 GB RAM for MILP optimization.

G Proofs

In this section, we provide formal proofs for theorems in Sections 5 and 5.

G.1 Proofs for k-Common Perturbation Bounding

In this section, we provide a formal proof for Theorem 3.
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Lemma 5. Given (x, y) ∈ X , network f : Rdin → Rdout , norm-bound ϵ ∈ R, u∗

as defined in Eq. 7, and k ∈ N s.t. Ψ(u∗, k), then

L(f(x+ u∗), y) ≤ max
u∈CX ,f (k,ϵ)

L(f(x+ u), y)

Proof. u∗ ∈ B(0, ϵ) by definition of u∗. Ψ(u∗, k) by definition of k. Therefore,
u∗ ∈ CX ,f (k, ϵ). The statement of the lemma then follows by definition of max as
∀i ∈ [j].xi ≤ max(x1, . . . , xj).

Lemma 6. Given (x, y) ∈ X , network f : Rdin → Rdout , norm-bound ϵ ∈ R, u∗

as defined in Eq. 7, and k, j ∈ N s.t. k < j, then

max
u∈CX ,f (j,ϵ)

L(f(x+ u), y) ≤ max
u∈CX ,f (k,ϵ)

L(f(x+ u), y)

Proof. If u ∈ CX ,f (j, ϵ) then we have u ∈ B(0, ϵ) and Ψ(u, j) = 1. ∀i <
j.Ψ(u, j) =⇒ Ψ(u, i) as the existence of a tuple of size j which is all mis-
classified by u means that all subsets of that tuple (sizes i < j) are misclassified
by u. Therefore, ∀k < j.u ∈ CX ,f (j, ϵ) =⇒ u ∈ CX ,f (k, ϵ) and the statement of
the lemma follows through the definition of max.

Theorem 15. Given X ⊆ Rdin × N, network f : Rdin → Rdout , u∗ as defined in
Equation (7), and norm-bound ϵ ∈ R. Let κ∗ = Ψ̂X ,f (u

∗) and

E(k, ϵ) = E
(x,y)∈X

[
max

u∈CX ,f (k,ϵ)
L(f(x+ u), y)

]
then,

max
u∈B(0,ϵ)

(
E

(x,y)∈X
[L(f(x+ u), y)]

)
≤ E(κ∗, ϵ) ≤ E(κ∗ − 1, ϵ) ≤ · · · ≤ E(1, ϵ)

Proof.

max
u∈B(0,ϵ)

(
E

(x,y)∈X
[L(f(x+ u), y)]

)
= E

(x,y)∈X
[L(f(x+ u∗), y)] (by Eq. 7)

≤ E
(x,y)∈X

[
max

u∈CX ,f (κ∗,ϵ)
L(f(x+ u), y)

]
(by Lm. 5)

= E(κ∗, ϵ) (by Def)
≤ E(κ∗ − 1, ϵ) (by Lm. 6)
. . .

≤ E(1, ϵ) (by Lm. 6)



40 D. Banerjee et al.

G.2 Proofs for LCITRUS being an upper bound for L2CP

In this section, we provide a formal proof for Theorem 4. For these proofs,
we assume a standard loss function where additive perturbations which are
adversarial incur greater loss than additive perturbations which are safe, i.e.
∀v,v′ ∈ B(0, ϵ).¬Af (x0 + v, y) ∧ Af (x0 + v′, y) =⇒ L(f(x0 + v), y0) ≤
L(f(x0 + v′), y0).

Definition 5. The adversarial set, Sf (x0, y0, ϵ) ⊆ B(0, ϵ), for a point (x0, y0)
is defined as the set of points in B(0, ϵ) which cause f to misclassify when added
to x0. That is,

Sf (x0, y0, ϵ) := {v|Af (x0 + v, y0) ∧ v ∈ B(0, ϵ)}
Further, let ¬Sf (x0, y0, ϵ) ⊆ B(0, ϵ) indicate the safe set. That is,

¬Sf (x0, y0, ϵ) := {v|¬Af (x0 + v, y0) ∧ v ∈ B(0, ϵ)}

Using the definition of an adversarial set, we can now show that the loss for
(x0, y0) over CXB ,f (2, ϵ) must occur in the adversarial set for (x0, y0).

Lemma 7. Given XB ⊆ Rdin × Z, a network f : Rdin → Rdout , a given input
(x0, y0), and norm-bound ϵ ∈ R. If CXB ,f (2, ϵ) ∩ Sf (x0, y0, ϵ) ̸= ∅ then,

L2CP(XB ,x0, y0, ϵ) = max
u∈CXB,f (2,ϵ)∩Sf (x0,y0,ϵ)

L(f(x0 + u), y0)

Proof. By definition we have that,

L2CP(XB ,x0, y0, ϵ) = max
u∈CXB,f (2,ϵ)

L(f(x+ u), y)

Let u′ be the point which maximizes the RHS of the definition above (there may
be multiple points which maximize the RHS; however, without loss of generality
assume that u′ is unique), that is

max
u∈CXB,f (2,ϵ)

L(f(x+ u), y) = L(f(x+ u′), y)

By the assumption we made for standard loss functions, we have that

max
u∈¬Sf (x0,y0,ϵ)

L(f(x+ u), y) ≤ max
u∈Sf (x0,y0,ϵ)

L(f(x+ u), y)

This implies that

max
u∈CXB,f (2,ϵ)∩¬Sf (x0,y0,ϵ)

L(f(x+ u), y) ≤ max
u∈CXB,f (2,ϵ)∩Sf (x0,y0,ϵ)

L(f(x+ u), y)

Therefore, since u′ maximizes the loss over CXB ,f (2, ϵ) the above inequality
implies that u′ ∈ CXB ,f (2, ϵ) ∩ Sf (x0, y0, ϵ). That is,

L(f(x+ u′), y) = max
u∈CXB,f (2,ϵ)∩Sf (x0,y0,ϵ)

L(f(x+ u), y)

Which gives the statement of the lemma with the definition of u′.
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Definition 6. We define the cross-input adversarial set, CIf (XB ,x0, y0, ϵ),
to be the intersection between the adversarial sets for all points in XB besides
(x0, y0). That is,

CIf (XB ,x0, y0, ϵ) :=
⋃

(xi,yi)∈XB ,xi ̸=x0

Sf (xi, yi, ϵ)

Note that, CIf (XB ,x0, y0, ϵ) = CXB/(x0,y0),f (1, ϵ).

Using the definition of CIf (XB ,x0, y0, ϵ) we can bound the maximum loss for
the current input, (x0, y0), over the intersection of CXB ,f (2, ϵ) and Sf (x0, y0, ϵ)
by maximizing the loss over the cross-input adversarial set for (x0, y0).

Lemma 8. Given XB ⊆ Rdin × Z, a network f : Rdin → Rdout , a given input
(x0, y0), and norm-bound ϵ ∈ R. Then,

max
u∈CXB,f (2,ϵ)∩Sf (x0,y0,ϵ)

L(f(x0 + u), y0) ≤ max
u∈CIf (XB ,x0,y0,ϵ)

L(f(x0 + u), y0)

Proof. Given u ∈ CXB ,f (2, ϵ) ∩ Sf (x0, y0, ϵ) by definition of CXB ,f (2, ϵ) we know
that ∃{(xi, yi), (xj , yj)} ⊆ XB .Af (xi + u, yi) ∧Af (xj + u+ yj). By definition of
Sf (x0, y0, ϵ) we know that one of xi,xj equals x0. Thus, we know that there is
at least one more input which u is adversarial for, that is ∃(xi, yi) ⊆ XB ,xi ̸=
x0.Af (xi+u, yi)∧Af (xj +u+yj). This implies that ∃(xi, yi) ⊆ XB ,xi ̸= x0.u ∈
Sf (xi, yi, ϵ). If we take the union of all the adversarial sets of all other inputs,
this union must also contain u, in other words, u ∈ CIf (XB ,x0, y0, ϵ). This gives
us that,

u ∈ CXB ,f (2, ϵ) ∩ Sf (x0, y0, ϵ) =⇒ u ∈ CIf (XB ,x0, y0, ϵ)

The statement of the lemma follows by the definition of max.

Using Lemmas 7 and 8 we now have our main result which leads to CITRUS
loss.

Theorem 16. Given XB ⊆ Rdin × Z, a network f : Rdin → Rdout , a given input
(x0, y0), and norm-bound ϵ ∈ R. Then,

L2CP(XB ,x0, y0, ϵ) ≤ max
u∈CX/(x0,y0),f (1,ϵ)

L(f(x0 + u), y0)

Proof. Case 1. CXB ,f (2, ϵ) ∩ Sf (x0, y0, ϵ) ̸= ∅

L2CP(XB ,x0, y0, ϵ) = max
u∈CXB,f (2,ϵ)∩Sf (x0,y0,ϵ)

L(f(x0 + u), y0) (by Lemma 7)

≤ max
u∈CIf (XB ,x0,y0,ϵ)

L(f(x0 + u), y0) (by Lemma 8)

= max
u∈CX/(x0,y0),f (1,ϵ)

L(f(x0 + u), y0) (by Definition 6)
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Fig. 3: Propagation for x0 and bounding boxes b00,1 and b00,m. The boxes are
propagated using IBP through each layer of the network. In the output layer,
we see that although bn0,1 does not capture the entire adversarial region for x0 it
does capture the overlapping adversarial region between x0 and x1. Compared
to IBP propagation ( ) we induce much less regularization (big blue vs. small
blue ). Depending on the size of the overlap region, SABR ( ) incurs more
regularization (medium blue ).

Case 2. CXB ,f (2, ϵ) ∩ Sf (x0, y0, ϵ) = ∅

CXB ,f (2, ϵ) ∩ Sf (x0, y0, ϵ) = ∅ implies (x0, y0) is not susceptible to any universal
perturbation which affects it and another input at the same time, that is ∀u ∈
B(0, ϵ), (xi, yi) ∈ XB ,xi ̸= x0.¬(Af (x0 + u, y0) ∧Af (xi + u, yi)). In other words,
(x0, y0) is already safe from UAPs and training on adversarial sets for other
inputs will not incur regularization.

H CITRUS Box Propagation

We illustrate the propagation process for one input, x0, in Figure 3. All boxes
can be propagated through the network using any symbolic propagation method
[51,63,19], but similarly to SABR we use Box propagation [34,19] for its speed
and well-behaved optimization problem [22]. In the output space, we visualize
the propagation of the cross-input adversarial boxes (□) and the single-input
adversarial, or SABR, box ( ). The dark red region ( ) represents the common
perturbation set between x0 and x1. We can see that at the end of the propagation
bn0,1 includes the entire overlap set even though it does not include the entire
adversarial set for x0. Even though CITRUS propagates more boxes than SABR,
many of these boxes incur no regularization (bn0,m) while other boxes include
a smaller portion of the adversarial region (bn0,1) incurring less regularization
(medium blue vs. small blue ) compared to SABR propagation ( ). We also
show IBP propagation of the entire l∞ ball and we see that CITRUS incurs
significantly less regularization (big blue ).
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Fig. 4: Comparison of average loss across the last epoch of training incurred
by same-input adversarial boxes to the sum and max of cross-input adversarial
boxes. Network trained on CIFAR-10 with ϵ = 8

255 and batch size of 8.

I Same-Input vs. Cross-Input Adversarial Boxes

Figure 1 and 3 give us some insight into why we do not propagate the same-input
adversarial box. To measure the impact of adding same-input adversarial boxes
to the loss, we record the average loss across the last epoch of training for a
convolutional network trained on CIFAR-10 with ϵ = 8/255 and a batch size of
5. We compare the loss from the same-input adversarial box (SI) with the sum
(
∑

(CI)) and max loss (max(CI)) from the 4 cross-input adversarial boxes. In
Figure 4 we see that the loss from the same-input adversarial box dominates
the loss from the other boxes substantially. This indicates that adding same-
input boxes likely incurs significant regularization and reduction in standard
accuracy. This is corroborated by our ablation study in Appendix M where we find
that adding the same-input adversarial boxes to the training process reduces the
model’s standard accuracy. We further observe that for the cross-input adversarial
boxes, the max loss is close to the sum indicating that a single large loss typically
dominates the sum.
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J Cross-executional bound improvement

(a) MNIST (PGD) (b) MNIST (DiffAI)

(c) CIFAR10 (PGD) (d) CIFAR10 (DiffAI)

Fig. 5: Lower bound (t in Eq. 14) from individual vs. cross executional bound
refinement over 2 executions on ConvSmall networks.

K CITRUS Further Experimental Setup Details

In this section, we provide details on experimental setup as well as runtimes.

K.1 Training and Architecture Details

We use a batch-size of 5 when training for all experiments in the paper. We use a
similar setup to prior works in certified training [37,33,48]. Including the weight
initialization and regularization from Shi et al. [48] and the τ/ϵ ratio from Müller
et al. [37]. We used a longer PGD search with 20 steps (vs 8 for SABR) when
selecting the centers for our propagation regions.
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Similar to prior work [37,33,48] we use a 7-layer convolutional DNN, CNN7.
The first 5 layers are convolutional with filter sizes of [64, 64, 128, 128, 128], kernel
size 3, strides [1, 1, 2, 1, 1], and padding 1. Then followed by two fully connected
layers of size 512 and one with size of the output dimension.

K.2 Training/Verification Runtimes

Table 4: CITRUS training run-
times.

Dataset ϵ Time (mins)

MNIST 0.1 527
0.3 492

CIFAR-10 2/255 1004
8/255 1185

TinyImageNet 1/255 3583

All experiments were performed on a desktop
PC with a GeForce RTX(TM) 3090 GPU and
a 16-core Intel(R) Core(TM) i9-9900KS CPU
@ 4.00GHz. The training runtimes for different
datasets and ϵs can be seen in Table 4. Training
for times for CITRUS are roughly linear to
batch-size and SABR runtimes, for example,
SABR takes around 238 minutes to train on the
same hardware for CIFAR-10 and ϵ = 8/255
which is 4.21× less than CITRUS. Verification
for CITRUS trained networks on the entire
test dataset takes around 8h for MNIST, 11h
for CIFAR-10, and 18h for TinyImageNet for
each network.

L Comparison to Universal Adversarial Training

In Table 5 we compare the performance of CITRUS to universal and standard
adversarial training methods. We compare to standard single-input PGD adver-
sarial training [32]. Universal Adversarial Training (UAT) introduced by Shafahi
et al. [47] introduces an efficient way to perform adversarial training against
UAPs. Benz et al. [5] introduces a class-wise variant of the UAT algorithm which
improves performance. We compare against all of these methods in Table 5 on
CIFAR-10 with ϵ = 8/255. We observe that while these methods obtain good
standard accuracy (94.91% for CW-UAT compared to 63.12% for CITRUS) they
perform poorly for certified average UAP accuracy (1.51% for CW-UAT com-
pared to 39.88% for CITRUS). Our observation for the certified UAP accuracy of
adversarial training is consistent with other studies which show that the standard
certified accuracy of adversarial training based methods is low [34].

M CITRUS Ablation Studies

Propagation Region Size. To study the effect of different values of τ we vary
the ratio of τ/ϵ ∈ [0.3, 0.9] keeping all other training parameters constant. We
perform our experiment on CIFAR-10 with ϵ = 8

255 . In Figure 6, we see that
increasing the ratio tends to decrease the final standard accuracy and increases
the certified average UAP accuracy. Larger boxes capture more of the true
adversarial region but they also incur more regularization.
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Fig. 6: Comparison of standard accuracy and certified average UAP accuracy
across different ratios of τ/ϵ for CITRUS on CIFAR-10 with ϵ = 8

255 .

Fig. 7: Comparison of standard accuracy and certified average UAP accuracy
across different batch sizes for CITRUS on CIFAR-10 with ϵ = 8

255 .

Fig. 8: Ablation studies on values of τ and batch size.
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Table 5: Comparison of standard accuracy (Std) and certified average UAP
accuracy (UCert) for different universal and standard adversarial training methods
on the full CIFAR-10 test sets. A variation on [64] is used for certified worst-case
UAP accuracy.

Dataset ϵ Training Method Source Std [%] UCert [%]

CIFAR-10 8
255

PGD Madry et al. [32] 87.25 0.0
UAT Shafahi et al. [47] 94.28 0.87
CW-UAT Benz et al. [5] 94.91 1.51
CITRUS this work 63.12 39.88

Training Batch Size. CITRUS trains each input to be robust on the adversarial
regions coming from other inputs in the batch. To study the effect of batch size
on overall training performance, we vary the batch size from 2 to 10 keeping all
other training parameters constant. We perform our experiment on CIFAR-10
with ϵ = 8

255 . In Figure 7, we see that increasing the batch size tends to decrease
the standard accuracy but increases the certified average UAP accuracy. A batch
size of 2 means that each input only sees the adversarial region from 1 other
input, so the certified average UAP accuracy is low. This quickly increases then
stabilizes. We also note a linear relationship in runtime as more inputs per batch
mean that we have to propagate more boxes through the network for each input.
Same-Input Adversarial Boxes. To compare the effect of adding same-input
adversarial boxes to CITRUS training, visualized in Figure 1 c) compared to
Figure 1 d), we train a network on CIFAR-10 with ϵ = 8/255 using CITRUS but
include same-input adversarial boxes while training. In Table 6, we observe that
adding

Table 6: Comparing the effect
of adding same-input adversarial
boxes (CITRUS + SI) to CIT-
RUS on CIFAR-10 with ϵ = 8

255 .

Method Std [%] UCert [%]

CITRUS 63.12 39.88
CITRUS + SI 50.24 40.06

same-input adversarial boxes results in a severe
reduction in standard accuracy and a slight in-
crease in certified average UAP accuracy. CIT-
RUS + SI has similar performance to SABR.
Figure 4 shows the average loss coming from
same-input adversarial boxes dominates the
loss coming from cross-input adversarial boxes
which explains why adding same-input adver-
sarial boxes to CITRUS yields similar perfor-
mance to SABR.


	Scalable Relational Verification and Training for Deep Neural Networks

