
© 2024 Shaurya Gomber

NEURAL ABSTRACT INTERPRETATION:
LEVERAGING NEURAL NETWORKS FOR AUTOMATED, EFFICIENT AND

DIFFERENTIABLE ABSTRACT INTERPRETATION

BY

SHAURYA GOMBER

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2024

Urbana, Illinois

Advisor:

Assistant Professor Gagandeep Singh

ABSTRACT

Abstract Interpretation is a popular technique for formally analyzing the properties of

programs, neural networks, and complex real-world systems. However, designing efficient

abstract transformers for expressive relational domains such as Octagon and Polyhedra is

hard as one needs to carefully balance the fundamental tradeoff between the cost, soundness,

and precision of the transformer for downstream tasks. Further, scalable implementations in-

volve intricate performance optimizations like Octagon and Polyhedra decomposition. This

motivates the need for the automatic generation of efficient, sound, and precise abstract

transformers. Given the inherent complexity of abstract transformers and the proven capa-

bility of neural networks to effectively approximate complex functions, this thesis envisions

and proposes the concept of Neural Abstract Transformers : neural networks that serve as

abstract transformers. The Neural Abstract Interpretation (NeurAbs) framework introduced

in this thesis provides supervised and unsupervised methods to learn efficient neural trans-

formers automatically, which reduces development costs. These neural transformers can then

act as a fast and sometimes even more precise replacement for slow and imprecise hand-

crafted transformers. Additionally, these neural transformers are differentiable as opposed

to the hand-crafted ones. This enables differentiable abstract interpretation and allows for

the use of gradient-guided learning methods to solve problems that can be posed as learn-

ing tasks. We instantiate the NeurAbs framework for two widely used numerical domains:

Interval and Octagon. Evaluations on these domains demonstrate the effectiveness of the

NeurAbs framework to learn sound and precise neural transformers. We further demonstrate

the advantages of differentiability of neural transformers by formulating the task of invari-

ant generation as a learning problem and then using the learned neural transformers in the

Octagon domain to generate valid octagonal invariants.

ii

”To my parents, grandparents, and sister: For their infinite love and support throughout.”

iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Professor Gagandeep Singh. This

work would not have been possible without his constant guidance. When I began my MS,

I had little knowledge of program analysis or abstract interpretation. It was through inter-

actions with him and his courses that my interest in program analysis was sparked, and for

this, I will always be thankful. Our discussions have always been a joy, and I am continually

impressed by his depth of knowledge and innovative ideas. I cannot be more excited to start

my PhD and continue working with him.

In addition to this thesis, during my MS, I had the opportunity to work on several other

projects. I want to extend my gratitude to Professor Mahesh Viswanathan and Professor

Madhusudan Parthasarathy for their guidance on those projects and to Adithya Murali for

being an excellent collaborator and guide! I also thank Professor Elsa Gunter for the delight-

ful two semesters I spent TAing her course (CS421) and Kevin Cheang, my unwaveringly

supportive manager during my 2023 summer internship at AWS.

My time in Champaign would not have been nearly as enjoyable without the amazing

friends I made here. First and foremost, I would like to thank Nirav for being the best

flatmate I could ever hope for and for all the time we spent randomly discussing life and

eating out. I am also very grateful and thankful to: Mayank, Atharv, and Abhilash for

the squash/gym sessions as well as all the parties, dinners, and infinite chatter on random

stuff; Pratik for his homemade food and his mature advices; Ajay for the candid and deep

conversations; Ishika for her lively presence and banter at FEs every Friday; Aditya and

Shradha for being awesome 501 E party hosts and Jayant, Seemandhar, and Brinda for the

trips and random hangouts. I also want to thank my lab friends: Aval, Debangshu, Yasmin,

and Shubham, who made working so much fun.

Lastly, and most importantly, I am immensely grateful to my parents, Dr. Meenakshi

Gomber and Dr. Gaurav Gomber, as well as my grandparents, Saroj Gomber and DV

Gomber, and my sister, Snigdha Gomber. These five individuals are my pillars of strength,

showering me infinite love and support throughout my life. Whatever I achieve or have

achieved is solely due to their unwavering support and guidance. I will always be indebted

to them and aspire to make them proud.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 5
2.1 Abstract Interpretation . 5
2.2 Abstract Transformers . 7
2.3 Sound, But Incomplete Analysis . 9
2.4 Numerical Abstract Domains . 10

CHAPTER 3 GENERAL FRAMEWORK . 13
3.1 Abstract Transformers Learning Problem . 13
3.2 Neural Abstract Transformers . 14
3.3 Supervised Learning of Neural Transformers 15
3.4 Unsupervised Learning of Neural Transformers 17
3.5 Soundness Precision Trade-off . 21

CHAPTER 4 INSTANTIATION FOR NUMERICAL DOMAINS 22
4.1 Interval Domain . 22
4.2 Octagon Domain . 25

CHAPTER 5 EVALUATION . 32
5.1 Neural Interval Transformers: Soundness & Precision 32
5.2 Neural Octagon Transformers: Soundness & Precision 34
5.3 Differentiable Learning of Loop Invariants 37

CHAPTER 6 RELATED WORKS . 39
6.1 Learning Abstract Transformers . 39
6.2 Neural Surrogates . 39

CHAPTER 7 CONCLUSION AND FUTURE WORKS 40
7.1 Conclusion . 40
7.2 Future Works . 40

REFERENCES . 41

APPENDIX A PROOFS . 44

v

CHAPTER 1: INTRODUCTION

Abstract Interpretation [1] is a popular technique for formally analyzing the properties of

programs [2, 3], neural networks [4, 5], and complex real-world systems [6]. Abstract Inter-

pretation works by soundly approximating the concrete semantics of the system (concrete

domain C) within a “suitably finite” domain, called the abstract domain (A). The “finite-

ness” of the abstract domain allows us to reason about all possible executions of the systems

efficiently. For example, consider a case where we map program variables, which can assume

integer values, to elements in the abstract domain AEven/Odd = {Even,Odd,⊤,⊥}. Vari-

ables that are definitively even can be represented as Even, while those that are definitively

odd can be denoted as Odd. The symbol ⊤ is used to denote variables that might be either

even or odd, and ⊥ represents the state where we have no information about the variables

(such as uninitialized variables). Such a domain can help us reason about properties that

depend on the odd/even parity of program variables.

Figure 1.1: Interpreting the set of integers in the Even/Odd domain AEven/Odd

Analyzing programs in the abstract domain also requires functions ôp that transform one

abstract state to another, corresponding to operations op in the concrete domain. ôp is

known as the Abstract Transformer corresponding to op and should soundly approximate

the behavior of op for correctness of the analysis. In our previous example of AEven/Odd, say

there is a program statement z = x+y, where + is the addition operator on the integers. As

we abstract the variables x, y into elements from AEven/Odd, we need to define +̂ that works

on elements x̂, ŷ from the abstract domain and capture the semantics of +. For example,

1

as we know, adding two even numbers gives us an even number. So, Even +̂ Even = Even.

Similarly, it is easy to see that the following definition of +̂ captures the concrete semantics

of + soundly:

aaaaaa
x̂ ŷ Even Odd ⊤ ⊥
Even Even Odd ⊤ ⊥
Odd Odd Even ⊤ ⊥
⊤ ⊤ ⊤ ⊤ ⊥
⊥ ⊥ ⊥ ⊥ ⊥

Table 1.1: Semantics of +̂ for AEven/Odd

The choice of the abstract domain is usually based on the specific properties to be proven.

For example, in the analysis of numerical programs, abstract domains such as Octagons

[7] and Polyhedra [8] are beneficial for verifying intricate program properties because they

account for inter-variable dependencies, unlike the Interval domain [9], which solely repre-

sents variable bounds. However, designing efficient abstract transformers for these expressive

relational domains is not trivial and is tedious because of the following reasons:

1. Ensuring Soundness. While designing abstract transformers, it is necessary to en-

sure its soundness on all elements in the abstract domain A. This is essential to

maintain the soundness of the abstract interpretation analysis.

2. Computational complexity. Sound and most precise implementations of abstract

transformers for operations such as join in the Polyhedra and the Octagon domain

are computationally expensive. Polyhedra join involves taking the convex hull of two

polyhedra, whose time complexity is exponential in the number of variables in the

program (O(nm2n+1
) where n is the number of variables and m is the number of

constraints) [10]. Octagon join involves taking the closure of the octagon whose time

complexity is O(n3) ([7]). Using these implementations makes the task of program

analysis expensive and, thus, less scalable.

3. Intricate optimizations. Scalable implementations of transformers require perfor-

mance optimizations like Octagon and Polyhedra decomposition [10, 11]. Implement-

ing such optimizations can be a very intricate task, thus requiring a lot of manual

effort and increasing the chances of soundness bugs.

4. Handling Imprecision. For some operators, like affine assignment in the octagon

domain ([7]), it is hard to implement efficient abstract transformers without losing pre-

2

cision. The efficient implementations of such transformers can thus be very imprecise,

which makes the overall task of program analysis using these transformers less precise.

To mitigate these issues and to automate the task of designing efficient abstract transform-

ers, we propose a data-driven learning approach to generate efficient abstract transformers.

Given the inherent complexity of abstract transformers and the proven capability of neural

networks to effectively approximate complex functions [12, 13], this thesis introduces the

Neural Abstract Interpretation (NeurAbs) framework to learn Neural Abstract Trans-

formers: neural networks that serve as the abstract transformers. The NeurAbs framework

has the following advantages:

1. Automatic Generation of Transformers. The NeurAbs framework proposes su-

pervised and unsupervised approaches to learn neural abstract transformers from data

while also giving ways to fine-tune and balance the soundness-precision tradeoff. This

provides an automated way to generate transformers and eases development costs.

2. Fast and Precise Transformers. The learned neural transformers can act as a

fast and sometimes even more precise replacement for slow and imprecise hand-crafted

transformers, thus making the downstream analysis tasks more scalable and precise.

Unsound cases can be handled by resorting to hand-crafted transformers’ outputs.

3. Differentiable Transformers. Additionally, the neural transformers are differen-

tiable as opposed to the hand-crafted ones, enabling their use with gradient-guided

learning methods, which can be beneficial for tasks that can be posed as learning

problems. This opens up the avenue for differentiable abstract interpretation. One

example of this can be the task of generating valid octagonal invariants for a loop

program, which we describe in Section 5.3.

The main contributions of this thesis are summarized as follows.

1. Problem Formulation. We pose the problem of learning sound and precise abstract

transformers as an optimization problem (Sec. 3.1). We also point out why the general

optimization problem is hard to solve.

2. General FrameworkWith Relaxations. We introduce a general framework NeurAbs

(Sec. 3) that proposes supervised (Sec. 3.3) and unsupervised (Sec. 3.4) learning ap-

proaches as a relaxation of the general optimization problem. To the best of our

knowledge, we are the first work to propose such relaxation, thus enabling the learning

and use of neural abstract transformers.

3

3. Evaluation. We instantiate our NeurAbs framework for the Interval and the Octagon

domain (Sec. 4). We demonstrate the effectiveness of our supervised and unsupervised

learning methods by learning sound and precise neural transformers for operators in

the Interval (Sec. 5.1) and Octagon domains (Sec. 5.2). We also demonstrate how

the differentiability of the neural transformers can help us pose and solve the task of

generating valid octagonal invariants for loop programs as a learning problem (Sec. 5.3).

The thesis is organized as follows:

• Chapter 2 provides essential background knowledge on Abstract Interpretation and

Abstract Transformers.

• Chapter 3 explains the supervised and unsupervised learning relaxations proposed by

our NeurAbs framework.

• In Chapter 4, we demonstrate how our NeurAbs framework can be instantiated for the

Interval and Octagon domains.

• In Chapter 5, we evaluate the efficacy of our framework in learning sound and precise

neural transformers for the Interval and Octagon domains. We also demonstrate the

benefits of the differentiability of the learned neural transformers by posing the task

of invariant generation as a learning problem.

• Chapter 6 covers some related works in the area of learning abstract transformers and

neural surrogates.

• Chapter 7 serves as the conclusion of the thesis, where we discuss potential improve-

ments and future avenues for exploration.

4

CHAPTER 2: BACKGROUND

This section begins with a brief introduction to Abstract Interpretation, highlighting the

concepts of Abstraction and Concretization functions and their required relationship through

the Galois connection to maintain the soundness of abstract interpretation. Following this,

we introduce Abstract Transformers, discussing their soundness and precision—key aspects

needed to understand the problem we address. We then discuss how Abstract Interpretation

allows for sound but incomplete analysis of programs. The section wraps up with an overview

of two abstract numerical domains utilized in our evaluation: Interval and Octagon.

2.1 ABSTRACT INTERPRETATION

Proving various properties of programs and establishing their correctness is undecidable

in general. So, to make the verification process tractable, program analyzers typically work

on an abstraction of the program, which over-approximates the semantics of the original

program. This technique is known as Abstract Interpretation [1]. Abstract Interpretation

is the theory of the sound approximation of the semantics and states of programs (Concrete

Domain C) through elements belonging to an alternative domain, commonly referred to as

the Abstract Domain (A). The core concept of Abstract Interpretation is that it effectively

“partially executes” the program within the abstract domain A. The abstract domain A is

chosen in a way such that it is “suitably finite”. This “finiteness” ensures that analyzing the

program’s semantics and states within the domain A provides a concise yet sound analysis

of all potential program executions. This enables us to provide formal guarantees concerning

the presence or absence of certain bugs and the verification of specific properties.

Abstraction and Concretization Functions. The abstraction function α : P(C) → A
maps sets of elements in the concrete domain to values in the abstract domain. On the

other hand, the concretization function γ : A → P(C) maps abstract elements back to the

set of concrete elements they represent. For instance, the abstraction and the concretization

functions used for abstracting integers Z using the interval abstract domain AIntv are illus-

trated in Fig 2.1. In this case, α maps sets of integers to the smallest interval that contains

all integers from the set. For e.g., α({−2, 1, 2}) = [−2, 2]. Conversely, γ maps the intervals

to the largest set of integers that the interval abstracts. So, γ([−2, 2]) = {−2,−1, 0, 1, 2}.
This also demonstrates the loss of precision that arises when using abstractions as the set

{−2, 1, 2} was abstracted using [−2, 2], which, when concretized, gives {−2,−1, 0, 1, 2}. This
set has all integers from the original set, but also new integers that are added because of the

5

Figure 2.1: Abstraction and Concretization Functions to abstract integers in the interval
domain. It also demonstrates the loss of precision introduced by concretizing back the
abstract elements as the set returned after concretizing [−2, 2] has elements that were not
there in the original set.

loss of precision introduced when concretizing the abstract elements.

Galois Connection. We require that our analysis using abstract interpretation is sound,

i.e., the analysis in the abstract domain safely over-approximates the semantics of the con-

crete domain. This can be ensured if the concrete and abstract domains are connected by

the Galois Connection, which is defined as follows:

Definition 2.1. Let PC = (P(C),⊑C) be the poset on the power set of states in the concrete

domain C and PA = (A,⊑A) be the poset on the set of states in the abstract domain A,

then α and γ are connected by the Galois connection iff:

∀x ∈ P(C). ∀z ∈ A. α(x) ⊑A z ⇐⇒ x ⊑C γ(z) (2.1)

Intuitively, this means that α and γ respect the orderings of P(C) and A as illustrated in

Fig 2.2. The following directly follows from the above definition (by substituting z = α(x)):

∀x ∈ P(C). x ⊑C γ(α(x)) (2.2)

This means that, for the soundness of the analysis, the set of concrete states obtained by

concretizing the abstraction of any set should at least contain that set. The rest of the states

not there in the original set lead to the imprecision discussed above.

6

Figure 2.2: Galois Connection

2.2 ABSTRACT TRANSFORMERS

Analyzing programs in the abstract domain requires functions that transform elements in

the abstract domain as a result of operations applied in the concrete domain. Such functions

are known as Abstract Transformers. Abstract Transformer corresponding to an operation

op in the concrete domain (C) is a function ôp : A → A that captures the effect of applying

op to concrete states corresponding to an abstract state in A.

Soundness of Abstract Transformers. For the analysis to be sound, the abstract

transformer ôp should be sound, i.e., it should over-approximate the output of the concrete

operator op. When the powerset of concrete states P(C) is related toA by a Galois connection

P(C)
γ

⇆
α

A, the soundness condition for ôp can be mathematically defined as:

∀z ∈ A. α(op(γ(z))) ⊑A ôp(z) (2.3)

This means that if we start from any abstract state z and perform the following:

1. Concretize it to get the set of concrete states represented by it: γ(z).

2. Get the concrete states obtained by applying op on those concrete states: op(γ(z)).

3. Get the abstraction for the set of concrete states obtained in Step 2: α(op(γ(z))).

Then the value returned by the abstract transformer ôp should always over-approximate

7

Figure 2.3: Soundness of Abstract Transformer ôp

α(op(γ(z))), because intuitively, α(op(γ(z))) represents the smallest abstract element that

covers all possible concrete values that can be generated by op. Cousot et. al. in [1] refer to

α(op(γ(z))) as the most-precise abstract transformer ôp# (or the “best transformer for op”).

So, any abstract transformer for operator op is sound if it over-approximates ôp#.

Given that α and γ are related by the Galois connection (Eq 2.1), the soundness condition

in Eq. 2.3 can be re-written only in terms of γ as follows:

∀z ∈ A. op(γ(z)) ⊑C γ(ôp(z)) (2.4)

We will be using this definition of the soundness of abstract transformers in this work.

Precision of Abstract Transformers. Soundness of abstract transformers is a nec-

essary condition for sound analysis using abstract interpretation. However, sound abstract

transformers can be naively defined by always returning ⊤ (top) as the output of the abstract

transformer. The top element of a set (lattice) is the greatest element in the set. Intuitively,

this means that the abstract transformer always returns the abstract state that corresponds

to all possible concrete states (the complete set C). Clearly, such transformers will always

maintain soundness. However, the significant imprecision that results makes it less useful

for subsequent analysis tasks. For practical applications, it is necessary for the transformer

to be both sound and as precise as possible. The precision of ôp is essentially indicative of

8

the degree of over-approximation due to ôp and can be quantified by some measure of the

size of the abstract element computed by ôp.

2.3 SOUND, BUT INCOMPLETE ANALYSIS

Using an example, let’s demonstrate how abstract interpretation facilitates the sound (but

incomplete) analysis of programs. Consider, for example, the simple function f in Fig 2.4.

def f(x,y):

a = x + y;

b = x - y;

c = a - b;

return c

Figure 2.4: Simple program

Say we need to verify that the output c of the function al-

ways satisfies c ≥ −2 for all possible input pairs (x, y), where

x varies between [0, 7] and y from [3,∞]. Due to the infinite

possibilities for input pairs, manually testing f for each com-

bination to validate this property is impractical. This is where

Abstract Interpretation is utilized. Employing the Interval Ab-

stract Domain, , we can represent all possible values of x and

y with the abstract elements x̂ = [0, 7] and ŷ = [3,∞]. This

enables an abstract execution of the function within the Interval domain, analyzing it line

by line as follows:

â = x̂+ ŷ = [0, 7] + [3,∞] = [3,∞] (2.5)

b̂ = x̂− ŷ = [0, 7]− [3,∞] = [0, 7] + [−∞,−3] = [−∞, 4] (2.6)

ĉ = â− b̂ = [3,∞]− [−∞, 4] = [3,∞] + [−4,∞] = [−1,∞] (2.7)

Here, +̂ and −̂ denote the sound abstract transformers for the + and − operators, re-

spectively. The analysis results indicate that the value of c spans from [−1,∞]. Given that

both the abstract domain and the sound abstract transformers over-approximate the actual

values, we can conclude that all potential values for c are indeed within the range of [−1,∞].

This over-approximation confirms that c will always be greater than or equal to -2, hence

proving the property.

Incompleteness. The analysis based on abstract interpretation is sound; therefore, if a

property is verified using this method, the property is indeed valid. However, the analysis is

not complete, i.e., failure to verify a property does not necessarily imply that the property

is invalid. For example, in the program above, it can be checked that c = 2 ∗ x, and so for

x in [0, 7], c would be from [0, 14]. So properties like c ≥ 0 and c ≤ 14 also hold. But our

analysis using the interval abstract domain gives us the range of c as [−1,∞], which can not

be used to prove c ≥ 0 or c ≤ 14, even if they hold. However, note that the analysis did

a correct over-approximation as ([0, 14] ∈ [−1,∞]) but the imprecision introduced by the

9

(a) If over-approximation proves the prop-
erty, the property holds.

(b) The property can also hold even if the
over-approximation does not prove it.

Figure 2.5: Analysis using over-approximation is sound but not complete

over-approximation does not allow us to verify some properties which actually hold.

2.4 NUMERICAL ABSTRACT DOMAINS

Numerical abstract domains abstract a set of numbers. While analyzing programs, these

sets of numbers can be the possible values that the program variables can take. Numerical

abstract domains can be used to prove various properties of numerical programs. Next, we

introduce some commonly used numerical domains.

2.4.1 Interval Domain

In the Interval domain, a set of numbers is abstracted by the smallest interval that con-

tains those numbers. For e.g, the set {−1.2, 2.3, 4.9, 2} will be abstracted by the interval

[−1.2, 4.9]. If a program has n variables, then we would have n intervals where the ith in-

terval would abstract the set of possible values of the ith variable. The interval domain,

thus, is a non-relational domain, as the relationship between the variables is not maintained

due to the independent representation as intervals. Consider a simple program with two

statements: x = a + b ; y = a − b. If the initial interval for a and b are [1, 2], then the

resulting interval for x will be [2, 4] and for y, it will be [−1, 1] (given by [1, 2] + [−2,−1]).

The final state x ∈ [2, 4] and y ∈ [−1, 1] consists of state where x = 4 and y = 1. But note

that this is impossible in the program as if x = 4, a, and b have to be 2, and thus y has to be

0. However, the Interval domain does not maintain the relationship between the variables

and treats them independently. This is also why it is very imprecise (as seen in Fig 2.6).

10

Figure 2.6: Abstracting the set of black dots using the different abstract domains ([14]).
The crosses indicate the extra points that are added in the abstraction and that lead to
imprecision. As we go right, the precision increases but so does the domain complexity.

Abstract transformers for the interval domain operate on intervals. For e.g., if the program

has a statement z = abs(x), then the abstract transformer for abs (given by ˆabs) would take

in an interval [l1, u1] and return a new interval [l2, u2] such that it contains absolute of all

values in [l1, u1]. For e.g, ˆabs([1, 3]) would return [1, 3], ˆabs([−4,−1]) would return [1, 4] and

that ˆabs([−10, 2]) would return [0, 10]. It is easy to check that for a general [l, u], ˆabs([l, u])

is given by [max(max(0, l),−u),max(−l, u)]. Similarly, the abstract transformer for the join

of two intervals [l1, u1] and [l2, u2] will return an interval that contains both the intervals

and is given by [min(l1, l2),max(u1, u2)].

2.4.2 Octagon Domain

In the octagon domain, the set of possible program states is abstracted using a octagon

shape. Given program variables v1, v2, . . . vn, the octagon shape is represented by a set of

inequalities between the variables where the inequalities can only be of the following types:

1. ±vi ± vj ≤ cij: Between any 2 variables and the coefficients can only be ±1.

2. ±vi ≤ di: Bounds on the positive or negative value of a variable.

The Octagon domain is a weakly relational domain as it allows a limited number of

relations to be captured and, thus, is more precise than the Interval domain.

11

Abstract transformers for the octagon domain operate on octagons. For example, the

join of two octagons oct1 and oct2 returns an octagon that contains both the octagons.Two

octagons can be joined by taking the max of all inequality constants, i.e., if oct1 has vi−vj ≤
c1 and vi−vj ≤ c2, then the join will have vi−vj ≤ max(c1, c2). If the inequality is not there

in either one of them, then it would not be in the join as well. However, to keep the results

of the join precise, the closure operation is first performed on both the octagons. The closure

operator tightens the inequalities in an octagon by making the explicit constraints implicit

and is frequently used to make octagon operations precise. However, it is computationally

expensive with time complexity O(n3) ([7]). Other transformers, like affine assignment in

the octagon domain, take an octagon o and return the resultant octagon o′ after computing

expressions such as z = a ∗ x+ b ∗ y.

2.4.3 Polygon Domain

In the polygon domain, program states are abstractly represented by a polygon shape,

which is defined through a set of inequalities among program variables v1, v2, . . . , vn. This

domain does not impose constraints on the types of inequalities used, unlike the octagon

domain. As such, the polygon domain qualifies as a relational domain that precisely encap-

sulates all relationships between the variables. The lack of restrictions on the inequalities

allows for high precision but also leads to the complexity of abstract transformers, such as

the join operation. Specifically, performing a join in the polyhedra domain involves calculat-

ing the convex hull of two polyhedra, a process with an exponential time complexity relative

to the number of variables, expressed as O(nm2n+1
), where n is the number of variables and

m is the number of constraints [10].

12

CHAPTER 3: GENERAL FRAMEWORK

In this chapter, we will first formulate the problem of learning sound and precise abstract

transformers as an optimization problem and discuss why it is a hard problem to solve. We

then introduce the novel concept of Neural Abstract Transformers, which are neural

networks that serve as abstract transformers. We then propose supervised and unsupervised

relaxations of the general optimization problem, which enables the learning and use of neural

abstract transformers.

3.1 ABSTRACT TRANSFORMERS LEARNING PROBLEM

The general problem of learning abstract transformers that are simultaneously sound and

precise is notably difficult. For instance, consider the task of learning the sound and most-

precise abstract transformer ôp from a set of functions F for an operator op. As defined

by Cousot et. al. in [1], we represent the “most-precise abstract transformer” for op as

ôp#. Cousot et. al. just provide a specification for ôp#, and in general, there is no way to

compute it. The goal then is to learn ôp such that its output is sound for all possible inputs

in the abstract domain, and the output is as close to the most-precise abstract transformer

ôp#. This can be posed as the following optimization problem:

ôp = min
f∈F

∑
a∈A

LP (ôp
#(a), f(a)) s.t.

∑
a∈A

LS(op, a, f(a)) = 0 (3.1)

where:

1. LS(op, a, f(a)) is a function that measures the soundness of f . Thus, LS(a, f(a))

returns 0 if f(a) is a sound approximation of the effect op on a, i.e., op(γ(a)) ⊑C

γ(f(a)), where γ is the conretiziation function. LS(a, f(a)) returns 1 if f(a) is a

unsound. This means that
∑

a∈A LS(a, f(a)) = 0 ensures that f is sound for all

elements a ∈ A.

2. LP (a1, a2) is the precision measure and can be any metric to measure how “big” is

a2 compared to a1. For instance, for the Interval domain, this can be the differ-

ence of the interval sizes of a1 and a2. This means that the minimizing the term∑
a∈A LP (ôp

#(a), f(a)) allows the problem to find an abstract transformer which is

closest in precision to the “most-precise abstract transformer” ôp#. Also, note that if

ôp# ∈ F , then the solution to the above optimization problem would be ôp#.

13

Inherent complexity of the above formulation. Though the above formulation to

learn abstract transformers is correct, solving the optimization problem is complex due to

the following reasons:

1. The set A of all possible abstract elements has infinite size in most cases. This makes

the search for a function that satisfies the soundness and precision properties of all the

abstract elements difficult.

2. Cousot et. al. (in [1]) just provide a specification for ôp#, and do not give a way to

compute it. This makes computing LP non-trivial.

3. Computing LS is usually done by finding counter-example e to soundness such that

op(γ(e)) ̸⊑C γ(ôp(e)). This is done by encoding this condition, along with the seman-

tics of op and γ in SMT [15], and then using an SMT solver. This makes computing

LS expensive and makes the use of gradient-guided learning methods to solve the

optimization problem infeasible due to the non-differentiability of such solvers.

3.2 NEURAL ABSTRACT TRANSFORMERS

As discussed above, the optimization problem to learn sound and precise abstract trans-

formers (given in Eq. 3.1) is hard to solve, which makes the task of automating the generation

of abstract transformers difficult. To mitigate this, we relax the optimization problem de-

scribed above and propose supervised and unsupervised approaches to learn a novel type of

abstract transformers, which we term asNeural Abstract Transformers. Neural Abstract

Transformers are neural networks that, when trained to enforce soundness and precision, can

serve as abstract transformers. To the best of our knowledge, we are the first work to propose

such relaxations of the general optimization problem, thus enabling the learning and use of

neural abstract transformers.

Utilizing neural networks redefines the problem of generating sound and precise abstract

transformers into a more tractable problem of learning neural networks that satisfy the

soundness and precision constraints of the abstract transformers. Despite the inherent com-

plexity of these abstract transformers, works such as [12, 13] have demonstrated the ability of

neural networks to approximate complex functions effectively. This approach distinguishes

our approach from works like [16, 17] that employ symbolic methods to develop abstract

transformers from functions specified by a Domain Specific Language (DSL). Since sound

and precise abstract transformers for operations like affine assignments in the octagon do-

main cannot be straightforwardly represented by simple DSL functions, the ability of neural

14

networks to approximate complex functions can enable the efficient creation of neural trans-

formers for such cases. Thus, using neural abstract transformers has the following benefits:

1. Automatic Generation of Abstract Transformers. Our supervised and unsu-

pervised learning relaxations allow for the automated generation of transformers with

varying soundness and precision, which eases development costs.

2. Efficient Transformers. These neural transformers can be faster alternatives for

computationally expensive transformers like octagon join. For operations such as affine

assignments within the octagon domain, where hand-crafted transformers often lack

precision, these neural transformers can even serve as a more precise alternative.

3. Differentiable Abstract Interpretation. Neural transformers have the added ben-

efit of being differentiable. This enables their use with gradient-guided learning meth-

ods, which can then be used to solve tasks like invariant generation that can be posed

as learning problems.

Having outlined the benefits of Neural Abstract Transformers, we now discuss the super-

vised and unsupervised learning methods to train these neural transformers.

3.3 SUPERVISED LEARNING OF NEURAL TRANSFORMERS

In this section, we introduce a supervised learning approach for training neural abstract

transformers. This method can train neural transformers for operators that already have

hand-crafted sound and precise abstract transformers. As previously mentioned, these neural

transformers can then act as a faster alternative to the hand-crafted transformers and also

enable differentiable analysis.

Learning Problem. Given a dataset D = {Xi, yi} representing input-output of an

abstract transformer ôp (for concrete operator op) in some abstract domain A, we pose the

learning of the neural abstract transformer ôp∗ as the following optimization problem:

min
θ

E(Xi,yi)∼D [α ∗ L′
S(yi, ôp

∗(Xi; θ)) + β ∗ L′
P (yi, ôp

∗(Xi; θ))] (3.2)

which is based on the following components:

1. Soundness Loss. L′
S controls the soundness of the neural transformer. As we

have the ground truth outputs yi of the abstract transformer, soundness can be en-

sured by ensuring that the output of the model ôp∗(Xi; θ) over-approximates yi, i.e.,

ôp∗(Xi; θ) ⊑A yi. This follows from the following theorem (proved in Appendix A.1):

15

Theorem 3.1. If yi is a sound output of an abstract transformer ôp : A → A on some

input xi and yi ⊑A y′i, then y′i is also a sound output of ôp on xi.

So, we define L′
S such that, for states a1, a2 in the abstract domain A, L′

S(a1, a2) = 0

implies that a2 over-approximates a1, i.e. a1 ⊑A a2. The condition a1 ⊑A a2 holds if

a1 is contained in a2, i.e. the concretization of a1 is contained in that of a2 (γ(a1) ⊑C

γ(a2)). If L′
S(a1, a2) ̸= 0, then L′

S(≥ 0) gives a differentiable approximation of the size

of the set γ(a1)\γ(a2) and minimizing L′
S(a1, a2) ensures a2 over-approximates a1. For

instance, for the Interval domain, if the ground truth is [0, 5] and the model’s output is

[0, 4], then as [0, 5] ̸⊆ [0, 4], soundness loss can be given by 5− 4 = 1, which will guide

the model to increase the upper bound (4) of the output. Minimizing L′
S(yi, ôp

∗(Xi; θ))

ensures that the output of the neural transformer over-approximates the ground truth,

thus ensuring the soundness of the learned abstract transformer.

Note that this is easier to compute differentiably than LS(op, a, f(a)) in Eq. 3.1 as that

involves checking if op(γ(a)) ⊑C γ(f(a)) and thus requires encoding the semantics of

op as well. As we are in the supervised setting and already have the ground truths for

the abstract transformers, we do not explicitly need the semantics of op.

2. Precision Loss. L′
P controls the precision of the neural transformer. Say we have a

measure M(a) of the size of the set γ(a) abstracted by an element a ∈ A. For states

a1, a2 in the abstract domain A, L′
P (a1, a2) measures how big M(a2) is as compared

to M(a1). As discussed above, we need that γ(a1) ⊑C γ(a2) to ensure soundness. But

soundness can be ensured if the transformer always outputs ⊤A (top element of lattice

A that represents the set of all concrete states) as ∀a ∈ A. γ(a) ⊑C γ(⊤A). However,

this is not beneficial for downstream analysis tasks.

So, to ensure precision, L′
P (a1, a2) (≥ 0) gives a differentiable approximation of the

how big a2 is as compared to a1, i.e. max(M(a2) −M(a1), 0). For instance, for the

Interval domain, the precision loss can be measured using the difference of interval

sizes: M([l, u]) = max(u− l, 0). Note that we take max with 0 as the interval is empty

if l > u. Minimizing L′
P (yi, ôp∗(Xi; θ)) thus ensures that the output of the neural

transformer is closer in size to that of the ground truth.

Also, note that this is easier to compute differentiably than LP (ôp
#(a), f(a)) in Eq. 3.1

as we do not need ôp# to measure precision. Instead, we rely on the ground truth out-

puts from the abstract transformer to measure the imprecision between the transformer

and the learned neural transformer and then use it to enforce precision.

16

3. Soundness & Precision Weights. α, β are the soundness and precision weights,

respectively, and let us control the degree of soundness and precision required for the

transformer. This can be adjusted based on the specific downstream analysis task for

which the neural transformer will be used.

As we will demonstrate in the next sections, L′
S(a1, a2) and L′

P (a1, a2) can be computed

easily and differentiably for abstract domains such as Intervals and Octagons.

Datasets. Datasets for the supervised learning method described above can be generated

by executing the hand-crafted abstract transformers on random states from the abstract

domain A or on abstract states collected from running analysis on some downstream tasks.

Some abstract transformers can be computationally expensive, but the data collection task

has to be done only once. The dataset can then be used to learn various neural transformers

with varying soundness and precision for the same abstract transformer.

3.4 UNSUPERVISED LEARNING OF NEURAL TRANSFORMERS

In this section, we describe an unsupervised learning algorithm that can be used to train

neural abstract transformers. As opposed to the supervised learning relaxation, we do not

have the ground truth outputs from the abstract transformers here. Instead, we rely on the

semantics of the concrete operator op to define the soundness and precision losses.

Learning Problem. Given a dataset D = {Xi} representing some set of possible inputs

to the abstract transformer ôp (for concrete operator op) in some abstract domain A, we

pose the learning of the neural abstract transformer ôp∗ in an unsupervised manner as the

following optimization problem:

min
θ

EXi∼D [α ∗ L′′
S(op, Xi, ôp

∗(Xi; θ)) + β ∗ L′′
P (ôp

∗(Xi; θ))] (3.3)

which is based on the following components:

1. Soundness Loss. The primary challenge here is the absence of ground truth outputs

from the transformer for calculating the soundness loss. For abstract states a1, a2 ∈ A,

state a2 is considered a sound abstract representation of the effects of operation op

on the concrete states denoted by a1 if it over-approximates the effect of op on a1,

formally expressed as op(γ(a1)) ⊑C γ(a2) (Eq 2.4). Consequently, an effective metric

for soundness loss, L′′
S(op, a1, a2), should return 0 if op(γ(a1)) ⊑C γ(a2) holds true and

otherwise return a positive value that approximates the size of the set op(γ(a1))\γ(a2),
so that it can be used to guide the network towards a sound transformer. An issue that

17

arises here is that, in most cases, the check op(γ(a1)) ⊑C γ(a2) can only be done by

encoding the semantics of op (and γ) in SMT and then using an SMT solver. However,

SMT solving is not differentiable and cannot guide the learning.

To counter the issues discussed above, we first introduce the notion of distance D(c, a)

between a point in the concrete domain c and a point in the abstract domain a. This

defines how “far” is the point c from being included in the set of concrete points that

a represents (γ(a)). For example, for the interval domain, if a = [2, 4] and the c = 7,

D(c, a) = 7− 4 = 3. Also, note that D(c, a) = 0 if c ∈ γ(a).

Now, we define the notion of maximum violating concrete point (MVCP).

Definition 3.1. For a tuple (op, a1, a2), where op is some operator in the concrete

domain and a1, a2 are points in the abstract domain A, a maximum violating concrete

point or MVCP is a state cm ∈ C that belongs to op(γ(a1)) but is not contained in

the concretization of a2 and is the farthest from a2, where the notion of farthest is

defined using the notion of D(c, a2) described above. If the set op(γ(a1)) \ γ(a2) is

empty (which means a2 is a sound output for op on a1), then there is no MVCP for

the tuple (op, a1, a2).

Mathematically, MVCP for a tuple (op, a1, a2) is defined as the following:

argmax
c

D(c, a2)

subject to c ∈ op(γ(a1)) \ γ(a2)
(3.4)

Now, using the notion of MVCP (op, a1, a2) and D(c, a), we define L′′
S to be:

L′′
S(op, a1, a2) = D(MVCP (op, a1, a2), a2) (3.5)

While using this loss in Eq 3.3, a1 is the input abstract state (Xi), and a2 is the

abstract state given by the neural transformer (ôp∗(Xi; θ)). Intuitively, minimizing

this loss helps learning sound transformer in the following way:

(a) MVCP (op, Xi, ôp
∗(Xi; θ)) returns the most distant concrete state that is missing

in the concretization of ôp∗(Xi; θ) but should be included. In Fig 3.1, the MVCP

is shown as the green dot and the concretization of ôp∗(Xi; θ) is displayed by the

red region. As can be seen, the green dot is the furthest point in the green region

(which means it should be in concretization of the output), which is not in the

red region.

18

Figure 3.1: Here, a2 does not constitute a sound output on a1 with respect to op due to
the fact that op(γ(a1)) ̸⊑C γ(a2), as demonstrated by the green and red boundary regions.
Consequently, to guide the model toward learning sound outputs, the green dot, which is the
maximum violating concrete point (MVCP) and lies outside γ(a2) at the greatest distance, is
identified. The loss is defined by the distance d∗ between the MVCP and γ(a2); minimizing
this loss promotes the inclusion of the MVCP within γ(a2), thereby guiding the model
towards sound transformer outputs.

(b) Once a point cm is recognized as the MVCP, minimizing distanceD(cm, ôp
∗(Xi; θ))

(represented by d∗ in Fig 3.1) guides the model towards outputs whose concretiza-

tions include cm. This guides the model toward sound transformers, as at each

iteration, the model tries to decrease the distance between the output concretiza-

tion and the MVCP, thus converging to models where this distance is mostly zero.

When d∗ is 0, it means that the transformer is sound as there is no MVCP.

Example. Consider a case where we are trying to learn a neural transformer ˆabs
∗

in the Interval domain for the abs operator. Say input a1 = [−10, 15] and the neural

transformer returns a2 = [0, 12] for a1. It is easy to check that abs(γ(a1)) is given by

[0, 15] and so any sound output should contain [0, 15]. As [0, 15] is not contained in

a2 = [0, 12], we find the farthest point from [0, 12] that should be included in it and

get the MVCP as cm = 15. This is now used to compute soundness loss L′′
S(cm, a2) =

19

Figure 3.2: While learning neural transformer for abs, when a1 is [−10, 15], the output should
contain [0, 15] for soundness. So, a2 is not sound, and the MVCP cm = 15 is used to compute
the soundness loss.

L′′
S(15, [0, 12]) = 15 − 12 = 3. This L′′

S then guides the model to transformers that

output sound results for a1.

Note that we still need to use SMT solvers to compute the MVCP, but once it is

computed, the distance function D (which can be differentiably implemented for many

domains, as discussed in the next sections) is used to guide the learning of the network.

2. Precision Loss. Consider a measure M(a) of the size of the set γ(a) abstracted

by an element a ∈ A. In the unsupervised scenario, where ground truth outputs for

abstract transformers are not available, we enforce precision by directly utilizing the

size M(a) of the model output a. More precisely, L′′
P (a)(≥ 0) provides a differentiable

approximation of the size M(a). For example, for the Interval domain, the size of an

abstract element [l, u] is given by M([l, u]) = max(u− l, 0), which can be minimized to

enforce precision. Minimizing L′′
P (ôp

∗(Xi; θ)) guides the model towards learning neural

transformers that generate smaller outputs.

3. Soundness & Precision Weights. As in the case of supervised learning, α, β are

the soundness and precision weights, respectively, and let us control the degree of

soundness and precision required for the transformer. This can be adjusted based on

the specific downstream analysis task for which the neural transformer will be used.

As we will demonstrate in the next sections, the SMT query to find MVCP (op, a1, a2) can

be easily implemented for various operators in the Interval and Octagon domain. Also, the

functions D(c, a) and L′′
P (a) can be computed easily and differentiably for these domains.

Datasets. For the unsupervised learning setting, the datasets can be generated by ran-

domly sampling abstract elements from the abstract domain A.

Benefits. Apart from learning neural transformers that are faster and allow differentiable

analysis, the unsupervised learning of neural transformers has the following added benefits:

20

1. It does not require a hand-crafted transformer and allows for the automatic generation

of abstract transformers. It requires as inputs the domain-related functions D(c, a)

and L′′
P (a) and the semantics of MVCP (op, a1, a2), where op is the operator for which

the abstract transformer is to be learned. Once these are specified, the soundness

and precision weights (α and β) can be tweaked to generate transformers with varying

soundness and precision automatically.

2. For certain operations, like affine assignment in the octagon domain, it’s challenging to

implement efficient abstract transformers without losing precision. However, as neural

networks can approximate complex functions, the unsupervised learning method can

guide the network to learn efficient and more precise transformers for such operations.

3.5 SOUNDNESS PRECISION TRADE-OFF

In both supervised and unsupervised learning methods, there are two loss components:

one ensuring soundness and the other ensuring precision. Solely having a soundness loss

can guide the model toward very large outputs, which may be very imprecise for use in

downstream tasks. This necessitates the use of precision loss to keep the model outputs

precise. However, this results in a trade-off. The soundness loss tries to enforce soundness

by increasing the size of the output element to include the sound region. On the other

hand, the precision loss guides the model towards learning outputs with smaller sizes to

maintain precision. This makes our learning problems multi-objective learning problems

with conflicting objectives, thus making them hard. By appropriately tuning the values of

the soundness and precision weights (α and β), neural transformers can be learned with

varying degrees of soundness and precision. In settings such as verification, where soundness

is very important, we can always resort to hand-crafted transformers’ outputs if the output

of the neural transformer is unsound (note that checking the soundness of an output is

comparably simpler).

21

CHAPTER 4: INSTANTIATION FOR NUMERICAL DOMAINS

In this section, we instantiate our NeurAbs framework for two widely used numerical

domains: Interval and Octagon, and show how neural abstract transformers can be learned

for operators in these domains.

4.1 INTERVAL DOMAIN

In the Interval domain [Sec 2.4.1], the abstract element is an interval. For example, the

set {1.1, 2.2, 3.15,−1.3} can be abstracted using the interval [−1.3, 3.15]. All possible values

for a variable x in a program can be represented by an interval [a, b]. An element in the

Interval domain is represented by two reals: l and u, where l represents the lower bound of

the interval and u represents the upper bound of the interval.

4.1.1 Tensor Representation of Intervals

An element in the Interval domain can be represented as a tensor of size 2, where the

first element represents the lower bound l of the interval and the second element represents

the upper bound u of the interval. For example, the interval [2.1, 3.5] can be represented

as tensor([2.1, 3.5]). Thus, neural transformers for operators that take n intervals as inputs

will have 2*n inputs and two outputs (representing the output interval). For example, the

neural transformer to learn interval join (which takes two intervals and returns their join)

will have four inputs l1, u1, l2, u2 and will output two numbers lo, uo which represent the

output interval [lo, uo].

Figure 4.1: Neural Transformers for Interval Join and Interval Abs

4.1.2 Supervised Learning of Neural Interval Transformers

The general supervised learning approach described in Section 3.3 can be used to learn

neural transformer for the Interval domain by using the following instantiations of the loss

components present in Eq. 3.2:

22

1. L′
S(intv1, intv2): Given intervals intv1 = [l1, u1] and intv2 = [l2, u2], this loss has to

enforce that intv2 over-approximates intv1, i.e. intv2 contains all the points present

in intv1. This is only possible if l2 ≤ l1 and u2 ≥ u1. To enforce this, we need to

penalize the model whenever l2 > l1 or u2 < u1. This can be enforced by defining

L′
S([l1, u1], [l2, u2]) as following:

L′
S([l1, u1], [l2, u2]) = max(l2 − l1, 0) +max(u1 − u2, 0) (4.1)

Note that this loss is always ≥ 0, and will guide the model to decrease l2 and increase

u2 when it is more than 0. It is 0 iff l2 ≤ l1 and u2 ≥ u1, which are the required

conditions for soundness.

2. L′
P (intv1, intv2): Given intervals intv1 = [l1, u1] and intv2 = [l2, u2], this loss has to

enforce that the size of intv2 is close to size of intv1. For this, we define the measure

of the size of the interval [l, u] as M([l, u]) = max(u − l, 0). We take the max with 0

as the interval represented by [l, u] is empty if l > u. Now, using this measure, the

precision condition can be enforced by defining L′
P ([l1, u1], [l2, u2]) as follows:

L′
P ([l1, u1], [l2, u2]) = max(M([l2, u2])−M([l1, u1]), 0)

= max(max(u2 − l2, 0)−max(u1 − l1, 0), 0) (4.2)

Minimizing L′
P (intv1, intv2) guides the model towards outputting intervals that are

closer to the size of the original intervals, thus maintaining precision.

4.1.3 Unsupervised Learning of Neural Interval Transformers

The general unsupervised learning approach described in Section 3.4 can be used to learn

neural transformer for the Interval domain by using the following instantiations of the loss

components present in Eq. 3.3:

1. L′′
S(op, intv1, intv2): As described above, L′′

S depends on the definitions of D(c, a)

and MVCP (op, a1, a2), where c is some element in the concrete domain C and a1, a2

belong to the abstract domain A.

23

For the Interval domain, D(c, [l, u]) where c ∈ R, can be defined as:

D(c, [l, u]) =


l − c if c < l

c− u if u < c

0 otherwise

(4.3)

D(c, [l, u]) captures how “far” is c from [l, u].

Next, we define MVCP (op, a1, a2) for the abs and the join operator:

(a) abs: MVCP (abs, [l1, u1], [l2, u2]) should return c ∈ R that is present in abs([l1, u1])

and is farthest from [l2, u2]. This can be found by solving the following optimiza-

tion problem:

argmax
c

D(c, [l2, u2])

subject to ∃x. l1 ≤ x ≤ u1 ∧ c = |x|
(4.4)

(b) join: MVCP (join, ([l1, u1], [l2, u2]), [l3, u3]) should return c ∈ R that is present

in the join of [l1, u1] and [l2, u2] (i.e., it is present in one of those intervals) and

is farthest from [l3, u3]. This can be found by solving the following optimization

problem:

argmax
c

D(c, [l3, u3])

subject to (l1 ≤ c ≤ u1) ∨ (l2 ≤ c ≤ u2)
(4.5)

The optimization procedures described above can be directly encoded in an SMT solver

to get the MVCPs. L′′
S(op, intv1, intv2) can be then implemented using these MVCPs

and D defined above using the formulation in Eq. 3.5.

2. L′′
P (intv): We define the measure of the size of the interval [l, u] asM([l, u]) = max(u−

l, 0). We then use this measure directly to define L′′
P ([l, u]) as follows

L′′
P ([l, u]) = M([l, u]) = max(u− l, 0) (4.6)

Minimizing this would guide the model towards outputting smaller intervals, thus

maintaining precision.

24

4.2 OCTAGON DOMAIN

In the Octagon domain [Sec 2.4.2], the possible values are abstracted using the octagon

shape. If the program has n variables v1, v2, ...vn, then the octagonal representation of the

program state is given by constraints of the form ±vi ± vj ≤ cij and ±vi ≤ di.

4.2.1 Tensor Representation of Octagons

To begin learning neural transformers for the octagon domain, it is essential first to convert

an octagon domain element into a tensor. We can represent the octagonal constraints as

an array/tensor consisting only of the inequality constants (cij and di values) if we can

define some order on all the possible constraints. Within the NeurAbs framework, we use

the following ordering on the octagon constraints to encode an octagon as a tensor:

1. We first capture constraints that are on just one variable. Assuming we have an

ordering on variables as above, the first constraint would correspond to v1 <= c1, the

second would correspond to −v1 <= c2, and so on. This amounts to 2 ∗ n values (2

for each variable).

2. Next, we capture the constraints between two variables. For this, we traverse over the

possible pair of variables in the following order: [(v1, v2), (v1, v3) (v1, v4) . . . (v1, vn),

(v2, v3), (v2, v4), . . . (vn−1, vn)]. For a pair (vi, vj), we use the following order for possible

constraints: [(vi + vj), (vi − vj), (−vi + vj), (−vi − vj)]

The number of possible variable pairs is n∗(n−1)/2, and there are 4 possible constraints

for each pair. This amounts to 4 ∗ n ∗ (n− 1)/2 = 2 ∗ n ∗ (n− 1) values.

In total, these leads to 2 ∗ n + 2 ∗ n ∗ (n − 1) = 2n2 inequality constants for an octagon

with n variables. We denote these inequality constants by wi (for the ith inequality in the

above-defined order). However, it is not necessary to have all the inequalities to define the

octagon. For instance, the equation x − y ≤ 1 is also a valid octagon representation. In

this case, we do not have the inequality constants for other inequalities like x + y or x. To

tackle this, we also use 2∗n2 inequality indicator variables ei = {0, 1} that indicate if the ith

inequality is present in the octagon representation. This final representation then has 4 ∗ n2

values ([w1, w2, . . . wn, e1, e2, . . . en]). We will use [w, e] as a short-hand notation to denote

octagons, where w and e represent the constants part and the indicators part of the octagon

tensor. For the inequalities that are not present, we use a high constant (K) as a proxy for

the inequality constant. Technically, the absence of the inequality implies that it is less than

∞, and therefore, using a high constant as a substitute is a sensible choice.

25

Example. Say we have 2 variables in our program: x and y (and we fix this order). Con-

sider the octagon O = {x ≤ 5,−y ≤ 2, x+ y ≤ 10,−x+ y ≤ 20}. All possible constraints in
the order defined above would be [x,−x, y,−y, x+y, x−y,−x+y,−x−y]. Corresponding to

this, the inequality constants part of the tensor would look like w = [5,K,K, 2, 10,K, 20,K]

and the inequality indicator part would be e = [1, 0, 0, 1, 1, 0, 1, 0]. The final tensor represen-

tation would be a concatenation of w and i as [w, e] = [5,K,K, 2, 10,K, 20,K, 1, 0, 0, 1, 1, 0, 1, 0]

The tensor representation described above captures all the details of the octagons and can

now be passed to neural networks. For example, a neural transformer to learn octagon join

for octagon with n variables each will take 2 octagons as inputs. This means that it will

have 8 ∗ n2 inputs (4 ∗ n2 for each octagon) and will return 4 ∗ n2 outputs that represent the

output octagon.

Figure 4.2: Neural Transformers for Octagon Join and Affine Assignment

The neural networks for octagon transformers apply sigmoid to the indicator outputs e.

So, the e values returned by the neural octagon transformers are always in the range of 0

to 1. A suitable threshold (like ≥ 0.5) can then be applied to choose or not choose the

inequality in the resultant octagon. If the ith inequality is chosen, its weight is given by the

output wi.

4.2.2 Supervised Learning of Neural Octagon Transformers

The general supervised learning approach described in Section 3.3 can be used to learn

neural transformer for the Octagon domain by using the following instantiations of the loss

components present in Eq. 3.2:

1. L′
S(oct1, oct2): Let octagon oct1 be represented as oct1 = [w, e] and oct2 be represented

as oct2 = [w′, e′]. Note that while using L′
S, oct1 is the ground truth, and so its

26

indicators will be {0, 1} while oct2 is the output from the neural network, and its

indicators will be 0 ≤ e′i ≤ 1. As described above, the ith inequality is included in the

output octagon if e′i ≥ 0.5.

Now, this loss has to enforce that oct2 over-approximates oct1, i.e., oct2 should have all

the points covered by oct1. To enforce this, we enforce that no possible inequalities are

stricter in oct2 as compared to oct1. Equality i is stricter in oct2 if one of the following

holds:

(a) ei = 1 and e′i ≥ 0.5 and w′
i < wi (both octagons have inequality i but the constant

is less for oct2).

(b) ei = 0 and e′i ≥ 0.5 (Only oct2 has the ith inequality).

Note that oct2 can over-approximate oct1 even if it has some inequalities that are

stricter than those in oct1, as the other inequalities can compensate for this. Therefore,

it is not a necessary condition. However, it is easy to verify that ensuring no inequalities

in oct2 are stricter provides a sufficient condition for soundness (proved in Appendix

A.2). To enforce this, we first define the contribution of the ith inequality to soundness

loss as follows:

li =


k1 ∗ (wi − w′

i) if e′i ≥ 0.5 and ei = 1 and wi > w′
i

k2 ∗BCELoss(e′i, ei) if e′i ≥ 0.5 and ei = 0

0 otherwise

(4.7)

Here, k1 and k2 are constants and can be chosen appropriately. BCELoss is the Bi-

naryCrossEntropy Loss. The loss defined above penalizes the model whenever it sees

one of the two conditions for ith inequality being stricter in oct2. In the first case, the

model is penalized if ith inequality is present in both octagons, but oct2 has a smaller

constant for it. In the second case (only oct2 has the ith inequality), the loss guides

the output model to have e′i closer to ei = 0, thus learning models that do not have

the ith inequality in their outputs, which eventually ensures soundness.

L′
S(oct1, oct2) can be computed by taking the mean of lis for all possible constraints,

i.e. (
∑N

i=1 li)/N , where N = 2 ∗ n2 and n is the number of variables in the octagon.

2. L′
P (oct1, oct2): Given two octagons oct1 and oct2, L′

P (oct1, oct2) needs to enforce that

they are close in size. For this, say there is a measure of the size of octagon M(oct).

L′
P (oct1, oct2) should then return a differentiable approximation of the difference in two

measures (M(oct2)−M(oct1)). Octagons are polytopes (can be unbounded also), and it

27

is, in general, difficult to come up with a measure for the size of the octagon. However,

we can approximate how big octagon oct2 = [w′, e′] is as compared to oct1 = [w, e]

using the following:

(a) Number of inequality constraints present in oct1 that are not in oct2 (i.e. {i | e′i <
0.5 ∧ ei = 1}). In most cases, a smaller number of inequalities means that the

octagon covers a larger area.

(b) Cases where the inequality constants are larger in oct2. As the inequalities are

of ≤ form, a higher inequality constant means that the inequality satisfies more

number of points.

The two metrics above can be combined to define L′
P ([w, e], [w

′, e′]) as:

k1 ∗BCELoss(e′i, ei | ei = 1) + k2 ∗
∑
i

(max(w′
i − wi, 0)) (4.8)

Here, k1 and k2 are constants and can be chosen appropriately. BCELoss(e′i, ei | ei =
1) means that the BinaryCrossEntropy loss is only computed for inequality i if ei = 1,

i.e. it is present in the first octagon. Minimizing L′
P (oct1, oct2) guides the model

towards octagons oct2 which are relatively similar to the size of octagons oct1 by adding

inequalities not present in oct2 (but present in oct1) and decreasing inequality constants

in oct2.

4.2.3 Unsupervised Learning of Neural Octagon Transformers

The general unsupervised learning approach described in Section 3.4 can be used to learn

neural transformer for the Octagon domain by using the following instantiations of the loss

components present in Eq. 3.3:

1. L′′
S(op, oct1, oct2): As described above, L′′

S depends on the definitions of D(c, a) and

MVCP (op, a1, a2), where c is some element in the concrete domain C and a1, a2 belong

to the abstract domain A.

For the Octagon domain, we will first define D(c, oct). For the octagon oct = [w, e], let

vi(c) be the value of the i
th possible inequality expression on the point c. For instance,

if the ith inequality is on x + y and we have c = {x : 2, y : 3}, vi(c) = 5. We then

collect the set of inequalities of oct not satisfied as c, which is given by the set of indices

28

Figure 4.3: The dotted lines show the inequalities the point does not satisfy. The distance
in red shows the D(c, oct).

δ(c, [w, e]) defined as:

δ(c, [w, e]) = {i | ei = 1 ∧ vi(c) > wi} (4.9)

We define D(c, oct) as the maximum of the distances of c from the inequalities that c

does not satisfy (given by δ(c, [w, e])), i.e.

D(c, [w, e]) = max
i∈δ(c,[w,e])

vi(c)− wi (4.10)

Thus, D(c, oct) measures the distance of c from the inequality that is most-violated.

Note that D(c, oct) is defined to be 0 if c ∈ oct. Once D(c, oct) is defined, we need

to find the MVCP . As discussed earlier, MVCP s are computed by encoding the

MVCP constraints into SMT solvers. Before discussing the query used to find the

MVCP s, we first define encode(oct, [v1, v2, . . . vn]) as the encoding on a n variable

octagon using symbolic variables v1, v2, . . . vn. This can be done easily by asserting

the inequalities in the octagon oct on the specified variables. For example, say the

octagon is {x + y ≥ 20, x < 2}. This can be encoded using symbolic variables [v1, v2]

as (v1 + v2 ≥ 20 ∧ v1 < 2).

Now, consider the case of octagons with 2 variables and the affine assignment op-

erator that finds the new octagon as a result of the statement x = a ∗ x + b ∗ y.

MVCP (op, oct1, oct2) for this operator (affine assignment) can be computed using:

29

argmax
c

D(c, oct2)

subject to ∃v1, v2. encode(oct1, [v1, v2]) ∧ c = (a ∗ v1 + b ∗ v2, v2)
(4.11)

Here, encode(oct1, [v1, v2]) encodes that v1 and v2 belong to the octagon oct1. Under

this condition, we find the point c = (a ∗ v1 + b ∗ v2, v2) that should be in the resultant

octagon (after the affine operation) but is the farthest from oct2.

Similarly, MVCP (join, (oct1, oct2), (octo)) for octagon join (3 variables octagons) can

be computed using:

argmax
(v1,v2,v3)

D([v1, v2, v3], octo)

subject to encode(oct1, [v1, v2, v3]) ∨ encode(oct2, [v1, v2, v3])

(4.12)

In this case, we try to find the concrete point farthest from octo that is present in at

least one of oct1 or oct2 (and so should be in the join).

L′′
S(op, oct1, oct2) can be then implemented using the MVCP s and D defined above

using the formulation in Eq. 3.5. Reducing the distance D of the MVCP s from the

model’s output oct2 guides the model towards sound transformers.

2. L′′
P (oct): L′′

P (oct) ensures that the learned octagons are smaller in size and thus en-

force precision. For this, L′′
P (oct) should return a differentiable approximation of some

measure M of the size of the octagon. However, as discussed earlier, defining such a

measure for octagons (which are polytopes and can also be unbounded) is not trivial.

Instead, we rely on these two metrics to approximate the size of an octagon:

(a) Number of inequalities in the octagon: If an octagon has fewer inequalities, it

usually means that it covers a large area. Thus, it makes sense to enforce that

the produced octagons have as many inequalities as possible to enforce precision.

(b) Inequality constants of the inequalities present: If the inequality constants of the

inequalities in the octagon are higher, it usually means that it covers a larger

area (as the inequalities are of ≤ type). Thus, it makes sense to enforce that the

inequality constants in the octagons are smaller in value.

The above two metrics can be combined to define L′′
P ([w, e]]) as follows:

k1 ∗BCELoss(ei, 1 | ei < 0.5) + k2 ∗
∑

i | ei ≥ 0.5

wi (4.13)

30

Here, k1 and k2 are constants and can be chosen appropriately. BCELoss(e, 1 | e <

0.5) means that the BinaryCrossEntropy loss should be used only for inequalities i not

present in the octagon (ei < 0.5). This guides the model towards learning octagons

with more inequalities by pushing eis, which are less than 0.5, towards 1. The second

term
∑

i | ei ≥ 0.5wi denotes the sum of inequality constants of those inequalities which

are present in the octagon (ei ≥ 0.5). This term guides the model towards learning

octagons with smaller inequality constants. These two components together allow

L′′
P ([w, e]]) to enforce precision and guide the model towards smaller octagons.

31

CHAPTER 5: EVALUATION

In this section, we demonstrate the capability of the NeurAbs framework to train trans-

formers that are both sound and precise for the Interval and Octagon domains. Additionally,

we explore how the differentiability of neural transformers enables the formulation of tasks

such as invariant generation as learning problems.

5.1 NEURAL INTERVAL TRANSFORMERS: SOUNDNESS & PRECISION

In this section, we evaluate the efficacy of the NeurAbs framework to learn neural abstract

transformers for the Interval domain. We pick two abstract transformers, abs and join,

described in Section 2.4.1.

Datasets. For supervised learning, we gather data for each abstract transformer by

generating random input intervals and using existing hand-crafted transformers to produce

the corresponding ground truth outputs. For training and testing purposes, we create 10,000

input-output pairs for each abstract transformer.

5.1.1 Supervised Learning of Interval Transformers

We use the loss methods described in Section 4.1.2 to train neural interval transformers

for abs and join in a supervised manner by training on 5000 samples each. The results

are displayed in Table 5.1. The first column indicates the soundness and precision weights

(α, β) used while training the networks. The first row in the table (with − for α and β)

depicts the performance of a random neural network. To evaluate the quality of the learned

transformers, we evaluate two metrics:

1. Soundness Measure (%): This is the percentage of sound outputs generated by the

neural transformer when evaluated on a test set with 10,000 data points.

2. Imprecision Measure: For the cases where the outputs were sound, this measures how

big the output intervals were as compared to the ground truth intervals. This is

computed as the sum of differences in sizes of output and ground truth intervals for

the sound cases divided by the number of sound cases.

As can be seen, randomly initialized neural networks are ineffective as neural transformers

because they are very unsound. The results display that our supervised learning approach

32

Table 5.1: Neural Interval Transformers for Abs and Join trained using supervised learning
method.

Weights (α, β) Interval Abs Interval Join

(Soundness, Precision) Soundness (%) Imprecision Soundness (%) Imprecision

(-, -) 20.03 4.44 3.88 0.16
(1, 1) 26.39 1.57 32.34 40.16
(2, 1) 47.43 5.74 40.53 25.70
(5, 1) 66.88 11.70 63.10 43.58
(7, 1) 84.02 10.39 73.07 113.78
(10, 1) 97.72 18.41 89.24 116.31
(50, 1) 99.99 40.63 99.57 191.72

allows us to learn sound and precise neural transformers. As expected, increasing the sound-

ness weight guides the model to learn more sound transformers, but this makes the model

less precise. This also shows the effectiveness of our framework in learning multiple neural

transformers for the same abstract transformer with varying soundness and precision.

5.1.2 Unsupervised Learning of Interval Transformers

We use loss methods described in Section 4.1.3 to train neural interval transformers for the

abs and join operations through unsupervised learning, using 1000 samples each. We opted

for a smaller dataset because unsupervised learning requires the computation of MVCPs for

each training example in every iteration, a process that involves computationally intensive

calls to an SMT solver. Despite the reduced number of training data points, the results

presented in Table 5.2 confirm that our training method successfully learns sound and precise

transformers. Also, as the model does not have access to the ground truth outputs in the

unsupervised learning approach, it is easier for it to “sway” towards models that are sound

but very imprecise. Thus, a higher precision weight (10 here) is used to achieve similar

results to the supervised learning method.

As in the previous section, the first column indicates the soundness and precision weights

(α, β) used while training the networks, and the first row depicts the performance of a

random neural network. The soundness and the imprecision measures are also the same as

described above. Note that, while computing the precision loss in the unsupervised learning

approach, we only use the size of the the output intervals to enforce precision. However, to

evaluate the quality of the learned transformers, we compute the difference in interval sizes

of the ground truth and the learned transformers.

33

Table 5.2: Neural Interval Transformers for Abs and Join trained using the unsupervised
learning method.

Weights (α, β) Interval Abs Interval Join

(Soundness, Precision) Soundness (%) Imprecision Soundness (%) Imprecision

(-, -) 20.03 4.44 3.91 26.80
(20, 10) 25.04 4.29 38.99 164.61
(30, 10) 63.04 25.86 53.65 219.08
(50, 10) 85.96 36.95 93.03 255.93
(75, 10) 100 73.17 97.95 277.70

The results in Table 5.2 show the efficacy of our unsupervised learning method to learn

sound and precise neural transformers for the interval domain. The soundness-precision

trade-off is also evident as increasing the soundness weight generates models that are more

sound but less precise.

5.2 NEURAL OCTAGON TRANSFORMERS: SOUNDNESS & PRECISION

In this section, we evaluate the efficacy of the NeurAbs framework to learn neural abstract

transformers for the Octagon domain. Note that this is, in general, more difficult than the

Interval domain because of the complex tensor representation of octagons and their more

complex abstract transformers.

Datasets. For supervised learning, we gather data for the octagon join transformer

(octagons with 3 variables) by generating random input intervals and using existing hand-

crafted transformers to produce the corresponding ground truth outputs. For training and

testing purposes, we create 10,000 input-output pairs for each abstract transformer.

5.2.1 Supervised Learning of Octagon Transformers

We use the loss methods described in Section 4.2.2 to train neural interval transformers

for octagon join (octagons with 3 variables) in a supervised manner by training on 10,000

samples. The results are displayed in Table 5.3. The first column indicates the soundness

and precision weights (α, β) used while training the networks. The first row in the table

(with − for α and β) depicts the performance of a random neural network. To evaluate the

quality of the learned transformers, we evaluate two metrics:

1. Soundness Measure (%): This is the percentage of sound outputs generated by the

34

Soundness Precision Soundness Imprecision
Weight (α) Weight (β) Measure (%) Measure
- - 0.0 (-, -)
10 100 10.3 (0.087, 76.16)
20 100 25.2 (0.075, 88.89)
50 100 32.5 (0.181, 101.53)
100 100 46.4 (0.157, 113.70)
150 100 60.9 (0.323, 135.59)
450 100 72.0 (0.502, 154.60)
700 100 79.2 (0.963, 175.29)

Table 5.3: Soundness and Precision of Neural Octagon Join

neural transformer when evaluated on a test set with 1000 data points.

2. Imprecision Measure: For the cases where the outputs were sound, we measure two

things:

(a) The average difference in the number of inequalities in the ground truth and the

transformer output. A higher difference indicates that the transformer output

has fewer inequalities and, thus, is more imprecise.

(b) The average difference in the sum of inequality constants for the transformer

output and the ground truth. A higher difference indicates that the transformer

output has higher inequality constants and, thus, is more imprecise.

As can be seen, the randomly initialized neural network is ineffective as a neural trans-

former because it is never sound. The results display that our supervised learning approach

allows us to learn sound and precise neural transformers for a complex transformer like oc-

tagon join. As expected, increasing the soundness weight guides the model to learn more

sound transformers, but this makes the model less precise. This relationship is evident from

the table: an increase in soundness corresponds with a decrease in the number of inequali-

ties in the output octagon and an increase in the constants of these inequalities as we move

downward through the entries. These results also show the effectiveness of our framework

in learning multiple neural transformers for the same abstract transformer with varying

soundness and precision.

5.2.2 Unsupervised Learning of Octagon Transformers

To demonstrate the effectiveness of the unsupervised learning approach in the Octagon

domain, we pick the affine assignment operator. Specifically, we consider octagons with 2

35

Soundness Precision Soundness Imprecision
Weight (α) Weight (β) Measure (%) Measure
- - 0.0 (0, 0)
10 1000 1.5 (8.0, 1601.85)
100 1000 23.6 (4.2, 799.85)
450 1000 41.5 (3.1, 405.79)
550 1000 59.2 (2.0, 305.12)
600 1000 77.3 (1.0, 198.19)

Table 5.4: Soundness and Precision of Neural Octagon Affine Assignment (x = a ∗ x+ b ∗ y)

variables (x and y) and consider affine assignments of the form x = a ∗ x + b ∗ y. The

affine operator returns the resultant octagon after the affine assignment. For the dataset,

we generate random octagons and random values of a and b. We do not need the ground

truths as we will use the unsupervised learning method. We use loss methods described

in Section 4.2.3 to train a neural transformer for the affine assignment operator through

unsupervised learning using 1000 samples. We opt for a small number of data points as

unsupervised learning requires the computation of MVCPs for each training example in

every iteration, a process that involves computationally intensive calls to an SMT solver.

However, our unsupervised learning method still enables the effective training of sound and

precise transformers, as can be seen in Table 5.4.

As in the previous section, the first column indicates the soundness and precision weights

(α, β) used while training the networks, and the first row depicts the performance of a

random neural network. The soundness measure is the same as described above and depicts

the percentage of sound outputs on a test dataset with 1000 data points. However, as we

do not have the ground truth outputs in the unsupervised case, the imprecision measure

computes the following for the cases where the output is sound:

1. The average number of inequalities present in the output octagon. A smaller number

of inequalities means that the output octagon is less precise.

2. The average sum of inequalities present in the output octagon. A higher sum of

inequalities indicates that the output octagons are less precise.

The data in Table 5.4 demonstrate the effectiveness of our unsupervised learning approach.

As the soundness weight increases, there is a corresponding increase in the proportion of

sound outputs produced. However, in line with the anticipated trade-off between soundness

and precision, the precision of the output octagons decreases, as evidenced by a reduction

in the number of inequalities they contain.

36

5.3 DIFFERENTIABLE LEARNING OF LOOP INVARIANTS

In this section, we highlight the advantages of our neural abstract transformers being dif-

ferentiable by employing them in learning loop invariants. We frame this task of finding valid

inductive octagonal invariants for a loop program P as a learning problem. Let’s consider

a typical loop program P = while(β) do C od. Let Ĉ = ôpn ◦ ôpn−1 · · · ◦ ôp1 represent

the effective abstract transformer for C where ôpi represents the abstract transformer for ith

statement in C. If Oinit approximates the initial states (init) of P , then the octagon Oinv is

a valid octagonal invariant of the program if it satisfies:

(Oinit ⊆ Oinv) ∧ (Ĉ(ˆconj(Oinv, β)) ⊆ Oinv) (5.1)

where ˆconj represents the abstract transformer for taking the conjunction of an octagon

with a condition like β and so ˆconj(Oinv, β) is an approximation for points in Oinv that

satisfy β. Now, using our NeurAbs framework, we can derive the neural approximation

ôp∗i for each transformer ôpi. These neural transformers can then be composed to get the

effective neural transformer for the loop body (Ĉ∗) as Ĉ∗ = ôp∗n ◦ ôp∗n−1... ◦ ôp∗1. Exploiting

the differentiability of Ĉ∗, we can now pose the search for a valid octagonal invariant Oinv

by minimizing the following:

L′
S(Oinit, o) + L′

S(Ĉ∗(ˆconj
∗
(o, β)), o) (5.2)

where ˆconj
∗
represents the neural transformer for conjunction. As defined in Section 4.2.2,

L′
S(o1, o2) measures if o2 over-approximates o1 (o1 ⊆ o2). This lets us enforce the condition

that octagon o1 is contained in octagon o2.

Starting with random octagons, we can now apply gradient descent guided by the loss de-

scribed in Eq. 5.2 to find candidate octagon invariants, which can then be validated by verify-

ing the correctness constraints described in Eq. 5.1 using an SMT solver.

x = 100;

y = 150;

while (y <= 600) {

x = x + y;

y = 2*y;

}

Figure 5.1: A loop program

This gradient-guided method provides an efficient way to

guide the search for octagonal invariants.

As a concrete example, consider the loop program in

Fig. 5.1. Here, the init condition init given by x =

100; y = 150 can be represented by the octagon Oinit =

{x ≥ 100, −x ≤ −100, y ≥ 150, −y ≤ −150}. We

first train a neural transformer for the affine assignment

in the octagon domain. Starting with random octagons,

we guide the search for valid octagonal invariants using

37

the loss given by Eq. 5.2. Invariants are returned only after checking their validity using an

SMT solver. This method helps us synthesize non-trivial valid octagonal invariants like:

1. {y ≥ 65.514, x− y ≤ −49.951,−x− y ≤ 74.897}

2. {x− y ≤ 13.239}

Note that the above-mentioned invariants have an inequality on x−y. This is because the

loop has the property that the difference between x and y remains constant. Specifically,

if x and y start the loop body with values x1 and y1, respectively, they will update to

x2 = x1 + y1 and y2 = 2 ∗ y1 by the end of the loop body, thus preserving the difference

as x2 − y2 = x1 − y1. The property that x − y remains constant depends on the affine

transformations of x and y. The fact that our invariant search was guided towards invariants

on x− y shows that our neural transformer captures the semantics of affine correctly while

also providing differentiability to guide the search for valid invariants.

More precise invariants can be learned through better initialization strategies and by

integrating the learned octagon’s precision into the learning goal. However, this example

highlights the effectiveness of the differentiability of our neural transformers in a practical

setting of finding valid octagonal loop invariants.

38

CHAPTER 6: RELATED WORKS

6.1 LEARNING ABSTRACT TRANSFORMERS

Works like [16, 17] have been proposed to synthesize abstract transformers automatically.

These expect the concrete domain and semantics as inputs and use symbolic methods to find

exact abstract transformers from a set of functions specified by a Domain Specific Language

(DSL). However, sound and precise abstract transformers for many operations like affine

assignments in the octagon domain cannot be straightforwardly represented by simple DSL

functions. In contrast, our NeurAbs framework exploits the ability of neural networks to

approximate complex functions ([12, 13]), and proposes a data-driven approach to learn

neural transformers with varying soundness and precision.

[18] also uses a data-driven, counter-example guided learning method to learn static an-

alyzers, but the learned static analyzers are symbolic and not differentiable. [19] uses a

data-driven approach to learn a neural policy that allows it to remove redundant constraints

from abstract states to achieve order of magnitude speedups, but it does not use neural

networks to replace the hand-crafted transformers.

6.2 NEURAL SURROGATES

In recent years, significant advancements have been made in developing and applying

neural surrogates for programs [20, 21], focusing on their potential to speed up program

execution [22, 23] and estimate program gradients [24, 25]. Our framework NeurAbs lifts

this idea from concrete programs to abstract programs. The idea is that the learned neural

abstract transformers for each program operation can be composed to obtain a neural sur-

rogate of the abstract program. These neural abstract surrogates can enhance the speed and

precision of verification processes and facilitate the application of gradient-guided learning

techniques for various use cases.

39

CHAPTER 7: CONCLUSION AND FUTURE WORKS

7.1 CONCLUSION

In this thesis, we introduce the novel concept of Neural Abstract Transformers, which are

neural networks learned to function as abstract transformers. The NeurAbs framework we

developed supports both supervised and unsupervised methods for training neural trans-

formers that are both sound and precise. We demonstrated the framework’s capability to

automatically learn abstract transformers by instantiating it for the Interval and Octagon

domains and learning sound and precise transformers for these domains. Additionally, we

demonstrated the benefits of the differentiability of neural transformers by employing them

to generate octagonal invariants for a loop program. Using neural abstract transformers al-

lows us to frame the tasks of invariant generation as a learning problem, and we then utilize

gradient-guided learning to learn the octagonal invariants.

7.2 FUTURE WORKS

1. We demonstrated the benefits of the differentiability of the neural transformers by using

them to generate invariants. However, these neural transformers can also be used as a

fast and sometimes even more precise replacement for the hand-crafted transformers

in analysis tasks.

2. The tensor representation of octagons used by the NeurAbs framework (Section 4.2.1)

is not efficient as it uses 4∗n2 values to represent an octagon with n variables. This will

not work well for programs with many (say 50-60) variables. More efficient representa-

tions, like graphs to represent the inequalities (and using GNNs as neural transformers),

can be explored to make this efficient.

3. We instantiated the NeurAbs framework for the Interval and the Octagon domain.

Extending this framework to include other domains, such as Zonotopes and Polyhedra,

will require some innovative approaches and is left for future work.

4. We demonstrated invariant generation as one example of differentiable abstract inter-

pretation, which is enabled by learning neural transformers. Other uses of differentiable

abstract interpretation, like optimal program synthesis, can also be explored.

40

REFERENCES

[1] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in Proceedings of
the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
ser. POPL ’77. New York, NY, USA: Association for Computing Machinery, 1977.
[Online]. Available: https://doi.org/10.1145/512950.512973 p. 238–252.

[2] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival,
“The astreé analyzer,” in Programming Languages and Systems, M. Sagiv, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 21–30.

[3] P. Cousot and R. Cousot, “Abstract interpretation based program testing,” in Pro-
ceedings of the SSGRR 2000 Computer & eBusiness International Conference. Com-
pact disk paper 248 and electronic proceedings http://www.ssgrr.it/en/ssgrr2000/
proceedings.htm, L’Aquila, Italy: Scuola Superiore G. Reiss Romoli, July 31 – August
6 2000.

[4] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract domain for certifying
neural networks,” Proc. ACM Program. Lang., vol. 3, no. POPL, jan 2019. [Online].
Available: https://doi.org/10.1145/3290354

[5] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev,
“Ai2: Safety and robustness certification of neural networks with abstract interpreta-
tion,” in 2018 IEEE Symposium on Security and Privacy (SP), 2018, pp. 3–18.

[6] D. Dams, R. Gerth, and O. Grumberg, “Abstract interpretation of reactive systems,”
ACM Trans. Program. Lang. Syst., vol. 19, no. 2, p. 253–291, mar 1997. [Online].
Available: https://doi.org/10.1145/244795.244800

[7] A. Mine, “The octagon abstract domain,” in Proceedings Eighth Working Conference
on Reverse Engineering, 2001, pp. 310–319.

[8] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints among
variables of a program,” in Proceedings of the 5th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, ser. POPL ’78. New
York, NY, USA: Association for Computing Machinery, 1978. [Online]. Available:
https://doi.org/10.1145/512760.512770 p. 84–96.

[9] P. Cousot and R. Cousot, “Static determination of dynamic properties of generalized
type unions,” in Proceedings of an ACM Conference on Language Design for Reliable
Software. New York, NY, USA: Association for Computing Machinery, 1977. [Online].
Available: https://doi.org/10.1145/800022.808314 p. 77–94.

41

https://doi.org/10.1145/512950.512973
http://www.ssgrr.it/en/ssgrr2000/proceedings.htm
http://www.ssgrr.it/en/ssgrr2000/proceedings.htm
https://doi.org/10.1145/3290354
https://doi.org/10.1145/244795.244800
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/800022.808314

[10] G. Singh, M. Püschel, and M. T. Vechev, “Fast polyhedra abstract domain,” in Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, G. Castagna and A. D. Gordon, Eds.
ACM, 2017, pp. 46–59.

[11] G. Singh, M. Püschel, and M. T. Vechev, “Making numerical program analysis fast,”
in Proceedings of the 36th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, Portland, OR, USA, June 15-17, 2015, D. Grove and S. M.
Blackburn, Eds. ACM, 2015, pp. 303–313.

[12] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are uni-
versal approximators,” Neural Netw., vol. 2, no. 5, p. 359–366, jul 1989.

[13] G. V. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals and Systems, vol. 2, pp. 303–314, 1989. [Online].
Available: https://api.semanticscholar.org/CorpusID:3958369

[14] A. Miné, “The octagon abstract domain,” Higher-Order and Symbolic Computation,
vol. 19, no. 1, pp. 31–100, Mar 2006. [Online]. Available: https://doi.org/10.1007/
s10990-006-8609-1

[15] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, “Satisfiability modulo theories,” in
Handbook of Satisfiability, A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Eds.
IOS Press, Feb. 2009, vol. 185, ch. 26, pp. 825–885.

[16] P. K. Kalita, S. K. Muduli, L. D’Antoni, T. Reps, and S. Roy, “Synthesizing
abstract transformers,” vol. 6, no. OOPSLA2, oct 2022. [Online]. Available:
https://doi.org/10.1145/3563334

[17] J. Lim and T. Reps, “Tsl: A system for generating abstract interpreters and its
application to machine-code analysis,” vol. 35, no. 1, apr 2013. [Online]. Available:
https://doi.org/10.1145/2450136.2450139

[18] P. Bielik, V. Raychev, and M. Vechev, “Learning a static analyzer from data,” in
Computer Aided Verification, R. Majumdar and V. Kunčak, Eds. Cham: Springer
International Publishing, 2017, pp. 233–253.

[19] J. He, G. Singh, M. Püschel, and M. Vechev, “Learning fast and precise
numerical analysis,” in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 2020. New
York, NY, USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3385412.3386016 p. 1112–1127.

[20] A. Renda, Y. Ding, and M. Carbin, “Programming with neural surrogates of
programs,” in Proceedings of the 2021 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software, ser.
Onward! 2021. New York, NY, USA: Association for Computing Machinery, 2021.
[Online]. Available: https://doi.org/10.1145/3486607.3486748 p. 18–38.

42

https://api.semanticscholar.org/CorpusID:3958369
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1145/3563334
https://doi.org/10.1145/2450136.2450139
https://doi.org/10.1145/3385412.3386016
https://doi.org/10.1145/3486607.3486748

[21] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for general-
purpose approximate programs,” in 2012 45th Annual IEEE/ACM International Sym-
posium on Microarchitecture, 2012, pp. 449–460.

[22] C. Mendis, C. Yang, Y. Pu, D. Amarasinghe, and M. Carbin, “Compiler
auto-vectorization with imitation learning,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc.,
2019. [Online]. Available: https://proceedings.neurips.cc/paper files/paper/2019/file/
d1d5923fc822531bbfd9d87d4760914b-Paper.pdf

[23] A. Munk, A. Åšcibior, A. G. Baydin, A. Stewart, G. Fernlund, A. Poursartip, and
F. Wood, “Deep probabilistic surrogate networks for universal simulator approxima-
tion,” in International Conference on Probabilistic Programming (PROBPROG 2020),
Cambridge, MA, United States, 2020. [Online]. Available: https://probprog.cc/

[24] A. Renda, Y. Chen, C. Mendis, and M. Carbin, “Difftune: Optimizing
cpu simulator parameters with learned differentiable surrogates,” in 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). Los
Alamitos, CA, USA: IEEE Computer Society, oct 2020. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/MICRO50266.2020.00045 pp. 442–455.

[25] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “Neuzz: Efficient fuzzing
with neural program smoothing,” 05 2019, pp. 803–817.

43

https://proceedings.neurips.cc/paper_files/paper/2019/file/d1d5923fc822531bbfd9d87d4760914b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d1d5923fc822531bbfd9d87d4760914b-Paper.pdf
https://probprog.cc/
https://doi.ieeecomputersociety.org/10.1109/MICRO50266.2020.00045

APPENDIX A: PROOFS

Theorem A.1. If yi is a sound output of an abstract transformer ôp : A → A on some

input xi and yi ⊑A y′i, then y′i is also a sound output of ôp on xi.

Proof. To prove that y′i is also a sound output of ôp on xi, it is sufficient to prove that

α(op(γ(xi))) ⊑A y′i (by Eq. 2.3).

α(op(γ(xi))) ⊑A yi (Definition of yi being sound output of ôp by Eq. 2.3) (A.1)

yi ⊑A y′i (Given) (A.2)

α(op(γ(xi))) ⊑A y′i (From (A.1) & (A2)) (A.3)

QED.

Theorem A.2. Given two octagons oct1 and oct2, if there is no inequality i that is stricter

in oct2, then oct1 ⊆ oct2.

Proof. To prove this, we prove that if a concrete point c belongs to oct1, it also belongs to

oct2.

1. If c belongs to oct1 = [w, e], that means that vi(c) ≤ wi for all i in the set of inequalities

present in oct1, given by ineq1 = {i | ei = 1}.

2. As there are no inequalities that are stricter in oct2 = [w′, e′], it follows from the

definition of strictness (1) that the of inequalities present in oct2, given by ineq2 =

{i | e′i ≥ 0.5} is a subset of ineq1.

3. So, for all inequalities in oct2, vi(c) ≤ wi holds (from (1) and the fact that ineq2 ⊆
ineq1).

4. As no inequality is stricter in oct2, it also means that wi ≤ w′
i for all i ∈ ineq2.

5. From (3) and (4), we can conclude that ∀i ∈ ineq2, vi(c) ≤ w′
i. This proves that c also

belongs to oct2.

QED.

44

	CHAPTER 1 INTRODUCTION
	CHAPTER 2 BACKGROUND
	Abstract Interpretation
	Abstract Transformers
	Sound, But Incomplete Analysis
	Numerical Abstract Domains
	Interval Domain
	Octagon Domain
	Polygon Domain

	CHAPTER 3 GENERAL FRAMEWORK
	Abstract Transformers Learning Problem
	Neural Abstract Transformers
	Supervised Learning of Neural Transformers
	Unsupervised Learning of Neural Transformers
	Soundness Precision Trade-off

	CHAPTER 4 INSTANTIATION FOR NUMERICAL DOMAINS
	Interval Domain
	Tensor Representation of Intervals
	Supervised Learning of Neural Interval Transformers
	Unsupervised Learning of Neural Interval Transformers

	Octagon Domain
	Tensor Representation of Octagons
	Supervised Learning of Neural Octagon Transformers
	Unsupervised Learning of Neural Octagon Transformers

	CHAPTER 5 EVALUATION
	Neural Interval Transformers: Soundness & Precision
	Supervised Learning of Interval Transformers
	Unsupervised Learning of Interval Transformers

	Neural Octagon Transformers: Soundness & Precision
	Supervised Learning of Octagon Transformers
	Unsupervised Learning of Octagon Transformers

	Differentiable Learning of Loop Invariants

	CHAPTER 6 RELATED WORKS
	Learning Abstract Transformers
	Neural Surrogates

	CHAPTER 7 CONCLUSION AND FUTURE WORKS
	Conclusion
	Future Works

	REFERENCES
	APPENDIX A PROOFS

