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ABSTRACT
Massive MIMO forms a crucial component for 5G because of its
ability to improve quality of service and support multiple streams
simultaneously. However, for real-world MIMO deployments, esti-
mating the downlink wireless channel from each antenna on the
base station to every client device is a critical bottleneck, especially
for the widely used frequency duplexed designs that cannot uti-
lize reciprocity. Typically, this channel estimation requires explicit
feedback from client devices and is prohibitive for large antenna
deployments. In this paper, we present FIRE, a system that uses
an end-to-end machine learning approach to enable accurate chan-
nel estimation without requiring any feedback from client devices.
FIRE is interpretable, accurate, and has low compute overhead. We
show that FIRE can successfully support MIMO transmissions in a
real-world testbed and achieves SNR improvement over 10 dB in
MIMO transmissions compared to the current state-of-the-art.

1 INTRODUCTION
The advent of 5G promises to add new dimensions to cellular com-
munication systems. 5G will support high bandwidth Gbps com-
munication from smart devices and enable low power connectivity
for millions of Internet-of-Things devices per square mile. These
capabilities are enabled by large bandwidths and MIMO (Multiple
Input Multiple Output) techniques that leverage tens to hundreds
of antennas. In 5G, base stations equipped with multiple antennas
will leverage advanced signal processing methods to enable a suite
of new technologies like multi-user MIMO and coordinated multi-
point transmissions to increase the spectral efficiency of cellular
networks multifold.

To enable MIMO capabilities, base stations need to know the
downlink wireless channel from each of their antennas to every
client device (e.g., a smartphone). This is trivially achieved in TDD
(Time Domain Duplexing) systems using reciprocity. In TDD sys-
tems, the uplink (client to base station) and downlink transmission
happen on the same frequency. Therefore, the base station can
measure the uplink channel using client transmissions and use
reciprocity to infer the downlink channel. Due to reciprocity, the
uplink and downlink channels are equal modulo hardware factors.
However, in FDD (Frequency Domain Duplexing) systems, dom-
inant in several countries including the United States, the uplink
and downlink transmission happen on different frequencies, and
therefore the principle of reciprocity no longer applies.
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Figure 1: FIRE enables end-to-end cross-frequency channel
estimation without feedback.

Today, in FDD systems, the client device measures the wireless
channel using extra preamble symbols transmitted by the base
station and sends it as feedback to the base station. This feedback
introduces overhead that scales linearly with the number of antenna
s, devices, and available bandwidth, and is prohibitive for massive
MIMO systems. As we discuss in Sec. 2, the feedback overhead for
64 antenna base stations transmitting to 8 clients can be as high as
54 Mbps in mobile environments over a 10MHz channel.

This overhead has been recognized as unsustainable in the in-
dustry as well as academia [11, 21]. To solve this problem, some
researchers(e.g., in R2F2 [59], OptML [9]) have observed that the
uplink and downlink channel are created by the same underlying
physical environment and the same paths being traveled. There-
fore, they propose signal processing or machine learning models to
infer the underlying paths using uplink channels measured at the
base stations. Then, they use standard models to infer the down-
link channel from the paths without any feedback. However, this
computation has proven to be error-prone and can enable only low-
accuracy primitives like beamforming but not the more advanced
operations like multi-stream MIMO transmission or multi-user
MIMO. Therefore, FDD cellular systems today gain limited utility
out of multiple antennas due to this tradeoff between channel ac-
curacy and feedback overhead. Accurate channel measurements
can enable MIMO gains but have prohibitive overhead. In contrast,
zero feedback methods fail to utilize MIMO gains.

Accurate zero-feedback MIMO: In this paper, we break the
above barrier and achieve high accuracy, zero-feedback MIMO op-
eration. We build FIRE (FDD Interpretable REciprocity) – a system
that uses an end-to-end machine learning approach to infer down-
link channels from uplink channels without any feedback from
the client, as shown in Fig. 1. We observe that past work [9, 59]
attempts to solve an unnecessarily challenging problem: to identify
the accurate distance, angle, and phase of each path that the signal
travels along. Given the limited bandwidth of cellular systems, this
approach is bound to fail (see Sec. 4.1). However, the downlink
channel inference problem is more forgiving. For example, adding
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the same distance to all paths doesn’t change the relative channel
on the different antennas, and MIMO transmissions just care about
relative channel values. This implies that using intermediate paths
to infer downlink channels isn’t the optimal strategy. Therefore,
we use an end-to-end architecture to directly focus on the more
relevant problem of predicting accurate downlink channels, rather
than predicting the underlying paths.

An end-to-end architecture is advantageous for three reasons.
First, the trained model can capture additional information about
the environment (e.g. reflectors, buildings, base station characteris-
tics) by combining information across multiple data points. This
information is hard to capture in hand-crafted designs or signal
processing approaches. Second, an end-to-end model can be easily
trained by using explicit supervision. We can collect training data
from some clients when a base station is set up. Such supervision
for accurate distance, angle, and phase of each path of the signal
is almost impossible to obtain as mentioned above (e.g., [9] uses
a simulator to train their model from channels to physical paths).
Finally, with 5G, moving the physical layer processing to the edge
or the cloud is a new trend in the industry. An end-to-end model
can be easily deployed on the cloud with automated processes for
training and fine-tuning.

Generative Interpretable architecture: We model our archi-
tecture using a generative process, inspired by the physics-level
intuition (and past work like [59]) that both uplink and downlink
channels are generated by the same process from the underlying
physical environment. Specifically, we choose a variant of the pop-
ular variational autoencoders (VAE) as our end-to-end architecture,.
The VAE first (a) infers a latent low-dimensional representation of
the underlying process of channel generation by observing sam-
ples of the uplink channel, and then (b) generates the downlink
channels by sampling in this low-dimensional space. Given its data-
driven nature, the VAE can embed real-world effects in the latent
space and therefore capture the generative process more accurately.
Our experiments in Sec. 6.5 validate our choice of modeling the
generative process and show that our design outperforms past
signal processing approaches and learning-based approaches that
use discriminative models such as fully connected networks that
inherently cannot capture the generative process.

A key criticism of end-to-end machine learning models, when
applied to networking solutions, is that they often operate in a black-
box manner lacking interpretability and therefore, are impractical
in real-world scenarios like cellular networks where network op-
erators may want to peek inside the algorithms when things go
wrong. FIRE’s VAE enables interpretability as it encodes the gener-
ative process in a probabilistic latent space representation which is
indicative of the physical characteristics of the signal transmission
(e.g. client properties, locations, reflectors in the environment) and
provides potential insights for network operators.

Countering hardware randomness: Our work deals with sev-
eral challenges that arise out of hardware imperfections in the
real-world. Wireless channel measurements at base station and
clients are not just a function of underlying signal paths. Instead,
they are also strongly impacted by hardware effects like carrier fre-
quency offset (CFO), packet detection delays, etc. In practice, CFO

introduces random phase shifts to the wireless channel that is con-
sistent across antennas and frequencies. On the other hand, packet
detection delays add random phase shifts that vary across frequen-
cies. Any machine learning model operating on such raw channel
measurements will be confused by these random uncorrelated ef-
fects on the wireless signal. It will try to fit to the randomness,
instead of the useful information in the wireless channel. Therefore,
we design a data transformation algorithm that can standardize the
input-output relationship between uplink and downlink channels.

Evaluation: We evaluate FIRE on a public large scale dataset [54]
collected using 96-antenna base stations. We train FIRE using a
single client device and test on multiple other client devices. We
compare FIRE against state-of-the-art baselines: a feedback-free
signal-processing channel inference system, a machine learning
based channel prediction model, and a codebook based method.
We further build a base station prototype with 4 antennas and test
FIREś performance on it. Our results show that:

• Prediction Accuracy: FIRE can accurately predict downlink
channels. Channels predicted by FIRE can achieve median MIMO
SINR’s of 24.9 dB as compared to the best baseline performance
of 13.33 dB.

• Data rate: In a Multi-user MIMO setup, over 80% of FIRE’s chan-
nel predictions can support the highest data rate, as opposed to
nearly 10% with the best baseline.

• Real-time Operation: The median runtime of FIRE is 3.0 ms
on CPU and 0.3 ms on GPU compared to 7 seconds (on CPU)
for the baseline. FIRE’s runtime can support channel estimates
within coherence time intervals.

• Cross-antenna Prediction: FIRE’s architecture can achieve rea-
sonable performance, without optimizations, at other channel
prediction tasks such as predicting downlink channel for a subset
of base station antennas given uplink channels at another subset
(median SNR: 11.95 dB).

To the best of our knowledge, FIRE is the first system to demonstrate
high-accuracyMIMO channelmeasurements in a real-world testbed.
We achieve this using an end-to-end Machine Learning approach.
We believe this design will be crucial to next generation of cellular
networks: 5G & beyond.

2 BACKGROUND AND CONTEXT
Massive MIMO will be a key component in future 5G deployments.
At its best, massive MIMO uses tens to hundreds of antennas to
simultaneously communicate to multiple clients and increase the
net throughput of the system. Due to this promise, it is estimated
that massive MIMO investments for cellular networks crossed ten
billion US dollars in 2020 [21].

Wireless channels:Wireless channels are a fundamental quantity
in wireless systems. For a complex valued signal 𝑥 transmitted by
a transmitter, the signal received by a receiver is 𝑦 = ℎ𝑥 , where ℎ is
the wireless channel (a complex number) and denotes the effect of
the environment that the signal travelled through. Specifically, for
a signal transmitted at frequency, 𝑓 :

ℎ ∝
∑
𝑖

𝛼𝑖𝑒
−𝑗 2𝜋𝑑𝑖 𝑓

𝑐 (1)
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when the signal travels along multiple paths – each with attenua-
tion, 𝛼𝑖 , and distance, 𝑑𝑖 . 𝑐 is the speed of light.

Massive MIMO: In massive MIMO, a base station has multiple
antennas (say𝑀) and aims to talk to multiple clients (say 𝐾 < 𝑀)
simultaneously. For simplicity, we assume that all clients have one
antenna each. The wireless channel can now be represented as a
𝐾 × 𝑀 matrix H, where ℎ𝑘𝑚 denotes the channel from antenna
𝑚 to client 𝑘 . Assume, x is the 𝑀 × 1 complex vector of signals
transmitted from the𝑀 antennas. Then, the signal received at the
𝐾 clients, y, is given by: y = Hx, where 𝑦𝑘 is the signal received at
client 𝑘 .

Let us say the base station wants to communicate value 𝑞𝑘 to the
client 𝑘 . It needs to transmit signal x such that 𝑦𝑘 received at client
𝑘 is just a function of 𝑞𝑘 and does not see interference from 𝑞𝑘′

intended for other clients. To achieve this effect, the base station
precodes the values 𝑞𝑘 . The base station must identify a 𝑀 × 𝐾
precoding matrix P such that x = Pq, where q is the 𝐾 × 1 vector
of 𝑞𝑘 ’s. Therefore, the received signal is:

y = HPq (2)

How do we select the pre-coding matrix P? One standard way to
do this, called zeroforcing, is to set P = H†, where H† is the right
pseudo-inverse of H. Therefore, y = HH†q = I𝐾q, where 𝐼𝐾 is the
𝐾 × 𝐾 identity matrix. This allows every client to receive its own
signal without suffering interference from the signal intended for
any other client.

Channel estimation:Note, the above procedure relies on accurate
knowledge of the wireless channel,H, at the base station. Any error
in estimating H leads to interference for the clients and reduces
their data rate. First, let us focus on TDD systems, where the uplink
and downlink happen on the same frequency. Recall, from Eq. 1, the
wireless channel depends on the frequency and distance. Wireless
signals travel the same paths on uplink and downlink. Therefore,
for a base station-client pair using TDD, the channel for the uplink
and the downlink are equal modulo some hardware factors that
can be calibrated for. This principle is called reciprocity. The client
transmits some pilot symbols known to the base station so that the
base station can estimate the uplink channel, and use reciprocity
to infer the downlink channel (which is just a constant multipli-
cation to the uplink channel). In terms of overhead, this process
requires just 𝐾 uplink pilots, one for each transmitting client, and
is independent of the number of antennas on the base station as
base station antennas can simultaneously sense the signal.

For FDD, the uplink and downlink transmission happen on differ-
ent frequencies. Therefore, the downlink channel is not equal to the
uplink channel anymore. For FDD base stations to leverage MIMO,
the base station sends 𝑀 pilot symbols one on each antenna. Each
client measures the downlink wireless channel from each antenna
to itself and sends the𝑀 channel values as feedback to the base sta-
tion. In total, 𝐾 clients send𝑀 ×𝐾 channel values as feedback. This
feedback incurs overhead that scales with the number of antennas
and number of clients (𝑀 ×𝐾 ). Past work [20, 39] has shown that in
TDD, massive MIMO can enable theoretically infinite scaling with
increasing number of antennas and clients. However, this feedback
overhead caps the scaling for FDD systems, since it scales up with

𝑀 and 𝐾 as well, and the spectrum becomes the bottleneck. We
refer the reader to [40] for a detailed discussion on massive MIMO.

Example of feedback: We use reference numbers from [40] to
obtain a conservative estimate of the feedback overhead. Let us
assume a downlink frequency band centered at 2 GHz with a 10
MHz width. A typical coherence bandwidth for a pedestrian in
outdoor scenarios is 300 kHz and the coherence time is 50 ms. The
coherence time goes down to 2.5 ms for motion at vehicular speeds
(e.g. smartphones during travel). The coherence bandwidth and
time indicate the frequency-time interval over which the channel
doesn’t change much. Conservatively, let us assume that the client
just sends one value for one coherence frequency-coherence time
interval. Furthermore, let us assume a standard setup with 64 base
station antennas transmitting to 8 clients. In such a setup, the feed-
back overhead is 3 Mbps for the pedestrian scenario and 54 Mbps
for the mobile scenario in cars, assuming 8 bits (4 real, 4 imaginary)
for each channel value. Given that a 10 MHz channel can support
between 2 to 70 Mbps depending on channel conditions, this feed-
back is unsustainable. Therefore, it is believed that FDD systems are
not suited for massive MIMO operations or must limit themselves
to coarse-grained use of multiple antennas like beamforming which
does not require as accurate channel estimation. Our work aims to
reduce this feedback to zero while supporting accurate downlink
channel estimates.

FDD vs TDD: Today, in most parts of the world, FDD remains ei-
ther the only or the heavily dominant strategy for cellular spectrum
allocation [51, 61]. For instance, the leading cellular providers in
the United States all use FDD. 5G NR will use a mix of existing and
new spectrum. The new spectrum allocations are a mix of TDD
and FDD spectrum, with FDD still dominant in the sub-6Hz bands.
One might wonder why FDD spectrum is preferred despite the
challenges associated with MIMO operations. It is because FDD
systems provide better coverage for edge clients, require fewer base
stations, and incur lower cost overall. Due to separate bands for
uplink and downlink, in FDD, the client and base station do not
need to coordinate transmissions to avoid interference, reducing
timing synchronization overhead. The uninterrupted operation of
clients and base stations also extends range and reduces the need
for base stations. According to Qualcomm [50], TDD systems need
up to 65%more base stations than FDD systems for similar coverage
and performance. In contrast, the key disadvantage of FDD systems
is the channel estimation overhead and its implication for MIMO
operation. Therefore, many network vendors, like Ericson and Qual-
comm [18, 52], have proposed the use of carrier aggregation across
FDD and TDD to combine the best aspects of TDD (MIMO) and
FDD (larger range, lower overhead, continuous coverage).

3 SYSTEM OBJECTIVES AND OVERVIEW
In this paper, we aim to reduce the burden of channel estimation
and feedback for future FDD MIMO systems. We design our system
with the following goals in mind:

• Zero Feedback: Our design must not require any feedback from
the client device.

• Accuracy: The channel estimates must be accurate enough to
support advanced MIMO techniques.
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• Interpretability: Our method must support interpretability of
the end results.

• Robustness: Our system must be robust to real-world variations
like hardware effects, client mobility, etc.

With these objectives inmind, we design FIRE, an end-to-end design
for downlink channel estimation without feedback. A base station
measures the uplink channel (as it would normally do) using uplink
pilot symbols. It then feeds the uplink channel estimates to FIRE
which uses them to compute the corresponding downlink channel.
The downlink channel can then be used to perform precoding for
advanced MIMO techniques. We discuss our motivation for an end-
to-end design in Sec. 4.1, describe the design in Sec. 4.2, and present
the systems challenges in Sec. 4.4. Finally, we discuss our datasets
in Sec. 5.1 and present a detailed evaluation in Sec. 6.
Scope: Our system is designed for operation in the traditional
frequency bands used for cellular communication (<2 GHz) and for
the newly allocated sub-6 bands (<6 GHz). Most 5G deployments
in the near term by providers like AT&T, T-Mobile, Verizon, etc.
will rely on sub-6 bands. mmWave bands (>20 GHz) offer high
bandwidth capabilities and use multiple antennas, but the MIMO
process and challenges in these bands are different due to high
attenuation, largely line-of-sight operation, etc. These challenges
are being tackled by multiple research efforts and are not the focus
of FIRE.

4 END-TO-END ARCHITECTURE FOR
CHANNEL PREDICTION

In this section, we describe the design of FIRE, a machine learning-
based cross-band channel prediction system, equipped with a dedi-
cated channel transformation algorithm.

4.1 Motivation
Before we delve deeper into our design, we must ask: is it at all
possible to infer downlink channels from uplink channels? Prior
work [6, 9, 26, 27, 59] has already shown that this is possible. To
understand why this is the case, consider Eq. 1 where the channel
value, ℎ, measured at a given antenna depends on the path trav-
eled by each signal from the transmitter to the receiver antenna.
Specifically, it is a function of the distance, 𝑑𝑖 , and attenuation, 𝛼𝑖 .
𝛼𝑖 denotes the attenuation due to path loss and loss incurred during
reflection (including phase changes caused by reflection). So, if we
can use the channel measurements at one frequency to infer the
distance 𝑑𝑖 and complex attenuation 𝛼𝑖 , we can plug these values
into Eq. 1 to infer wireless channels at a different frequency.

This process is aided by two factors: (a) for a given path, the
length of the path traveled by the signal to each base station antenna
is not independent, but rather a function of the angle that the signal
is received at – this reduces the number of variables to estimate,
(b) cellular networks use OFDMA (orthogonal frequency division
multiple access) to divide the frequency bands into multiple sub-
frequencies. This enables uplink channel measurements at multiple
frequencies, giving the base station more measurements to identify
the underlying variables. In this context, we make two observations:

Low bandwidth of cellular transmissions hinders parameter
estimation: Prior works [9, 59] try to infer the distance, angle,

and attenuation of each path from channel measurements. Precise
estimation of these parameters is a challenging task. A small error
of even 0.3 radians in channel phase (caused by 0.5 cm distance error
at 3GHz frequency) will cap the SNR (signal to noise ratio) of the
channel estimate at roughly 10 dB, which is insufficient to support
MIMO transmissions. Low bandwidths of cellular transmissions
(10-100 MHz) limit the accuracy of these distance measurements
and cause errors in accurate path estimates. In fact, as we show in
Sec. 6.3, past work achieves an SNR of 5 to 8 dB due to such errors.
In practice, MIMO transmissions would need channel accuracy in
the range of 15 to 20 dB, which is nearly 10 times more accurate
(dB uses the log scale).

Path estimation is not required for MIMO: Note from Eq. 2,
MIMO pre-coding does not need absolute channel values for accu-
rate pre-coding. If the same constant is multiplied to the channel
across different antennas, it can be abstracted out and does not
impact the pre-coding matrix computation. Therefore, we do not
need to accurately estimate all the parameters of the underlying
paths to obtain the precise wireless channel. For instance, adding
the same distance to all paths does not impact the relative channel.
Similarly, adding the same phase shift to all reflectors does not
impact the relative channel. This implies that channel inference for
MIMO does not need to accurately infer all the parameters for each
path. Motivated by this insight, we propose a shift in paradigm:
from inferring intermediate paths to an end-to-end approach that
focuses directly on the channel inference problem.

4.2 FIRE’s Architecture
We leverage data-driven machine learning to model the end-to-end
problem of downlink channel estimation. FIRE aims at generating
downlink wireless channel by observing the uplink channel mea-
sured by the base station. The overall architecture of FIRE is shown
in Fig.2. FIRE first performs a data transformation step on uplink
channels to remove hardware errors (see Sec. 4.4) and then feeds
them to a learned predictor based on variational autoencoder (VAE)
[31].

We considered multiple architectures in our design and chose
VAE for three reasons: (a) VAEs can accurately model the generative
process of creating channels from underlying physical parameters.
In the past, VAEs have been successfully applied for generative
modeling in a variety of tasks including image extrapolation [34],
text generation [25], and link prediction in graphs [32]. This type of
generative modeling is not inherently possible with discriminative
models such as fully-connected networks which ignore the under-
lying generative process and try to directly compute the downlink
channel from the uplink channel. (b) VAEs are more powerful than
other architectures like classic autoencoders [24] used for represen-
tation learning. Therefore, they enable higher accuracy for channel
inference, as we show in Sec. 6.5. (c) The latent space representation
in a VAE is usually disentangled [41] and is, therefore, a natural
candidate for getting more insights into what the network is learn-
ing. This interpretability is not possible with traditional classifiers
based on fully connected or LSTM architectures.

Traditionally, VAE learns the probability distribution of the train-
ing dataset x by first encoding x into a lower dimensional latent
space z via an encoder network. The encoder learns the distribution
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Figure 2: Our model adopts variational autoencoder which consists of an encoder network and a decoder network. The uplink
channel is first processed to remove the CFO and packet detection delay. The processed channel is fed into the encoder network
which outputs a probabilistic latent space representation (𝜇, 𝜎). FIRE then samples the latent space vector and feeds it through
the decoder to generate downlink channels.

of zmaximizing 𝑝 (z|x). Next, samples are drawn from this distribu-
tion and a decoder network decodes the samples to generate new
data from the distribution of x. Unlike traditional VAEs, our outputs
and inputs are not the same. However, based on the hypothesis for
our end-to-end approach in Sec. 4.1, the downlink channel can be
obtained from the uplink channel. Therefore, we learn the distribu-
tion of the downlink channel given the uplink channel (instead of
learning the distribution of the uplink channel as would be the case
in traditional VAEs). In FIRE, we use the encoder network to learn a
lower-dimensional interpretable representation 𝑍 = R𝑙 for our tar-
get distribution. The decoder then uses the obtained representation
to predict the downlink channel.

Let
{
u𝑖

}𝑁
𝑖=1 and

{
d𝑖

}𝑁
𝑖=1 be the uplink and downlink channel

values consisting of 𝑁 datapoints from the training set, u𝑖 ∈ 𝑈 =

R2×𝑁𝑎×𝑁𝑏 , d𝑖 ∈ 𝐷 = R2×𝑁𝑎×𝑁𝑏 where 𝑁𝑎 and 𝑁𝑏 are namely
the number of antennas and the number of OFDMA subcarrier
frequencies. The value 2 corresponds to the real and imaginary parts
of the complex values channel. To avoid clutter, we use du = d|u (d
given u). The training objective in our context is to maximize the
log-likelihood of the predicted downlink channel:

𝑁∑
𝑖=1

log𝑝 (du𝑖 ) (3)

However, computing log 𝑝 (du𝑖 ) exactly is an intractable problem
and therefore it is approximated by the evidence lower bound
(ELBO):
𝐸𝐿𝐵𝑂 = E

z∼𝑞(z |du𝑖 )
log𝑝

(
du𝑖 | z

)
− 𝐷KL

(
𝑞

(
z | du𝑖

)
∥𝑝 (z)

)
(4)

where the first term is the reconstruction loss and the second term
corresponds to the KL divergence between the latent space distribu-
tion given the observations 𝑞(z|du𝑖 ) and the multivariate standard
normal distribution 𝑝 (z) with mean 0 and variance 1 in the la-
tent space. 𝑞(z|du𝑖 ) is also a multivariate Gaussian distributions,
however, its mean and variance are unknown apriori and learned
during training. Minimizing the KL divergence between 𝑞(z|du𝑖 )
and the standard normal distribution ensures two properties essen-
tial for our extrapolation task. These are (a) continuity: the decoded
downlink channels corresponding to samples close to each other in
the latent space should not be too different, and (b) completeness:

any point sampled from the latent space corresponds to a valid
downlink channel.

Encoder Network: Given the transformed channel estimation ma-
trix with the dimensions of 2 × N𝑎 × N𝑏 , we first flatten it into a
vector, then feed it into a three layer fully connected (FC) network
with LeakyReLU [37] as the activation for the first two layers and
no activation for the third one. The output of the FC network yields
the mean vector 𝜇 and the variance vector 𝜎 , as shown in Fig.2.
During training, the encoder network maximizes the likelihood of
the latent distribution 𝑞(z|du𝑖 ) generating d𝑖 given u𝑖 .

Decoder Network: The decoder neural network takes as input a
sample from the latent space and predicts the downlink channel
value. To enable a strong prediction ability, we use four layers fully
connected network (one more layer than the encoder network).
The first three layers have LeakyReLU activation while the last
one has Tanh activation. We reshape the output vector back to size
2×N𝑎×N𝑏 to get the downlink channel matrix. During training, the
decoder network samples z from𝑞(z|du𝑖 ) and learns the parameters
maximizing 𝑝 (du𝑖 |z).

Loss Implementation Details. The loss function in Eq.4 consists
of the reconstruction loss and the KL divergence. The reconstruction
loss in our context is defined as the Mean Square Error (MSE)
loss, 𝑀𝑆𝐸

(
𝐻𝑝𝑟𝑒 , 𝐻𝑔𝑡

)
, where the 𝐻𝑝𝑟𝑒 is the predicted downlink

channel and 𝐻𝑔𝑡 is the ground truth downlink channel after the
data transformation. We do not use the raw downlink as the ground
truth, since it contains signal distortion and we only care about the
relative values of the channel matrix in MIMO technologies. The
KL divergence is computed in a closed form as:

𝐿KL =
1
2

𝑙∑
𝑗=1

(
𝜇2𝑗

(
u𝑖

)
+ 𝜎2𝑗

(
u𝑖

)
− log𝜎2𝑗

(
u𝑖

)
− 1

)
(5)

Overall the ELBO loss can be rewritten as:

𝐸𝐿𝐵𝑂 = 𝑀𝑆𝐸
(
𝐻𝑝𝑟𝑒 , 𝐻𝑔𝑡

)
− 𝛽𝐿𝐾𝐿 (6)

where 𝛽 is a hyperparameter that balances the contributions of the
reconstruction loss and the KL divergence loss during training[23].
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Figure 3: We visualize the ground truth channel matrices in the uplink and downlink in 2D space by using UMAP method
and the results are shown in (a) and (c) respectively. We also do the same thing to the latent space in our VAE network and
the result is shown in (b). Channel matrices are collected from 6 clients at different locations which are shown with different
colors. Our neural network manages to disentangle the uplink channel values into separated groups depending on different
locations and reconstruct them back to the downlink.

4.3 FIRE’s Interpretability
Channel values are complex numbers and as such, are hard to
debug. Consider the real and imaginary matrices shown in Fig. 2
for example. A network operator cannot gain much insight out
of these channel values. Therefore, interpretability is a challenge
for an end-to-end design that ingests uplink channel matrices and
outputs downlink channel matrices. FIRE’s VAE design presents
an improvement over this black-box scenario. Specifically, the VAE
learns a latent representation that disentangles the uplink channel
values into physically relevant information.

To highlight this point, we showcase a simple experiment. We
use the uplink and downlink channel matrices collected from six
clients placed at six different locations in non-line-of-sight setting
(more details of our dataset are in Sec. 5.1). These clients are physi-
cally separated from each other and experience distinct physical
paths. First, we consider the uplink channel measurements from
these clients. To visualize the channel matrices across time from
these clients, we use the Uniform Manifold Appoximation and Pro-
jection (UMAP) method [42]. UMAP is a standard method used
for non-linear dimensionality reduction and embeds the channel
matrix into a 2-D space. We plot the uplink channel for different
measurements in Fig. 3(a). As shown, clients (denoted by different
colors) are randomly scattered across the 2-D space, showing in-
tense entanglement between uplink channels from different clients.

Next, we perform the same analysis on the latent space learnt by
our VAE and plot the 2-D representation in Fig. 3(b). In the figure,
the clients at different locations form different clusters indicating
that the different locations get mapped to different points in our
latent space. Also, it is worth noting that purple and brown-colored
clients are geographically close to each other in the real world and
are far from the orange-colored client. This is also indicated in
the latent space representation. Moreover, note that each location
doesn’t map to the same point. This is because the channel changes
due to reasons other than the location change like environment
mobility, hardware variations over time, etc. Overall, our latent
space representation provides a way for an operator to identify
the most relevant factors determining the downlink channel. This
insight can be leveraged by the network operators to debug the
system, e.g., whether a particular location or hardware is prone to
receiving bad signals.

While the encoder network shows the above ability to disen-
tangle features, the decoder network maps the latent space back
into the downlink channel values as shown in Fig.3(c) and features
become entangled again showing the same pattern as for the uplink.

4.4 Countering Hardware Offsets
When estimating the uplink channels at the base station, clients
send preamble symbols aimed specifically for channel estimation
and packet detection. However, the channel estimated in this man-
ner usually contains signal distortion caused by the career fre-
quency offset (CFO) and the hardware detection delay. These offsets
introduce random distortions to the channel values. If we train a
neural network with these distortions, it will try to fit to the ran-
domness and incur large errors. On the other hand, these random
distortions are impossible to remove. To solve this challenge, we
introduce a data transformation scheme that standardizes the effect
of these distortions on the wireless channel and reduces their ef-
fect on our network. Our data transformation scheme converts the
raw channel values into a channel representation that is invariant
to these effects. The core insight is: MIMO techniques care about
relative channel across different antennas and subfrequencies, not
the absolute channel values. Based on this insight, our algorithm
performs three steps defined below.

Signal Strength Scaling: The measured channel matrix could
have significant differences in absolute values due to different dis-
tances of clients, environmental changes, user mobility, etc. How-
ever, for MIMO systems, we do not typically care much about the
absolute scaling of the channel matrix but only the relative scaling.
Therefore we normalized the channel matrix H as: H𝑛𝑜𝑟𝑚 =

√
𝑁

∥H∥H,
where 𝑁 is the number of antennas in the base station and ∥H∥ is
the second-order Frobenius norm of H.

Eliminating the effect of Carrier Frequency Offset: In real-
istic hardware settings, the CFO is usually caused by frequency
misalignment in oscillators between the base station and the clients.
This frequency offset, denoted by Δ𝑓 , will continuously add a phase
shift in the received signal 𝑥 (𝑡) with respect to the true signal 𝑥 (𝑡)
over time: 𝑥 (𝑡) = 𝑥 (𝑡)𝑒 𝑗2𝜋Δ𝑓 𝑡 . In MIMO-OFDM systems, the anten-
nas are often co-located as an antenna array. Hence, it is valid to
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assume that only one oscillator is referenced at either the transmit-
ter side or the receiver side. As a result, a single CFO-induced phase
value is added to channel measurements across the whole antenna
array at the base station. We can thus eliminate the phase rotation
by dividing the channel matrix by the value at the first antenna
measured at the same time. Note that key MIMO techniques only
care about the relative channel values among antennas and this
kind of division doesn’t affect the relationship in antenna array.

Mitigating Hardware Detection Delay: There is a delay Δ𝑡 be-
tween the time when the signal reaches the RF front-end and the
time when the signal is actually detected by the decoding algo-
rithm. This delay will add a further phase rotation 2𝜋 𝑓𝑖Δ𝑡 at every
subcarrier 𝑖 . Because the frequencies of the subcarriers increase lin-
early with respect to the subcarrier index, this delay adds a slope in
phase at every measurement. We standardize this delay by zeroing
out the slope of the phase across subcarriers for the first antenna.
Specifically, we use linear regression to identify the slope of the
phase across subcarriers (say𝑚) for channel measurements on the
first antenna. Then, we subtract the value𝑚𝑓𝑖 from the phase of
the 𝑖𝑡ℎ subcarrier on each antenna. Note that this procedure does
not remove the random detection delay – in fact, it is impossible to
remove. However, it standardizes our representation across differ-
ent measurements. Different measurements of the same channel
will now appear identical to the neural network.

We apply the above three transformations to the channel to
obtain a standardized channel matrix that is suitable for neural
network training. Now, we have a channel matrix of size [𝑁, 𝐵],
where 𝑁 is the antenna number at the base station and 𝐵 is the
subcarrier numbers in OFDM. However, this still cannot be used for
neural network inference which only accepts real values as input.
To solve this problem, we consider the complex valued channel
matrix as a real valued matrix with two channels and put the real
part of channel into the first channel and the imaginary part into
the second. We don’t use the absolute values and phase to avoid
phase wrapping. We further divide the channel matrix after the
fore-mentioned three transformations by the maximum absolute
value in the matrix, and then scale the channel matrix so that all
values lie in the interval [−1, 1], to facilitate training.

5 IMPLEMENTATION
We present implementation details of FIRE below.

5.1 Dataset Selection
To satisfy the need of massive MIMO in real-world deployments,
our dataset should have the following characteristics:

• Real-world: The dataset should be collected in the real-world
instead of simulation to model all real-world effects: multipath
reflections, hardware effects, noise, etc.

• Antenna number at base stations: Previous work [17] has
shown that massive MIMO is among the most critical technology
in next-generation networks which has the potential to boost
the throughput by increasing the number of antennas at the base
station. However, building a base station with tens to a hundred
antennas from scratch faces several technical issues and needs
sophisticated hardware expertise [55].

Figure 4: Hardware Platform: Our base station with a 4-
antenna uniform linear array (ULA).
• User mobility: We envision that our trained neural network
could be used not only in the static environment but also in cases
when users served by the base station are moving, making the
dataset consistent with real-world application demands.
There are several open-access platforms that provide programmable

interfaces to conduct the Channel State Information (CSI) collection,
however, they at least miss one of the above needs. To name a few,
Colosseum [12] allows up to 256×256 100MHz RF channels by using
hundreds of USRP X310s but the channel environment is purely sim-
ulated and unchangeable. While providing access to a 64-antennas
base station, Powder platform [14] only maintains fixed user ends.
On the other hand, some ready-made CSI datasets [19, 38, 43] col-
lected by various research teams either only contains static clients
or are generated in a custom simulator.

Based on the above concerns, we chose the Argos Channel
dataset [54] as our training dataset. Argos dataset has been col-
lected on the RENEW wireless testbed [1] and contains real-world
channel state information measured in diverse environments with
up to 104 antennas at the base station serving 8 users. The data
contains channel measurements performed in a variety of user
mobility patterns in both line-of-sight (LOS) and non-line-of-sight
(NLOS) settings. The dataset contains some static locations as well,
but since the cellular networks mostly cater to mobile users, we
focus on the mobility use case in our evaluation.

The raw traces contain the received 802.11 Long Training Sym-
bols (LTS), thus we could extract the CSI value from them by doing
the channel estimation. The trace durations in the dataset range
from tens of seconds to 20 minutes with different channel sounding
intervals. These traces are collected using omnidirectional mono-
pole antennas spaced 63.5 mm apart which is half a wavelength at
2.4GHz and one wavelength at 5GHz. The bandwidth is 20 MHz
with 64 OFDM subcarriers in the symbol. Similar to FDD systems,
we use disjoint frequencies for uplink and downlink. We split the
channel measurements in Argos such that the first half of the fre-
quency band is the uplink and our goal is to predict the second
half using the neural network. Furthermore, the uplink and down-
link channels are separated by guard bands. Each data point is a
matrix with size of [2, antenna number, subcarriers]. Unless oth-
erwise specified, the uplink and downlink channels consist of 26
subcarriers each after removing the guard bands.

5.2 Hardware Implementation
We implement a four-antenna base station using the Skylarkwire-
less Iris-030[57] software radio platform. We use two Iris-030 de-
vices with broadband analog front-ends and connect them in a
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daisy-chain manner to synchronize them as shown in Fig. 4. We
also use another Iris device as a two-antenna user device. Our
software radios operate in 2.4GHz ISM band with a bandwidth of
10MHz. We operate these devices in FDD manner, i.e. the uplink
and downlink operate on different frequency bands. The uplink and
downlink are separated by 20 MHz. Since the Iris device allows us
to set the transmit and receive frequency independently, we do not
need to switch frequencies constantly to enable FDD operation.

We fix the base station and move the user end to 50 different
locations in an indoor space to collect the channel measurements.
During the channel measurement, we send two Long Training
Sequences (LTS) for channel estimation along with five OFDM
data symbols. We use the estimated channel for decoding the data
symbols to verify that our channel estimation is sound. This dataset
enables a rich diversity in our channel measurements. We randomly
select 10 locations as our test dataset. Since we use two devices to
implement the base station, hardware resets and clock resets add
random phase offsets and timing delays to the channel estimates. To
avoid this error, whenever we need to perform a reset (for example,
to prevent overheating), we perform two measurements: one before
the reset and one after the reset at the same static location. We use
these two measurements to remove the random phase offsets and
timing delays in software.

Finally, note that our hardware implementation is limited to
a four antenna base station, therefore we use the Argos dataset
described above as the default evaluation method. We use our hard-
ware implementation to demonstrate FIRE’s robustness to different
environments, frequency bands, and measurement devices.

5.3 Network Structure
We did a network structure search in terms of depth and we found
that when the network gets deeper, the prediction accuracy in-
creases. But the accuracy won’t increase too much after the net-
work is deeper than 4 layers for both encoder and decoder. For
the encoder network, we use 3 layers and the hidden layer sizes
are 64, 64, and 100. This leads to a latent space with dimension 50
(50 values each for the means and the variances). For the decoder
network, we experimentally found that a deeper network will give
a better reconstruction performance. Thus, we leverage a four-layer
FC network – the hidden sizes are 50, 64, 64, and 2×𝑁𝑎 ×𝑁𝑏 which
depends on experiments.

We implement the neural network on Pytorch[47] and the pa-
rameters for training include batch size of 512, learning rate of
10−4, 𝛽 in Eq.4.2 of 0.1 and Adam optimizer for adaptive learning
rate optimization. We use these hyperparameters for all of our ex-
periments. While some tuning is useful, we found that FIRE could
perform well under a wide range of hyperparameter values. Thus,
we did not use existing hyperparameter tuning methods. We obtain
the model after 200 epochs of training and the memory footprint
of the model is 0.5MB.

The total number of points in our dataset is 100K (80K for the
training and 20K for the testing). To ensure separation in data
points and ensure device independence, the training set and test
set are collected using different clients. We train using data on
one client and test on data from seven other clients. We intend to
show that FIRE, once fully trained, could generalize to unseen users

under varieties of scenes. The test set contains data from multiple
environments: line of sight, non-line of sight, indoors, outdoors,
etc. Finally, all of our training and test data is collected in mobile
scenarios, where the client is in motion. We do not use data from
static scenarios available in the Argos dataset.

6 RESULTS
We present an empirical evaluation of FIRE below.

6.1 Baselines
We compare FIRE against the following baselines:
(1) R2F2: R2F2 [59] predicts the downlink channel at frequency

band 𝐹2 by observing the uplink channel at frequency band 𝐹1.
Given uplink channel values, it solves an optimization problem
to identify the number of paths and the corresponding path
parameters – angle of arrival, travel distance, attenuation, and
reflections. It uses these parameters to estimate the downlink
channel.

(2) OptML: OptML [9] takes an approach similar to R2F2, but uses a
neural network to predict the underlying path information from
uplink channels. By leveraging this information, it accomplishes
the cross-band prediction in an antenna array by further using
a multi-antenna optimization algorithm. We adapt the author’s
code for this baseline.

(3) FNN: There is another line of work [6, 26, 64] that use fully
connected layer for cross-frequency channel estimation directly.
These networks use discriminative models to covert an uplink
channel to the corresponding downlink channel. This line of
work has been evaluated with simulated data and therefore, can-
not deal with real world issues like hardware effects. Therefore,
the channel prediction does not work on real-world datasets.
For fair comparison, we augment these methods with FIRE’s
data transformation algorithm before using the neural network.
We implement this baseline via a five-layer fully connected net-
work with batchnorm and dropout, and tune its performance
with its best hyperparameters.

(4) Codebook: Both base station and clients maintain a codebook
which consists of a large number of vectors manufactured by
predefined rules [29]. Clients measure the channel locally and
choose the closest vectors in the codebook, then send the index
back to the base station. Note that the codebook method differs
from above three baselines, for it doesn’t eliminate the channel
feedback but reduces it. We choose the 8-bit random codebook
as used by [29], i.e., the quantization vectors are drawn from a
complex Gaussian distribution. This is also the method used by
many standard implementations, as recommended by the 3GPP
physical channel standard [3].

6.2 Microbenchmark
We now present microbenchmarks to provide insights into the
operation of our system. We trained FIRE on the Argos dataset with
an 8-antenna base station and a client at different locations. Fig.5
plots the results from a representative run. Given the uplink channel
value measured at 8 antennas, FIRE predicts the downlink channel
value from the same 8 antennas to the client. Fig. 5(a) plots the real
and imaginary parts for the uplink channel on a single antenna, and

8

635



FIRE: Enabling Reciprocity for FDD MIMO Systems ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

0 5 10 15 20 25
Subcarriers

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Ch
an

ne
l V

al
ue

Real, Uplink
Imag, Uplink

(a) Uplink Channel

0 5 10 15 20 25
Subcarriers

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

Ch
an

ne
l V

al
ue

Real, Downlink
Imag, Downlink
Real, FIRE
Imag, FIRE

(b) Downlink Channel & Prediction

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

21

22

23

24

25

26

SN
R 

(d
B)

(c) Signal SNR during movement

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

16

18

20

22

24

Ac
hi

ev
ed

 S
NR

 (d
B)

(d) Channel Prediction SNR

Figure 5: Microbenchmark: (a) Uplink channel values for an antenna. (b) Downlink channel ground truth and predictions for
the same antenna. FIRE’s predictions are accurate even though the channel varies across frequencies. (c) As a client moves,
it’s SNR varies. (d) FIRE can achieve high prediction accuracy throughout the motion.

the Fig. 5(b) plots the predicted downlink channel (along with the
ground truth). Note that, the uplink and downlink channels look
different compared to each other. Yet, FIRE can accurately predict
the downlink channel.

We, then, tested FIRE on a different client that is not part of
the training set. The client moves with respect to the base station,
leading to SNR changes.The signal SNR is plotted in Fig.5(c), the red
line is the average value measured every 20ms, showing that the
SNR decreases when the client moves away from the station and
vice versa. We use FIRE to predict the downlink channels for each
data point during motion. We calculate the SNR of the predicted
channel by comparing the predicted channel 𝐻 and the ground
truth channel 𝐻𝑔𝑡 using:

𝑆𝑁𝑅 = −10𝑙𝑜𝑔10

(
∥𝐻 − 𝐻𝑔𝑡 ∥2

∥𝐻𝑔𝑡 ∥2

)
(7)

As shown in Fig. 5(d), the SNR of the predicted channel is consis-
tently very high (conversely the error in predicted channel is very
low), for a mobile client in continuous motion. We will compare
the SNR of the predicted channel across a larger dataset on several
baselines below.

6.3 Channel Prediction Accuracy
We evaluate and compare the channel quality (SNR) using Eq.7,
under both LOS and NLOS settings. We plot the results in Fig. 6.
Since the NLOS environment does not have a direct path and is sat-
urated with complicated multipath effects, it increases the level of
difficulty for optimization-based algorithms (e.g., R2F2 and OptML)
to find the correct multipath parameters by simply looking into the
uplink channel measurement. However, our method maintains high
accuracy in both LOS and NLOS settings because of its end-to-end
prediction methodology and our specialized data transformations.
Specifically, FIRE achieves a median accuracy of 14.87dB (10th per-
centile: 7.89 dB, 90th percentile: 18.5dB) in LOS and 14.81 dB (10th
percentile: 5.77 dB, 90th percentile: 17.29 dB) in NLOS settings. In
comparison, the next best baseline is R2F2 which achieves median
SNR of 7.29 dB in LOS and 5.73 dB in NLOS settings. Note that,
FIRE’s 10th percentile SNR outperforms R2F2’s median SNR. Over-
all, FIRE’s SNR is 7.64 dB better than R2F2, 8.61 dB better than
OptML, 12.56 dB better than codebook and 11.98 dB better than
FNN in LOS environment. For the NLOS environment, our accuracy
is also much higher compared to baselines, and the SNR is 6.96 dB
higher than R2F2, 9.16 dB over OptML, 11.32 dB over Codebook
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Figure 6: Channel prediction accuracy, measured as channel
SNR, under different environments. FIRE’s predictions sig-
nificantly outperform all baselines.

and 11.57 dB over FNN. Note, SNR is measured on log scale (10 dB
corresponds to 10X gain).

We note that the errors achieved by R2F2 and OptML on our
dataset are consistent with the accuracies reported in the original
papers. It’s also worthwhile to mention that the codebook method
maintains a stable performance in both environments. This is be-
cause it quantifies the channel value using the codebook (instead of
trying to estimate paths) available both in the base station and user
end. Finally, our VAE design allows a latent representation that is
continuous and complete, which is not ensured by FNN. Hence, our
design is more suited to the extrapolation task and outperforms
FNN by over 10 dB.

6.4 Beamforming Performance
Next, we analyze how the channel accuracy gains translate into
massive MIMO performance gains. We first analyze beamforming
gains. In beamforming, a base station uses multiple antennas to
steer a signal to a specific client. This is particularly useful for
low SNR clients to gain additional signal strength. Typically, past
work like R2F2 and OptML do well on beamforming as the channel
accuracy requirement for beamforming is low. For example, a 2
antenna setup achieves an optimal beamforming gain of 3 dB with
perfect channel information. With a channel SNR of 10 dB, the gain
reduces to 2.6 dB – a small sacrifice.

To compute the beamforming gain, we use maximal ratio com-
bining [15] The ideal gain of using multiple antennas is given by:
|hg∗hp |
𝑀 |ℎ𝑔0 | , where hg is a 𝑀 × 1 vector of the ground truth channel
values, ℎ𝑔0 is the channel using a single antenna, hp is a vector
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Figure 7: MIMO Applications: (a) Beamforming Gain: FIRE achieves beamforming gain within 0.4 dB of the achievable gain
(ground truth). (b) MU-MIMO SINR: For a 8 antenna, 2 client system, FIRE achieves >20 dB SINR for over 80% of experiments
and can support the highest data rate. The spectral efficiency in this setup is plotted in (c).

of predicted channel values, and 𝑀 is the number of antennas. ∗
denotes the conjugate operation.

We plot the beamforming gain using an 8 antenna base station
for different baselines in Fig.7(a). First, note that our gains are
very close to beamforming gains achieved with perfect channel
estimates (ground truth). We just have a 0.37 dB loss compared
to perfect channel measurements. Second, we outperform other
baselines: our median gain is 8.59, 1.51, 1.23, and 5.94 dB higher
than codebook, OptML, R2F2, and FNN respectively. This shows
that FIRE can successfully enable accurate beamforming.

6.5 Multi-user MIMO
Amore complex multi-antenna technique is multi-user MIMO (MU-
MIMO). In MU-MIMO, a base station uses its multiple antennas to
transmit to multiple clients simultaneously. MU-MIMO is preferred
in high SNR scenarios where additional SNR to a single client
doesn’t provide any benefit in data rate. Therefore, it is advisable
to transmit to multiple devices simultaneously. MU-MIMO has a
very high bar for channel accuracy because any error in channel
accuracy means the signal intended for one client will leak into
signal intended for another client causing interference. The metric
of interest in this case is SINR (signal to interference and noise ratio).
As a ballpark estimate, with 2 base station antennas transmitting
to two clients and 8-bit perfect channel measurements, MU-MIMO
can achieve theoretical SINRs up to 24 dB. However, a channel
SNR of 10 dB will cap the SINR at 10 dB on average. Compared to
beamforming, MU-MIMO performance is hurt more by errors in
channel estimates.

To evaluate MU-MIMO performance, we randomly sample two
clients to transmit data to our 8-antenna base station. We repeat this
experiment 300 times and report the resulting SINR. For MU-MIMO,
we use the zeroforcing method to transmit to multiple antennas
simultaneously (described in Sec. 2). The clients are sampled across
both LOS and NLOS settings. The results of this experiment are
plotted in Fig. 7(b). First of all, note that FIRE achieves a median
SINR of 24.90 dB (10th percentile: 8.01 dB, 90th percentile: 33.09 dB).
Prior work [48] has shown that SINRs above 20 dB can support the
highest data rate. In more than 80% of our experiments, FIRE can
support the highest data rate for two clients simultaneously. This
is rare for other baselines – our best baseline, R2F2, achieves this
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Figure 8: Massive MIMO Results: FIRE’s performance scales
up with the number of antennas. (a) The SINR for our 2
stream transmission goes up with the number of antennas,
but is limited for baselines because of errors in channel pre-
dictions. (b) CDF of MU-MIMO SINR at clients with a 64-
antenna base station.

outcome in nearly 10% of our experiments. To complete the com-
parison, the median SINRs for R2F2, OptML, FNN, and Codebook
are: 13.33 dB, 11.53 dB, 3.41 dB, and 9.52 dB respectively.

We also note that FIRE’s performance is comparable to explicit 8-
bit channel feedback (24 dB SINR) received per antenna per device.
As we showed in Sec. 2, this feedback is unsustainable for clients
today due to the spectrum overhead of transmitting this channel.

Next, we convert these results into spectral efficiency (bits per
second per Hz) that shows how much data can be transmitted using
our method. We convert our SINR measurements into channel
quality index used in 5G standards using [48] and then use it to
identify the right modulation and coding scheme using the 5G
NR standard document [4]. This gives us the spectral efficiency
achieved using different SINR values. We plot the spectral efficiency
in Fig. 7(c). As shown in the figure, FIRE again outperforms the
baseline methods significantly. The average spectral efficiency for
FIRE is 6.69 bps/Hz, as compared to 4.89 bps/Hz for R2F2 – an
improvement of 1.36 times.

6.6 Massive MIMO Scaling
Now, we investigate massive MIMO scaling: how does FIRE’s per-
formance scale as we increase the number of base station antennas.
We still focus on the MU-MIMO application. Note that, more anten-
nas on the base station can support (a) higher beamforming gains
with narrower beams, (b) multiple clients, and (c) resilience to low
channel quality from a subset of antennas. In Fig. 8(a), we compare
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Figure 9: Hardware PlatformResults: (a) Channel prediction
accuracy on the indoor testbed. FIRE outperforms all the
feedback-free baselines significantly. (b)MU-MIMOSINR re-
sult in our testbed with 4 antennas, FIRE achieves competi-
tive SINR in our own platform.

the SINR in the MU-MIMO case from the previous section as the
number of base station antennas scale up. As expected, increasing
the number of antennas from 8 to 64 increases the SINR from 20.71
dB to 28.92 dB for FIRE. This is expected because increasing the
number of antennas allows the base station to cancel interference
better and to focus its narrower beams on the intended client. How-
ever, the baselines cannot fully leverage this because of the errors in
their channel predictions and are limited to the best value of 16.20
dB at 64 antennas. We also plot the 64-antenna MU-MIMO result in
Fig. 8(b), showing that FIRE reaches the average SINR of 29.11dB
which is 15 dB, 13 dB and 23 dB better than OptML, R2F2 and FNN
respectively. This result demonstrates that FIRE can support base
stations with large number of antennas.

6.7 FIRE Hardware Platform Results
We train and test FIRE on the dataset collected on our hardware
platform for further performance validation. The objective of this
analysis is twofold: (a) to demonstrate that the performance of FIRE
translates to different hardware architectures, and (b) to ensure that
the reciprocity assumption in our evaluation using Argos holds true.
Fig. 9(a) shows the prediction accuracy comparison against other
feedback-free methods. We see that FIRE achieves a median channel
SNR of 13.19dB (10th percentile: 8.13 dB, 90th percentile: 19.72 dB),
which is 5.21, 6.13, and 5.37dB higher than R2F2, OptML, and FNN
respectively. Note that, the performance of FIRE on our hardware is
similar to the performance on the ARGOS dataset shown in Fig. 6 –
there is a slight decrease in median SNR (from 14.87 dB to 13.19 dB)
due to the decreased number of antennas from eight to four. Smaller
antenna number reduces the ability to resolve between different
physical paths and hence reduces channel prediction accuracy for all
schemes. This result validates FIRE’s performance for a bidirectional
FDD dataset collected on our hardware platform.

We also compute the spectral efficiency achieved in a 4 × 2 MU-
MIMO transmission in Fig. 9(b). As before, we select two random
client locations from our dataset as clients. As expected, FIRE sig-
nificantly outperforms the other baselines. The average spectral
efficiency for FIRE is 3.92 bits per second per Hz. This is 2.09 times
better than R2-F2, 2.03 times better than Opt-ML, and 1.93 times bet-
ter than FNN methods. This shows that FIRE can enable successful
MU-MIMO operation in FDD systems.

Batch Size 1 2 4 8 16 32 64
Runtime/ms 1.30 0.80 0.51 0.38 0.33 0.30 0.40

Table 1: FIRE Average Run Time of a single CSI prediction
on GPU, using different batch sizes

6.8 FIRE Algorithm Analysis
Runtime: For a channel prediction system to be useful, it must
achieve runtime lower than channel coherence time (2.5 ms to
50 ms, see Sec. 2). We evaluate FIRE’s runtime and compare it
against the different baselines. We test all algorithms using the
same CPU (Intel i7-9750H) and plot the results in Fig. 10(a). FIRE
has an average run time of 3 ms, which is suitable for rapid cross-
band channel estimation even in fast changing environment. FIRE
achieves three orders of magnitude reduction compared to prior
work primarily because prior work relies on numerical optimization
for each prediction which involves multiple matrix inversions at
each step. Our work, on the other hand, uses a neural network that
performs a simple forward pass with multiplications. We also test
the FIRE runtime on the RTX 2070MQ GPU, the median run time
is 1.30ms for a batch size of 1. A standard base station can perform
channel translation for multiple clients together and use a larger
batch size. As we increase the batch size (Table. 1), the runtime
decreases to sub-milliseconds (0.30 ms with batch size 32) due to
the benefits of parallelization. The runtime decreases when batch
size gets too large, i.e., 32 in our experiment, due to the limit on
GPU memory. Finally, note that this runtime includes time for both
steps: data transformation (to remove CFO and packet detection
delay effect) and channel prediction.

Data Transformation: We measure the impact of our data trans-
formation approach (Sec. 4.4) on FIRE’s performance. To achieve
this, we remove each of the preprocessing steps and measure the
SNR of the predicted channel in Fig. 10(b). As shown, removing
the signal strength normalization (SS Norm) reduces the median
channel SNR from 13.90 dB to 11.66 dB, removing the CFO elimi-
nation (CFO Elim) step reduces the channel SNR to 0.01 dB, and
removing the packet detection delay correction (PD Corr) reduces
the channel SNR to 2.70 dB. This indicates that each of the proposed
preprocessing steps is crucial for FIRE’s performance.

Robustness: We analyze the robustness of FIRE by adding Gauss-
ian noise to the uplink channel and then, test the accuracy of the
predicted downlink channel. Note that our uplink channel is typi-
cally measured for signals with SNR in the range 20 to 30 dB.We add
additional noise to stress-test the system. For each noise value, we
compute the results on 100 data points in NLOS datasets. The results
are shown in Fig.10(c). As the noise in uplink channel increases,
the predicted channel SNR decreases gracefully. 20 dB additional
noise decreases the performance from 17.6 dB to 7.5 dB. At around,
30 dB additional noise, the channel SNR goes down to zero. This
shows that FIRE’s channel prediction accuracy is limited by the
overall SNR of the system, but degrades gracefully and provides
meaningful predictions even in harsh channel conditions.

Cross Antenna Prediction: To evaluate FIRE further, we ask if we
can use this architecture for other channel prediction tasks. There-
fore, we ask if it is possible to reduce the channel measurement
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Figure 10: (a) FIREperformsmillisecond-level predictions. (b) FIRE’s data transformation is crucial to it’s performance. (c) FIRE
is robust to additional noise. (d) FIRE can also perform cross-antenna channel prediction, although with reduced accuracy.

burden even further by predicting channel values across antennas.
Specifically, we use uplink channel measurements on a set of 8
antennas to predict downlink channel measurement at a different
set of 8 antennas on the same base station. We use a combination
of LOS and NLOS data for training. We show the achieved SNR
in Fig.10(d). FIRE achieves a favorable median SNR of 11.95 dB.
While this channel SNR is insufficient for MU-MIMO but can sup-
port accurate beamforming. Note that, this task cannot be done
by any other optimization-based baselines, which at least need the
observed uplink at the same set of antenna. This result shows the
potential of FIRE that it can complete the downlink channel matrix
at the base station even if some antennas miss the uplink channel
values. We leave improvements in this direction to future work.

7 RELATEDWORK
Our work is broadly related to two lines of research:

Downlink channel prediction: Downlink channel estimation is
challenging in FDD systems and has been recognized as such in
most recent 3GPP releases [2]. Past work [9, 26, 27, 59] has tried
multiple approaches to reduce this overhead. Our work is most
directly related to R2F2 [59] and OptML [9]. R2F2 uses a signal
processing approach to transform uplink channel measurements
into the underlying paths traveled by the signal and then uses the
paths to construct the downlink channels. OptML takes a machine
learning approach for getting the underlying paths from the uplink
channel instead. As we show in Sec. 4.1 and Sec. 6, such approaches
are fundamentally error-prone and cannot support complex MIMO
operations like MU-MIMO. Our work is different in its approach
and its performance. We use an end-to-end interpretable ML archi-
tecture and deliver an order of magnitude higher accuracy in our
channel estimates. Our model is also easier to train compared to
OptML because we use end-to-end supervision, rather than train-
ing on physical path information that is hard to obtain in a real
deployment.

There have been recent efforts to use machine learning for
the downlink channel problem [6, 26, 53, 60]. Our work differs
from these works in our approach and experiments. First, these
approaches rely on discriminative models (convolutional or fully
connected neural networks) as opposed to FIRE’s generative ap-
proach. As discussed in Sec. 4.2, the generative process more ac-
curately reflects the channel generation process. Empirically, we
have compared to one discriminative model (FNN [6]) in Sec. 6
and shown that it doesn’t achieve comparable performance on real-
world datasets even after adding our data transformation scheme

to the model. Finally, we evaluate FIRE using real-world channel
measurements. In contrast, past work relies on channel models
and simulations which do not capture real-world phenomena (e.g.
diffraction) and hardware constraints (e.g. CFO and packet detec-
tion delay). This concern also holds true for past simulation-based
signal processing approaches to eliminate or reduce channel feed-
back [30, 44, 46, 49, 64, 65].

Finally, recent work [66] has proposed directional training to
reduce feedback in MIMO systems. This approach observes that
the uplink channel and downlink channel share the same angles
of propagation. Therefore, by estimating the channel propagation
characteristics at these angles, one can reduce the overall feedback
overhead when the number of dominant angles is smaller than
the number of antennas. In contrast, FIRE is feedback-free and as
our evaluation shows, can provide advantages even with a small
number of antennas.

Machine Learning inWireless Systems: Finally, we are inspired
by the recent successes of machine learning in different tasks in
wireless systems: human sensing [7, 36, 67, 68], indoor positioning
[5, 8, 13, 58], modulation prediction [16, 63], MIMO systems [22, 33,
45], MAC protocol design [10, 28, 62] and also the application of
VAE in wireless systems [35, 56]. We build on this trend. However,
we differ from past work in the overall task as well as underlying
techniques such as data transformation. Our VAE architecture is
designed for a new task: an accurate downlink channel prediction
system. We also provide a mechanism to standardize the hardware
effects in this task.

8 CONCLUSION
In this work, we present FIRE an end-to-end channel prediction
mechanism for frequency duplexed systems. At its core, FIRE lever-
ages data-driven machine learning with powerful variational archi-
tectures and enables a new primitive: channel reciprocity without
feedback when uplink and downlink transmission happen at differ-
ent frequencies. While we apply this in the context of 5G systems,
we believe our system is more broadly applicable. Our design sits
well within the current trend of designing a more agile physical
layer that runs in the edge or cloud. We envision computational
tools such as FIRE will sit at the core of new radio designs and form
the core of future 5G and 6G deployments.
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