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Developers of machine learning applications often apply post-training neural network optimizations, such

as quantization and pruning, that approximate a neural network to speed up inference and reduce energy

consumption, while maintaining high accuracy and robustness. Despite a recent surge in techniques for the

robustness verification of neural networks, a major limitation of almost all state-of-the-art approaches is

that the verification needs to be run from scratch every time the network is even slightly modified. Running

precise end-to-end verification from scratch for every new network is expensive and impractical in many

scenarios that use or compare multiple approximate network versions, and the robustness of all the networks

needs to be verified efficiently.

We present FANC, the first general technique for transferring proofs between a given network and its

multiple approximate versions without compromising verifier precision. To reuse the proofs obtained when

verifying the original network, FANC generates a set of templates – connected symbolic shapes at intermediate

layers of the original network – that capture the proof of the property to be verified. We present novel

algorithms for generating and transforming templates that generalize to a broad range of approximate networks

and reduce the verification cost. We present a comprehensive evaluation demonstrating the effectiveness of our

approach. We consider a diverse set of networks obtained by applying popular approximation techniques such

as quantization and pruning on fully-connected and convolutional architectures and verify their robustness

against different adversarial attacks such as adversarial patches, 𝐿0, rotation and brightening. Our results

indicate that FANC can significantly speed up verification with state-of-the-art verifier, DeepZ by up to 4.1x.
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gies → Neural networks.
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1 INTRODUCTION
Deep neural networks (DNNs) are being increasingly deployed for safety-critical applications

in many domains including autonomous driving [Bojarski et al. 2016], healthcare [Amato et al.

2013], and aviation [Julian et al. 2018]. However, the black-box nature of the DNNs limit their

trustworthy deployment. The common practice to evaluate the networks on a finite set of test

inputs is insufficient to guarantee that the network will behave as expected on similar unseen
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inputs. Researchers have shown that the state-of-the-art networks can be unreliable in the presence

of an adversary, who can craft inputs that are similar to a correctly classified example but are

misclassified by the DNN [Carlini and Wagner 2017; Goodfellow et al. 2015; Szegedy et al. 2014].

To tackle this issue, a growing line of work aims to prove the safety and robustness of deep

neural networks in the presence of an adversary. For instance, ISO recently issued a standard for

the assessment of the robustness of DNNs in safety-critical systems strongly emphasizing the

role of verification [ISO 2021]. The verification approaches employ symbolic reasoning to prove

that the network output does not misbehave on an infinite set of similar inputs. Most of the

existing verification works reason about network’s local robustness (or robustness, for short). Local
robustness requires that all inputs in the neighborhood of a given input are classified to the same

label. The guarantees that the existing verification techniques provide are either deterministic [Gehr

et al. 2018; Katz et al. 2017, 2019; Lu and Kumar 2020; Salman et al. 2019b; Singh et al. 2018b, 2019b]

or probabilistic [Bastani et al. 2016; Cohen et al. 2019; Lécuyer et al. 2019; Salman et al. 2019a;

Weng et al. 2018b]. The main challenge that all these works try to address is minimizing the cost

of running the verification algorithm while also achieving high precision – the fraction of local

robustness properties that the verifier can prove.

Problem of Existing Work: Deploying DNNs on real-world systems has opened the question

of optimizing the computational cost of inference: to reduce this cost, researchers have devised

various techniques for approximating DNNs, which simplify the structure of the network (typically

post network training), while maintaining high accuracy and robustness. Common approximation

techniques include quantization (reducing numerical precision of the weights) [Gholami et al.

2021], pruning (removing weights or groups of weights) [Frankle and Carbin 2019], operator

approximation (e.g. approximating convolutions [Figurnov et al. 2016; Sharif et al. 2021]) and others.

Further, even after deployment, the developers may need to re-optimize the neural network if they

detect a distribution shift [Rabanser et al. 2019].

Fig. 1. A common deployment cycle for a deep neural network.

Figure 1 illustrates the DNN deployment process, which iteratively optimizes the network.

Checking whether the optimized networks are robust is an important step in this process, but

currently developers mostly rely on empirical testing due to the high cost of verification techniques.

A major limitation of almost all existing approaches for verifying deep neural networks is that the

verifier needs to be run from scratch end-to-end every time the network is even slightly modified.

Running precise verification from scratch is an expensive operation and cannot keep up with the

rate at which the networks are modified during deployment. Overcoming this main limitation

requires addressing a fundamental problem in verifier design:
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Can we reuse the proofs obtained when verifying a given network to speed up the verification of

its multiple approximate versions?

ThisWork: This paper presents FANC, the first general approach for transferring proofs between a

given network and its multiple approximate versions. Our approach is generic and can be combined

with any existing state-of-the-art incomplete verifier [Gehr et al. 2018; Katz et al. 2017, 2019; Lu

and Kumar 2020; Salman et al. 2019b; Singh et al. 2018b, 2019b] to improve the speed of verifying

the approximate versions of the given network with fully-connected and convolutional layers and

various activation functions. FANC guarantees to be as precise as the chosen verifier.

FANC first generates a set of templates – connected symbolic shapes (e.g., boxes, polyhedra) at an

intermediate layer – by running a verifier through the original network. The templates capture the

proof of the property to be verified on the original network. Next, FANC transfers these templates

to the approximate networks by incremental template modification so that they capture the proof

on the approximate versions. Finally, it runs the verifier on the approximate networks but only until

the layer where the template is employed. If the intermediate proof is captured by the generated

templates, then we have proved the property without the need to run the verifier end-to-end.

To make proof transfer efficient in practice our new algorithms for proof transfer across networks

that we describe in Section 4 resolve the three main challenges: (1) Generating templates on the

original network that are likely to be effective for verifying multiple approximate networks while

also minimizing the cost of template generation; (2) Efficiently transforming the templates to further

increase their effectiveness when verifying the approximate networks; (3) Enabling inexpensive

checking if the generated template subsumes the intermediate proof on the approximate network.

Results:We thoroughly evaluate the effectiveness of FANC by verifying robustness of challenging

fully-connected and convolutional networks approximated with quantization and pruning against

different attacks. We considered four network architectures, robustly-trained on the popular MNIST

and CIFAR10 datasets. We verified the robustness of the networks quantized using float16, int16, and

int8 strategies against five different adversarial attacks: adversarial patches, 𝐿0-random, 𝐿0-center,

rotation and brightening. We used the state-of-the-art DeepZ [Singh et al. 2018b] as the baseline

verifier. FANC has significantly improved verification time for the quantized networks, by up to

4.1x, with a median speedup of 1.55x over DeepZ. We verified the robustness of of the networks

with 10-90% pruning rates against the adversarial patch attack. FANC has improved verification

time up to 2.8x, with a median speedup of 1.48x over DeepZ.

Contributions: Our main contributions are:

• Wepresent a novel concept of proof transfer across a givenDNNand its approximate versions.

• We characterize the class of practical approximate networks where our approach is applicable.

This class encompasses networks obtained by quantization, pruning, or other transformations,

with a bounded layer output difference.

• We instantiate our concept into a general practical framework that leverages new algorithms

to significantly speed up existing verifiers without sacrificing their precision.

• We implement our approach into a tool named FANC and thoroughly evaluate the effective-

ness of our approach for verifying networks generated by various types of approximation

techniques on robustly-trained fully-connected and convolutional networks, and against

different adversarial attacks. Our results indicate that FANC can significantly speed up

verification over the baseline verifier, DeepZ.

FANC implementation is open-source, publicly available at https://github.com/uiuc-arc/FANC.
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Fig. 2. Workflow of FANC from left to right. FANC consists of three components: template generator, template
transformer, and fast verifier. First, the template generator takes the network 𝑁 as input and creates a set
of templates. For each approximate network, the template transformer transforms the templates. This
transformed template is used by our fast verifier to verify the approximate network. The fast verifier either
successfully verifies the network and generates a certificate or reports that the property may not hold.

2 OVERVIEW
Notations: We consider a feedforward (fully-connected or convolutional) neural network (NN)

𝑁 : R𝑛0 → R𝑛𝑙 with 𝑙 layers, 𝑛0 input neurons and 𝑛𝑙 output classes. The network classifies an

input 𝑋 to a class 𝑌 that has the largest corresponding output score, i.e. ,𝑌 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 [𝑁 (𝑋 )]𝑖 . We

denote the partial neural network function between layers 𝑝 and 𝑞, s.t. 𝑝 ≤ 𝑞 as 𝑁𝑝 :𝑞 . Hence, we

represent first 𝑘 layers as 𝑁1:𝑘 and the remaining layers as 𝑁𝑘+1:𝑙 .
Workflow: Figure 2 illustrates the high-level idea of FANC. It takes as input a neural network

𝑁 , its approximate version 𝑁𝑎𝑝𝑝
, a set of input regions 𝜙 as precondition and the output property

𝜓 as the postcondition. The neural network verification problem corresponding to the property

(𝜙 ,𝜓 ) involves proving that for all network inputs in 𝜙 , the corresponding network output satisfies

the postcondition 𝜓 . The goal of FANC is to speed up the proof of the property (𝜙 , 𝜓 ) on the

approximate network by leveraging intermediate proofs obtained by verifying 𝑁 . FANC proves the

same number of properties as a vanilla baseline verifier (in our case DeepZ) without templates but

significantly faster. We get up to 4.1x speedup on robustness certification tasks (Section 6).

First, FANC creates a set of valid templates for the original network𝑁 via our template generation

algorithm (Section 4.3), where each valid template 𝑇 is a connected symbolic region defined only

over the neurons of an intermediate network layer 𝑘 < 𝑙 such that 𝑁𝑘+1:𝑙 (𝑇 ) satisfies 𝜓 . These
templates are used for speeding up the verification of the approximate network. The generated

templates are next transferred to the same intermediate layer 𝑘 of the approximate network 𝑁𝑎𝑝𝑝

by transforming them via our template transformation algorithm (Section 4.4) which changes them

to 𝑇𝑎𝑝𝑝
such that 𝑁

app
𝑘+1:𝑙 (𝑇

𝑎𝑝𝑝 ) satisfies𝜓 . This transfer is not possible between any two arbitrary

networks but is facilitated in our setting because of the similarity between 𝑁 and its approximate
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version 𝑁𝑎𝑝𝑝
which is essential so that the approximate networks have similar behavior as the

original network. We identify the class of networks where FANC is applicable (Section 4.1). In the

final step, FANC uses the set of transformed templates for early stopping of the verification of the

property (𝜙 ,𝜓 ) at the layer 𝑘 of the approximate network.

We next show the workings of our approach on a toy example in detail. We show how the

robustness proofs from a given network can be reused for speeding up the robustness verification

of its multiple approximate versions. We consider the popular local neural network verification

problem [Singh et al. 2018b, 2019b] where the input region 𝜙 is defined in the local neighborhood

of a given input point 𝑋 .

Neural Network Verifier:We consider a verifier based on abstract interpretation. Such verifiers

have been shown to be effective for neural network verification achieving high precision and

scalability. These verifiers work in the following steps. The verifier is built upon an analyzer

parameterized by an abstract domain. The analyzer starts by soundly abstracting the input region

into an abstract element representable in the chosen domain. Next, it performs a forward analysis

by propagating the abstract shape through the network in a layerwise manner. At each intermediate

layer (e.g., affine or ReLU), it computes an abstraction that contains all concrete outputs at the

hidden layer with respect to the input region by applying layerwise abstract transformers. The

final output of the analyzer contains an abstract shape containing all the concrete outputs. On

this over-approximate region, the verifier next checks if the property is satisfied either exactly by

calling a solver or via an abstract transformer. The verifiers obtained in this manner are sound by

construction: if the verifier proves a property then it holds, however, they are not complete: the

verifier may be unable to prove a property that actually holds due to its use of abstractions.

We denote the analyzer function as 𝐴D that takes a region 𝐼 (𝑥) as its input. Here, D denotes the

domain of abstraction used by the analyzer. 𝐴D (𝐼 (𝑥), 𝑁1:𝑘 ) denotes the abstract shape produced by
the analyzer at layer 𝑘 . 𝐴D (𝑇, 𝑁𝑘+1:𝑙 ) denotes the output abstract shape produced by the analyzer

when it is given the input region 𝑇 at layer 𝑘 . We use 𝛾𝑘 to refer to a concretization function that

computes the set of concrete values of the neurons in the intermediate layer 𝑘 represented by the

abstract shape 𝐴D (𝐼 (𝑥), 𝑁1:𝑘 ). For ease of notation, we will refer to 𝛾𝑘 as 𝛾 for the rest of the paper.

ExampleNetworks:As our example, we consider a fully-connected feedforward neural network

𝑁 with the commonly used ReLU activation function and its two approximate versions 𝑁𝑎
and

𝑁𝑏
in Figure 3. FANC also works with other activation functions but in this example, we focus on

ReLU as it is the most popular activation. For the purpose of demonstration, we obtain networks

𝑁𝑎
and 𝑁𝑏

by perturbing the edge weights 𝑁 . We use two approximate networks for the example

to show two different ways our template transformation algorithm can transfer proofs from the

original network to its multiple approximate versions. The particular approximation examples are

not intended to accelerate the NN inference, but to demonstrate the concept of proof transfer (we

evaluate more practical quantization and pruning approximations in Section 6).

The neural networks (NNs) in Figure 3 have three layers: one input layer, one hidden, and one

output layer. For simplicity of exposition of our ideas, we show the affine and the ReLU as two

separate layers. All the layers contain two neurons each. The weights of the edges in the affine layer

are coefficients of the weight matrix. These values are usually detailed floating point numbers but

we use whole numbers for simplicity. In Figure 3, the weight on the edge connecting 𝑥1 and 𝑥3 in

network 𝑁 is 5. The corresponding weights for 𝑁𝑎
and 𝑁𝑏

are shown in blue and red respectively

and have the values 4, and 6 respectively. The weight above and below the neurons in the affine

layer indicates bias that is the same for all three networks. Hence, for neural network 𝑁 , the value

of 𝑥3 is calculated as 5𝑥1 + 5𝑥2 + 0. The first affine layer is followed by a ReLU activation layer. The

last output layer is another affine layer.
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Fig. 3. Original network 𝑁 and its approximations 𝑁𝑎 (blue weights/shapes) and 𝑁𝑏 (red weights/shapes).

Analysis with the Box Domain: In this example, we use the popular Box domain [Wang et al.

2018b] based verifier in FANC. However, FANC is generic and can be combined with other abstract

domains such as Zonotopes [Singh et al. 2018b] or DeepPoly [Singh et al. 2019b]. The box analyzer

propagates high dimensional intervals as abstract shapes. The input specification for our example

is defined in terms of intervals of values that a particular pixel can take. Our key insight is that the

abstract shapes produced by the analyzer for the original network 𝑁 and the approximate networks

𝑁𝑎
and 𝑁𝑏

are similar as the networks are obtained by small perturbation of weights. Therefore,

on a given input the output values at all layers for all of 𝑁 , 𝑁𝑎
, and 𝑁𝑏

are close to each other. This

closeness leads the approximate networks to have similar behavior as the original network. For the

same reason, the abstract shapes over-approximating the concrete intermediate region produced

by the analyzer are also similar (overlapping shapes in Figure 3). We use the notation ℎ𝑖 (𝐼 ) for
𝛾 (𝐴D (𝐼 , 𝑁1:𝑖 )), and similarly ℎ𝑎𝑖 (𝐼 ) and ℎ𝑏𝑖 (𝐼 ) for networks 𝑁𝑎

and 𝑁𝑏
. Based on this insight, we

create a set of templates using 𝑁 that enable us to perform faster verification of both 𝑁𝑎
and 𝑁𝑏

.

We provide a metric to quantify the amount of closeness of the approximate network to the original

one (see Section 4). This allows us to characterize the class of practical approximate networks

where our approach is applicable.

In our example, we consider an input point 𝑋 = (0.05, 0.35) and an input specification around

𝑋 , 𝐼 (𝑋 ) =

(
[0,0.1]
[0.3,0.4]

)
. The output property 𝜓 requires that the classifier should always classify

all inputs in 𝐼 (𝑋 ) to the label corresponding to 𝑜1. Therefore 𝜓 B 𝑜1 > 𝑜2. According to the
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Fig. 4. Template generation for box abstraction. The box at intermediate layer is expanded until it violates
the property at the output layer.

specification, the first input 𝑥1 can take values in the range [0, 0.1] and the second input 𝑥2
can take values in the range [0.3, 0.4]. An affine layer transformer for the box analyzer will

transform this box into another box over-approximating the effect of the affine layer on the

input by using the standard addition and multiplication abstract transformers of the Box domain.

Since, 𝑥3 = 5𝑥1 + 5𝑥2 and 𝑥4 = 5𝑥1 − 5𝑥2, hence the concretization 𝛾 of the transformer output is

𝛾 (𝐴D (𝐼 (𝑋 ), 𝑁1:2)) = {(𝑥3, 𝑥4) |𝑥3 ∈ [1.5, 2.5], 𝑥4 ∈ [−2,−1]}. Next, FANC handles the ReLU layer,

which applied the ReLU function 𝑓 (𝑋 ) = max(0, 𝑋 ) on each input neuron. The box transformer

for the ReLU layer transforms the interval for each neuron independently and for an input range

[𝑙𝑏,𝑢𝑏] the output is [max(𝑙𝑏, 0),max(𝑢𝑏, 0)]. For our running example, the input 𝑥3 to the first

ReLU lies in the range [1.5, 2.5], and hence the box transformer returns [1.5, 2.5] for 𝑥5. The value
for 𝑥6 is computed similarly. The resulting box is similarly transformed at the next affine layer.

Proof Templates: For transferring the proof from 𝑁 to 𝑁𝑎
or 𝑁𝑏

we create proof templates –
connected symbolic regions that we create at an intermediate layer 𝑘 having large volume. In the

example, we create a template at the second layer i.e. 𝑘 = 2. For FANC, we are more interested in

templates that when propagated to the final layer map to a region where the property𝜓 holds. We

call such a template a valid template. 1 Templates can make the verification more efficient: when

𝑇 is a valid template then the containment of the abstract shape 𝐴D (𝐼 , 𝑁1:2) in 𝑇 is sufficient to

conclude that 𝑁 satisfies the property𝜓 for the input region 𝐼 .

The main insight of FANC is that we can create a set of templates T for 𝑁 and then transfer

it to 𝑁 app
as T app

, where the transformation from T to T app
takes significantly lower time than

the creation of T or T app
directly. T app

is a function of the particular approximate network. Our

template transformer takes T , the approximate network, and the original input 𝑋 as the input for

producing T app
.

To generate a template around an input 𝑋 = (0.05, 0.35), we map 𝑋 to the template layer by

applying 𝑁1:𝑘 , (Figure 4). We then create a box region containing 𝑁1:𝑘 (𝑋 ). We expand this box as

long as it is a valid template i.e. it verifies the property. Template 𝑇 is valid for the network 𝑁 by

construction. However, it may not be valid for the networks 𝑁𝑎
and 𝑁𝑏

. Therefore, the template 𝑇

is transformed by template transformer for a particular approximate network.

Proof Transfer to Approximate NN: Instead of expensive full verification, FANC creates a

set of templates T app
such that the analysis on the approximate network propagates the input

interval only till the template layer and checks if there exists a template 𝑇 ∈ T app
, that contains

the abstract shape computed by the analysis. So we check if ℎ𝑎
1
(𝐼 ) ⊆ 𝑇 , if it is true then we do not

need to propagate 𝐼 further. If ℎ𝑎
1
(𝐼 ) ⊈ 𝑇 , we just propagate the shapes further to the output layer

and proceed with the proof as without templates.

1
We formally define a template in Section 3 and valid template in Section 4.2.
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(a) Template and the box analyzer shapes at first layer and output layer for the neural network 𝑁𝑎 .

(b) Template and the box analyzer shapes at first layer and output layer for the neural network
𝑁𝑏 . The template 𝑇 is transformed to 𝑇 app.

Fig. 5. Example showing template transformation for the approximate network

For our example, we consider three input regions for which we try to prove that𝜓 holds.

𝐼1 =

(
[0, 0.1]
[0.3, 0.4]

)
, 𝐼2 =

(
[0.05, 0.15]
[0.15, 0.25]

)
, 𝐼3 =

(
[0.2, 0.25]
[0.25, 0.30]

)
In our first example, for the verification of specifications (𝐼1, 𝐼2 and 𝐼3) on 𝑁𝑎

, we skip the template

transformation step and use T as T app
.

Suppose we generated a template 𝑇 =

(
[0.5,3.5]
[−2,1]

)
using the Template Generator on 𝑁 . 𝑇 must be

valid for 𝑁 by construction, but we need to check its validity for 𝑁𝑎
. In Figure 5a we can see that

the template is valid since the analyzer output for the template is mapped in the region 𝑜1 > 𝑜2.

The next step after checking the validity of the templates is to verify the property for each input

specification. Each input interval is propagated by the box analyzer to the second layer. The output

ℎ𝑎 (𝐼 𝑗 ) for each interval is shown in the figure. The template at the layer captures the propagated

boxes for each input region i.e. ℎ𝑎 (𝐼 𝑗 ) ⊆ 𝑇 . Now, we do not need to propagate 𝐼1, 𝐼2, and 𝐼3 till the

final layer. Overall, we invoked the analyzer to propagate 𝐼1, 𝐼2 and 𝐼3 to the layer 𝑘 , and invoked it

one time to propagate𝑇 from layer 𝑘 +1 to layer 𝑙 to check the validity of𝑇 . This is computationally

less expensive than propagating all 𝐼1, 𝐼2, and 𝐼3 through all 𝑙 layers of the network.

Template Transformation: In the next example, we show the need of template transformation

for the proof on the network 𝑁𝑏
. The templates created from the original networks may fail for

more aggressive approximations and hence, we need to transform the templates to make them work

on more practical networks. Again, we consider the same template𝑇 =

(
[0.5,3.5]
[−2,1]

)
from the previous

example. First, we check the validity of𝑇 on𝑁𝑏
. Figure 5b shows the analyzer output for the template

is mapped in the region 𝑜1 > 𝑜2, and hence it is valid on 𝑁𝑏
as well. The next step is to check the

containment of the intermediate shapes ℎ𝑏 (𝐼 𝑗 ) for each specification 𝐼 𝑗 in the template. In the figure,

we see that the ℎ𝑏
1
(𝐼1) is not captured by the template 𝑇 . FANC transforms the existing templates
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in this step to solve this challenge. The transformation is applied even before checking the validity

and the containment. Thus, there is no additional cost except the (small) transformation cost.

In our experiments, we observed that for a high dimensional template these intermediate shapes

from the analyzer are captured along most dimensions but they fall outside the template along

a few dimensions. In the example, as shown in Figure 5b, ℎ𝑏
1
(𝐼2) and ℎ𝑏1 (𝐼3) are captured by the

template, but ℎ𝑏
1
(𝐼1) is not contained in the template along the 𝑥4 dimension. One approach could

be expanding the template again as in the template generation step, but a repeated validity check

brings an unacceptable overhead. Instead, we use a faster approach that expands the template

just along few dimensions that need fixing. We first compute 𝑁𝑏
1:2
(𝑋 ) which is inexpensive as

it does not require running the analyzer. The difference in 𝑁1:2 (𝑋 ) and 𝑁𝑏
1:2
(𝑋 ) can be used to

heuristically choose the dimensions along which we need to expand the template (see Section 4.4).

In our example, a small expansion of 𝑇𝑎𝑝𝑝
resulted by the expansion of 𝑇 along the 𝑥4 dimension

fixes the problem. 𝑇𝑎𝑝𝑝
captures all the intermediate shapes and hence, the proof transfer can be

used for 𝐼1 as well.

Time Complexity of FANC: For a network with 𝑙 layers and maximum width (the largest

number of neurons in a layer) 𝑛, and with the template captured at layer 𝑘 (𝑘 < 𝑙), FANC’s
verification time per input specification with box as the baseline verifier is O

(
𝜆𝑘𝑛2 + (1 − 𝜆)𝑙𝑛2

)
.

Here, the constant 𝜆 is the fraction of input specifications for which the intermediate abstract

shape is captured by at least one valid template 𝑇 ∈ T app
. To maximize speedup, we want to create

optimal valid templates of large volumes such that 𝜆 ≈ 1. To reduce the overhead of template

generation, FANC keeps the number of templates much smaller than the number of verification

instances, and the templates are shared across multiple approximate networks to further amortize

the costs. We do a more detailed time complexity analysis of FANC with arbitrary baseline verifier

in Section 4.6

3 PRELIMINARIES
In this section, we formally provide the necessary background on neural network verification,

the different types of adversarial attacks we verify the network to be robust against, the different

approximations of neural networks considered in our work and the concept of proof transfer.

3.1 Neural Network Verification
Neural Networks: Neural networks are functions𝑁 : R𝑛0 → R𝑛𝑙 . In this work, we focus on layered

neural networks obtained by a composition of 𝑙 layers 𝑁1 : R
𝑛0 → R𝑁1 , . . . , 𝑁𝑙 : R

𝑛𝑙−1 → R𝑛𝑙 . Each
layer 𝑁𝑖 is either an affine layer (in particular, convolution with one or more filters is an affine

transformation) or a non-linear activation layer like ReLU, sigmoid or tanh.

At a high level, neural network verification involves proving that all network outputs corre-

sponding to a chosen set of input regions 𝜙 satisfy a given logical property 𝜓 . Before providing

further details, we first define the set of input regions that we consider in this work.

Definition 1 (Input Region). For a neural network 𝑁 : R𝑛0 → R𝑛𝑙 , the set of input regions 𝜙
is such that ∀𝐼 ∈ 𝜙 , 𝐼 is a connected region and 𝐼 ⊆ R𝑛0 .

In this paper, we focus on image classifiers 𝑁 where with the pixel values in the image are in

the range [0, 1]. We consider local input regions 𝐼 (𝑋, ®𝜀) ∈ 𝜙 defined around a given input image

𝑋 ∈ R𝑛0
. The shape of 𝐼 (𝑋, ®𝜀) is a high-dimensional box where each interval in the box indicates the

range of values the corresponding pixel can take. ®𝜀 is the vector of perturbation for each dimension.

For convenience, we omit ®𝜀 from the notation and use 𝐼 (𝑋 ) as the input specification. We define

the output property as:

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 75. Publication date: April 2022.



75:10 Shubham Ugare, Gagandeep Singh, and Sasa Misailovic

Definition 2 (output specification). For a neural network with 𝑛𝑙 neurons in the output layer.
𝜓 : R𝑛𝑙 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} is an output specification over the output region.

For an output region 𝑅 ⊆ R𝑛𝑙 we use notation 𝑅 ⊢ 𝜓 meaning ∀𝑡 ∈ 𝑅 . 𝜓 (𝑡) = 𝑡𝑟𝑢𝑒. For a NN,

the neural network verification problem can be stated as:

Definition 3 (Local Verification). The local neural network verification problem for a
neural network 𝑁 , an input region 𝐼 (𝑋 ) ∈ 𝜙 formed around the a given input 𝑋 and a logical property
𝜓 is to prove whether ∀𝑋 ′ ∈ 𝐼 (𝑋 ). 𝜓 (𝑁 (𝑋 ′)) = 𝑡𝑟𝑢𝑒 or provide a counterexample otherwise.

The output property𝜓 could be any logical statement taking a truth value true or false. In our

paper, we focus on the property of classifier robustness.

Definition 4 (Robustness). We say a neural network 𝑁 on an input region 𝐼 (𝑋 ) ∈ 𝜙 robustly
classifies to a label 𝑌 if ∀𝑋 ′ ∈ 𝐼 (𝑋 ), 𝑌 = argmax[𝑁 (𝑋 ′)].
A verifier for the neural network 𝑁 takes the set of input regions 𝜙 and a property 𝜓 . For an

input region 𝐼 ∈ 𝜙 , it returns a boolean true or false indicating if it can verify 𝜓 for the region 𝐼

or not. A complete verifier always verifies the property if it holds or returns a counterexample

otherwise. We next formally define the soundness and completeness of verifiers:

Definition 5 (Sound Verifier). A sound verifier 𝑉 for an input region 𝐼 , a neural network 𝑁 ,
an output property𝜓 satisfies the following property:

𝑉 (𝐼 , 𝑁 ) = 𝑡𝑟𝑢𝑒 =⇒ ∀𝑋 ∈ 𝐼 .𝜓 (𝑁 (𝑋 )) = 𝑡𝑟𝑢𝑒

Definition 6 (Complete Verifier). A complete verifier𝑉 for an input region 𝐼 , a neural network
𝑁 , an output property𝜓 satisfies the following property:

𝑉 (𝐼 , 𝑁 ) = 𝑡𝑟𝑢𝑒 ⇐⇒ ∀𝑋 ∈ 𝐼 .𝜓 (𝑁 (𝑋 )) = 𝑡𝑟𝑢𝑒

The complete verifiers [Katz et al. 2017; Tjeng et al. 2019] are usually not scalable. An incomplete

verifier is always sound: if it verifies the property, then the property holds but sacrifices completeness

for scalability therefore it may fail to prove some properties that can be proven by a complete

verifier. Most of the state-of-the-art incomplete verifiers [Gehr et al. 2018; Singh et al. 2019b] are

based on abstract interpretation. These verifiers use an analyzer that performs a forward analysis

by propagating abstract shapes from a chosen abstract domain D e.g., intervals [Wang et al. 2018b],

octagons [Miné 2001], or polyhedra [Singh et al. 2017] through the different layers of the network.

The abstract shapes at each layer over-approximate all possible concrete values with respect to the

input region at that layer. Thus the output abstract shape represents an over-approximation of the

concrete output values. If the property𝜓 is true for the over-approximating abstract shape, then

the verifier can verify that the property holds over the given input region.

The analyzer function 𝐴D takes two inputs, a region 𝑅 ⊆ R𝑛 , and a function 𝑓 such that the

domain of 𝑓 is R𝑛 . The output of the analyzer is an abstract element over-approximating the

concrete values at that layer. We can get the concrete value from the abstract output of the analyzer

using a concretization function 𝛾 .

Definition 7 (Layerwise Concretizing function). For a network 𝑁 with 𝑛𝑘 neurons at layer
𝑘 , the layerwise concretization function 𝛾𝑘 : D → R𝑛𝑘 is defined as:

𝛾𝑘 (𝑎) = {𝑣 | 𝑣 = Π𝑛𝑘 (𝑣 ′), 𝑣 ′ = 𝛾 (𝑎)}
Here, the actual concretization function 𝛾 maps the abstract element to the concrete domain.

Then the function Π𝑛𝑘 projects the concrete region to the R𝑛𝑘 which is over the space of output

neurons at layer 𝑘 . For the remaining paper, We abuse the notation and use 𝛾 as the concretization
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function applied on a specific layer appropriately. For instance, if the analyzer output is at 𝑘’th

layer then we assume that applying 𝛾 implies applying 𝛾𝑘 .

Hence,𝛾 (𝐴D (𝐼 , 𝑁 )) is over-approximating the output at the output layer for 𝑁 . A verifier returns

true if for all the points in the output region obtained by concretizing the analyzer output at the

output layer satisfies the property𝜓 . Hence, the verifier function 𝑉 (𝐼 , 𝑁 ) = 𝛾 (𝐴D (𝐼 , 𝑁 )) ⊢ 𝜓 .
These abstract interpretation-based neural networks are sound and use sound analyzers.

A sound verifier based on abstract interpretation uses a sound analyzer. We define it as:

Definition 8 (Sound Analyzer). A sound analyzer 𝐴D for a region 𝑅, a function 𝑓 satisfies
the following property:

∀𝑡 ∈ 𝑅.𝑓 (𝑡) ∈ 𝛾 (𝐴D (𝑅, 𝑓 ))

Here, 𝛾 (𝐴D (𝑅, 𝑓 )) is the over-approximation of all the values output of 𝑓 can take for inputs in 𝑅.

Our concept of proof transfer is independent of a specific verifier, and it can be used complementary

to any sound verifier using abstract interpretation.

We define the input regions 𝐼 (𝑋 ) to capture regions where adversarial attacks [Szegedy et al. 2014]
on the neural network can happen. Next, we describe the types of adversarial regions we consider.

3.2 Adversarial Regions
We consider three common adversarial attacks in this paper. Each type of attack defines a different

kind of interval input region around a particular image. We consider that 𝑛0 = ℎ ×𝑤 , and thus, the

input image 𝑋 ∈ [0, 1]ℎ×𝑤 .

3.2.1 Patch Perturbation. Here the attacker can arbitrarily change any 𝑝 × 𝑝 continuous patch of

the image. The adversarial region 𝐼
𝑖, 𝑗
𝑝×𝑝 (𝑋 ) defined by a patch over pixel positions ([𝑖, 𝑖 + 𝑝 − 1] ×

[ 𝑗, 𝑗 + 𝑝 − 1]) where 𝑖 ∈ {1, . . . ℎ − 𝑝 + 1}, 𝑗 ∈ {1, . . .𝑤 − 𝑝 + 1} is given by:

𝐼
𝑖, 𝑗
𝑝×𝑝 (𝑋 ) = {𝑋 ′ ∈ [0, 1]ℎ×𝑤 | ∀(𝑘, 𝑙) ∈ 𝜋

𝑖, 𝑗
𝑝×𝑝 . 𝑋

′
𝑘,𝑙

= 𝑋𝑘,𝑙 }

where

𝜋
𝑖, 𝑗
𝑝×𝑝 =

{
(𝑘, 𝑙)

��� 𝑘 ∈ 1, . . . , ℎ

𝑙 ∈ 1, . . . ,𝑤

}
\
{
(𝑘, 𝑙)

��� 𝑘 ∈ 𝑖, . . . , 𝑖 +𝑝 −1

𝑙 ∈ 𝑗, . . . , 𝑗 +𝑝 −1

}
(1)

To prove a network is robust against all the possible patch perturbations, we need to consider all

the possible input regions. For example, with 𝑝 = 2, we need to verify 729 different regions for an

MNIST classifier. The set of input regions for a single image can be defined as

I𝑝×𝑝 (𝑋 ) =
⋃

𝑖 ∈ {1, . . . ℎ − 𝑝 + 1}
𝑗 ∈ {1, . . .𝑤 − 𝑝 + 1}

𝐼
𝑖, 𝑗
𝑝×𝑝

3.2.2 𝐿0 Perturbation. In this attack model, an attacker can change any 𝑐 (need not be continuous)

pixels in an image arbitrarily. We define the input regions corresponding to these perturbations as

I𝑐 (𝑋 ) = {𝑌 | ∥𝑌 − 𝑋 ∥0 ≤ 𝑐}
To prove that a network is robust in this input region we consider all possible sets of 𝑐 perturbed

pixels separately. Let 𝑃𝑆 be such a set of pixels and |𝑃𝑆 | = 𝑐 . We define the input region for a

particular set 𝑃𝑆 as

𝐼PS (𝑋 ) = {𝑌 ∈ [0, 1]ℎ×𝑤 | ∀(𝑘, 𝑙) ∉ 𝑆. 𝑌𝑘,𝑙 = 𝑋𝑘,𝑙 }
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3.2.3 Rotation. Rotation attack model [Balunovic et al. 2019] considers the set of images obtained

by rotating an image by an angle 𝛾 from the range of interval Γ. The rotation 𝑅𝛾 is applied to

the input image for 𝛾 ∈ Γ to obtain the perturbed image. The input region corresponding to the

perturbation is defined as

IΓ (𝑋 ) = {𝑌 | 𝑌 = 𝑅𝛾 (𝑋 ), 𝛾 ∈ Γ}
The input region for rotation is non-linear and has no closed-form solution. Thus, state-of-the-art

approaches [Balunovic et al. 2019] verify the over-approximation of the input region.

3.2.4 Brightness. Next, we consider the brightness attack proposed in [Pei et al. 2017] for defining

our adversarial regions. The input regions for the attack is defined as:

𝐼𝛿 (𝑋 ) = {𝑌 ∈ [0, 1]ℎ×𝑤 | ∀𝑖 ∈ {1, . . . ℎ}, 𝑗 ∈ {1, . . .𝑤}.1 − 𝛿 ≤ 𝑋𝑖, 𝑗 ≤ 𝑌𝑖, 𝑗 ≤ 1 ∨ 𝑌𝑖, 𝑗 = 𝑋𝑖, 𝑗 }

3.3 Neural Network Approximations
Various NN approximation techniques [Blalock et al. 2020; Jacob et al. 2018] are used to compress

the model size at the time of deployment, to allow inference speedup and energy-savings without

significant accuracy loss. While our technique can work on most of these approximations. We

discuss the supported approximations in Section 4.1. For the evaluation, we focus on quantization

and pruning as these are the most common ones.

3.3.1 Quantization. Model quantization [Jacob et al. 2018] allows reduction inmemory requirement

and inference time by performing computations and storing tensors at lower bitwidths than the

usual floating-point precision.

3.3.2 Pruning. Pruning techniques [Blalock et al. 2020] systematically remove weights from an

existing network without losing significant accuracy. In general, pruning reduces the accuracy of

the network, so it is trained further (known as fine-tuning) to recover some of the lost precision. The

process of pruning and fine-tuning can be iterated several times, gradually reducing the network’s

size. This type of pruning is called iterative pruning.

3.4 Proof Sharing with Templates
Sprecher et al. [2021] introduced the concept of sharing proof between two different specifications

defined around the same input to improve the overall verification time.

Definition 9 (Template). For a neural network 𝑁 , a verifier 𝑉 based on an abstract domain D, a
𝑇𝑘 ⊆ R𝑛𝑘 is a template at layer 𝑘 , where 𝑛𝑘 is the number of neurons at layer 𝑘 .

We use the same notion of templates for proof transfer between networks.

4 PROOF TRANSFER TO THE APPROXIMATE NETWORK
Algorithm 1 presents FANC’s main algorithm for transferring a proof from a given network to its

multiple approximations. It takes as inputs the original network 𝑁 , a set of approximations of 𝑁 , a

set of local input regions 𝜙 around 𝑋 , an output property𝜓 , and an analyzer 𝐴D parameterized by

an abstract domain D.

First, on an input 𝑋 , FANC creates templates using the original network and the analyzer 𝐴D
(Section 4.3). Then it loops over each approximate network 𝑁 app ∈ N𝑎𝑝𝑝

. For each iteration, it

transforms these templates for the specific approximate network (Section 4.4). Finally, it verifies

the approximate network using the transformed templates (Section 4.5). The algorithm returns a

mapping 𝐵 from each approximate network to a Boolean true or false. FANC is an incomplete verifier

therefore if the output is true, then that means FANC could verify that particular specification (𝜙 ,𝜓 ).

Otherwise, the result is unknown.
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Algorithm 1 Proof transfer algorithm

Input: 𝑁 , set of approximate networks N𝑎𝑝𝑝
, input 𝑋 , analyzer 𝐴D , property (𝜙 ,𝜓 )

Output: A mapping B from each approximate network to a Boolean indicating if the property is

verified for that network.

1: T = generate_templates(𝐴D, 𝑁 , 𝑋,𝜓 )
2: for 𝑁 app ∈ N𝑎𝑝𝑝 do
3: T app

= transform_templates_approx(𝑋,T , 𝑁𝑎𝑝𝑝 )
4: 𝐵 [𝑁 app] = verify_approximate(𝐴D, 𝑁𝑎𝑝𝑝 ,T app, 𝜙,𝜓 )
5: end for
6: return 𝐵

Next, we define the class of approximations to which FANC is applicable.

4.1 Class of Approximate Networks
We consider the set N of all networks that have the same architecture as 𝑁 . From this set of

networks, we define the set of similar approximate networks by using a parameter 𝑐 ∈ R that

bounds the difference between 𝑁 and every other network 𝑁 app
in the set at each layer on all

inputs from a given set 𝑆 (e.g., a subset of the test set). We define the output distance 𝛿𝑘
𝑁,𝑁 app (𝑋 )

between two networks at a layer 𝑘 of the network:

𝛿𝑘𝑁,𝑁 app (𝑋 ) =
∥𝑁1:𝑘 (𝑋 ) − 𝑁

app
1:𝑘

(𝑋 )∥
∥𝑁1:𝑘 (𝑋 )∥ (2)

We assume ∥𝑁1:𝑘 (𝑋 )∥ > 0 in the definition and only define 𝛿𝑘
𝑁,𝑁 app (𝑋 ) for such 𝑋 . In practice,

∥𝑁1:𝑘 (𝑋 )∥ = 0 would be rare on a real input image. Using the above definition, we define the set of

approximate networks generated from 𝑁 that are parameterized by the constant 𝑐 and function of

the input set 𝑆 :

N𝑐,𝑁 = {𝑁 app ∈ N | sup

𝑋 ∈𝑆
𝑘∈{1,...𝑙 }

𝛿𝑘𝑁,𝑁 app (𝑋 ) ≤ 𝑐} (3)

We fix the dataset 𝑆 for the problem and omit it from the notation N𝑐,𝑁 . We do not fix a specific

norm function for these definitions, however, for the experiments we use 𝐿∞ norm (Section 6). We

compute 𝑐 as the left hand side of the inequality in Equation 3 i.e. 𝑐 = sup 𝑋 ∈𝑆
𝑘∈{1,...𝑙 }

𝛿𝑘
𝑁,𝑁 app (𝑋 ). In

the evaluation we compute 𝑐 for each approximate network (Section 6). For any 𝑁 app ∈ N𝑐,𝑁 and

𝑋 ∈ 𝑆 , since
∥𝑁1:𝑘 (𝑋 )−𝑁 app

1:𝑘
(𝑋 ) ∥

∥𝑁1:𝑘 (𝑋 ) ∥ is bounded by 𝑐 (for small value of 𝑐), we expect 𝛾 (𝐴D (𝐼 (𝑋 ), 𝑁 app
1:𝑘

))
and 𝛾 (𝐴D (𝐼 (𝑋 ), 𝑁1:𝑘 )) to be close to each other (this hypothesis is validated by our experiments).

Hence, we can create templates T from 𝑁 and transfer them to 𝑁 app
with modifications along

relatively fewer dimensions. For each 𝑁 app
considered for verification, we transform the templates

according to our transformation algorithm and create a set of templates T app
.

4.2 Proof Templates for Neural Networks
We need to create templates that satisfy certain properties for them to be useful for accelerating

verification. Next, we will describe these properties. First, we define the validity of a template.

Definition 10 (Valid Template). A template 𝑇 is a valid template for a neural network 𝑁 , an
analyzer 𝐴D , a property𝜓 and a layer 𝑘 in the network if

𝛾 (𝐴D (𝑇, 𝑁𝑘+1:𝑙 )) ⊢ 𝜓
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The condition states that the region obtained after concretization of the analyzer output satisfies

the property𝜓 (Section 3.1). In this paper, we fix our analyzer 𝐴D and the property𝜓 , hence we

only talk about the validity of a template as function of layer 𝑘 and the network 𝑁 .

Our goal is to create templates that are valid for any approximation 𝑁 app ∈ N𝑐,𝑁 . Additionally,

we desire that the abstract shapes obtained at the intermediate layers are captured by them. The

number of valid templates for the networks in N𝑐,𝑁 with respect to the chosen 𝐴D are infinite.

The problem of finding an optimal (in terms of volume) valid template requires computing the best

abstraction in D that maximizes the volume and such that its image at the output layer propagated

by 𝐴D satisfies 𝜓 . This is computationally expensive for domains like Box and not possible for

other popular domains for neural network verification such as Zonotopes and DeepPoly that have

no best abstraction.

Nevertheless, one thing we desire is to get large (in terms of volume) valid templates, since

intuitively they will capture more intermediate shapes. Next, we formally define the notion of

maximal valid templates that could be used for proof transfer and are more practical to compute.

Definition 11 (Maximal Valid Template). 𝑇𝑀 is a maximal valid template for a neural
network 𝑁 , an analyzer 𝐴D , a property𝜓 and a layer 𝑘 in the network if

∀𝑇 . 𝑇𝑀 ⊆ 𝑇 ∧ 𝛾 (𝐴D (𝑇, 𝑁𝑘+1:𝑙 )) ⊢ 𝜓 =⇒ 𝑇 = 𝑇𝑀

Theorem 1. Given a neural network 𝑁 , a verifier 𝑉 based on a sound analyzer 𝐴D , a property𝜓
and a valid template 𝑇 ⊆ 𝑇𝑀 where 𝑇𝑀 is a maximal valid template then ∀𝑡 ∈ 𝑇 .𝜓 (𝑁𝑘+1:𝑛 (𝑡)) = 𝑡𝑟𝑢𝑒

Proof. Since 𝑇𝑀 is a valid template, 𝛾 (𝐴D (𝑇𝑀 , 𝑁𝑘+1,𝑛)) ⊢ 𝜓 and since 𝑉 is a sound verifier,

∀𝑡 ∈ 𝑇𝑀 .𝜓 (𝑁𝑘+1:𝑛 (𝑡)) = 𝑡𝑟𝑢𝑒 . Given that 𝑇 ⊆ 𝑇𝑀 , we conclude that ∀𝑡 ∈ 𝑇 .𝜓 (𝑁𝑘+1:𝑛 (𝑡)) = 𝑡𝑟𝑢𝑒 .

□
For verifiers based on monotonic analysis such as Box, we can prove an even stronger condition

that 𝑇 ⊆ 𝑇𝑀 , then 𝑇 is a valid template. However, this statement may not hold for verifiers based

on non-monotonic analyzers, e.g., DeepZ [Singh et al. 2018b].

Definition 12 (Monotonic analyzer). A monotonic analyzer 𝐴D for regions 𝑅1, 𝑅2, and a
function 𝑓 satisfies the following property:

𝑅1 ⊆ 𝑅2 =⇒ 𝛾 (𝐴D (𝑅1, 𝑁 )) ⊆ 𝛾 (𝐴D (𝑅2, 𝑁 ))

4.3 Template Generation Algorithm
Algorithm 2 presents our algorithm for template generation. As mentioned in Section 2, it is

essential to minimize the cost of template generation for maximizing speedups. Generating a

maximal valid template is computationally expensive even for simpler domains such as Box. Hence,

we provide an algorithm that computes an under-approximation of the maximal valid template that

works well in practice. We observed that even for perturbations that are semantically different,

the network transformations successively map them onto more and more similar regions at the

intermediate layers. Thus, the amount of overlap increases with the layers. 𝐿∞ modifies all the pixels,

patches modify small patch of adjacent pixels, whereas the pixels modified by 𝐿0 and brightness

may not be connected. We empirically observe that the templates based on 𝐿∞ perturbations are

effective to capture the proofs of other perturbations.

Our algorithm overcomes the challenge of finding the effective templates for the input 𝑋 by

splitting the input space. We uniformly split the image into continuous patches of size 𝜅 × 𝜅. For

each such patch, we define an input region 𝐼
𝑝ℎ,𝑝𝑤
𝜅×𝜅 (𝑋, 𝜖), in which the pixels corresponding to the

patch can be perturbed by at most 𝜖 . In our algorithm, we find the maximum 𝜖 such that the verifier

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 75. Publication date: April 2022.



Proof Transfer for Fast Certification of Multiple Approximate Neural Networks 75:15

Algorithm 2 Template generation algorithm

Input: 𝑁 ,𝜓 , template parameter 𝜅, intermediate layer 𝑘 , input 𝑋

Output: Set T of templates

1: T = {}
2: 𝐻itr =

ℎ
𝜅
, 𝑊itr =

𝑤
𝜅

3: for 𝑖 ∈ 1, . . . 𝐻itr do
4: for 𝑗 ∈ 1, . . .𝑊itr do
5: 𝑝ℎ = 𝜅 ∗ 𝑖, 𝑝𝑤 = 𝜅 ∗ 𝑗

6: 𝜖max = max{𝜖 ∈ R | 𝑉 (𝐼𝑝ℎ,𝑝𝑤𝜅×𝜅 (𝑋, 𝜖), 𝑁 ) = 𝑡𝑟𝑢𝑒}
7: 𝑎𝑇 = 𝐴D (𝐼𝑝ℎ,𝑝𝑤𝜅×𝜅 (𝑋, 𝜖max), 𝑁1:𝑘 )
8: 𝑇 = 𝛾 (Πbox (𝑎𝑇 ))
9: T = T ∪ {𝑇 }
10: end for
11: end for
12: return T

proves that the property𝜓 holds on the generated region. More formally, for the start height and

width coordinates (𝑝ℎ, 𝑝𝑤) and 𝜅 as the patch size, we define this region as:

𝐼
𝑝ℎ,𝑝𝑤
𝑝×𝑝 (𝑋, 𝜖) = {𝑋 ′ ∈ [0, 1]ℎ×𝑤 | ∥𝑋 ′ − 𝑋 ∥∞ ≤ 𝜖 ∧ ∀(𝑘, 𝑙) ∈ 𝜋

𝑝ℎ,𝑝𝑤
𝑝×𝑝 . 𝑋 ′

𝑘,𝑙
= 𝑋𝑘,𝑙 }

where 𝜋
𝑝ℎ,𝑝𝑤
𝑝×𝑝 is the set of pixel indices not in the patch (Equation 1).

Line 4 iterate over the input’s patches. For each patch, line 6 searches for the maximum 𝜖 such

that the input patch 𝐼
𝑝ℎ,𝑝𝑤
𝜅×𝜅 (𝑥, 𝜖) is verified. i.e.

𝑉
(
𝐼
𝑝ℎ,𝑝𝑤
𝜅×𝜅 (𝑋, 𝜖), 𝑁

)
= true

Line 7 runs the analyzer on the input region defined by 𝜖max till the 𝑘-th layer of 𝑁 . Line 8

performs the conversion of the resulting abstract shape into box abstraction and then concretizes

it. In practice, we perform our analysis on more precise domains than Box such as Zonotopes, we

store the templates as box regions - since the containment check(Algorithm 1) is faster when the

templates are boxes.

If the analyzer 𝐴D is monotonic, a binary search (in line 6) can find the optimal 𝜖 . However,

we found that even a less tight 𝜖 works well in practice. The DeepZ verifier that we used for our

experiments is not monotonic, but we find a reasonable 𝜖 by searching through the set of values
1

2
𝑖

for a chosen integer 𝑖 . Empirically, we observe that using a slightly smaller epsilon than the optimal

epsilon can often result in templates that are more reusable across networks. Since the number

of templates is smaller than the number of verification instances, the cost for template creation is

smaller than verifying all the specifications. In Section 4.6, we will derive the time complexity of

FANC showing its relation with the ratio of number of templates to the number of specifications.

4.4 Template Transformation
Template transformation is a key step in FANC. The templates created on the original network are

not necessarily valid on approximate networks. They are valid only when the value of the constant

𝑐 is small. For a broader set of networks with larger 𝑐 , we need to transform the templates so that

they are more general and therefore applicable to more networks. While the template is created

only once for the original network and a given input 𝑋 , we may perform template transformation
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for multiple network approximations. The main challenge is in minimizing the transformation time

while maximizing the generalization of the templates simultaneously.

For template generation, FANC requires propagating abstract shapes via the analyzer to an

intermediate layer. However, as discussed in Section 2, running an expensive analyzer for the

transformation step will offset any gains from using the templates. Hence, instead of propagating

the input interval to the intermediate layer via an analyzer, we propagate the point 𝑋 , i.e., we

calculate 𝑁
app
1:𝑘

(𝑋 ), and then widen the original templates based on this value.

We know that for 𝑋 ∈ 𝑆 , the difference
∥𝑁1:𝑘 (𝑋 )−𝑁 app

1:𝑘
(𝑋 ) ∥

∥𝑁1:𝑘 (𝑋 ) ∥ is bounded by 𝑐 . For any 𝑋 ′ ∈ 𝐼 (𝑋 )

and 𝑋 ′ ∉ 𝑆 ,
∥𝑁1:𝑘 (𝑋 ′)−𝑁 app

1:𝑘
(𝑋 ′) ∥

∥𝑁1:𝑘 (𝑋 ) ∥ is not bounded and could be even more than 𝑐 . Hence, even if

𝑁1:𝑘 (𝑋 ), 𝑁 app
1:𝑘

(𝑋 ′), 𝑁1:𝑘 (𝑋 ′) ∈ 𝑇 , 𝑁
app
1:𝑘

(𝑋 ′) can quite easily be outside the original template 𝑇 .

We intend to capture all such 𝑁
app
1:𝑘

(𝑋 ′) inside our template for the approximate network by

transforming the template 𝑇 created on the original network.

We define the 𝑑-radius 𝐿∞ ball around a point 𝑌 as 𝐼𝑑 (𝑌 ) = {𝑌 ′ |∥𝑌 − 𝑌 ′∥∞ ≤ 𝑑}. Suppose 𝑇 is

the template created using an input 𝑋 in the template generation step. We join the box 𝐼𝑑 (𝑁 app
1:𝑘

(𝑋 ))
around the point 𝑁

app
1:𝑘

(𝑋 ) with the original template𝑇 . We discuss the choice of 𝑑 in Section 6. We

use the standard join ⊔ operator from D to combine two regions. The function 𝛼 is the abstraction

function for a domainD. The new template value𝑇 app
can be represented by the following equation:

𝑇 app = 𝛾 (𝛼 (𝑇 ) ⊔ 𝛼 (𝐼𝑑 (𝑁 app
1:𝑘

(𝑋 ))))
In FANC, we store templates as boxes (Section 4.3), and hence the abstraction function, the

join operator and the concretization function have insignificant costs compared to the other steps.

The transformation of the template does not alter the soundness of FANC. Irrespective of this

transformation we always verify the validity of the templates before utilizing them for a particular

approximate network (Algorithm 3). Our transformation heuristically modifies the templates such

that a large fraction of these templates are expected to remain valid on the approximate network.

4.5 Verifying Approximate Network
Algorithm 3 presents FANC’s procedure for verifying an approximate network. The algorithm

takes a set of input regions 𝜙 as the input for verifier. It returns a boolean indicating if𝜓 holds for

the region 𝜙 . The algorithm first filters out templates that are invalid for the approximate network.

(line 1). The algorithm propagates each input region that needs to be verified to the layer 𝑘 of the

approximate neural network. If the abstract shape obtained by this propagation (concretized as J )

is contained in one of the valid templates then the proof is complete (lines 5-8).

If J is not contained in any template 𝑇 ∈ T app
, then we use the baseline analyzer on line 12.

Computing J on line 4 and then running analyzer on J to the end on line 12 is the same as

running the verification in the baseline from the input layer to the output layer. We next state the

theorem that shows the soundness of the main step of the algorithm:

Theorem 2 (Soundness of Verification Algorithm 3). If 𝑇 is a valid template for neural
network 𝑁 app and 𝛾 (𝐴D (𝐼 , 𝑁 app

1:𝑘
)) ⊆ 𝑇 then ∀𝑋 ∈ 𝐼 .𝜓 (𝑁 app (𝑋 )) = 𝑡𝑟𝑢𝑒 .

Proof.

𝛾 (𝐴D (𝑇, 𝑁 app
𝑘+1:𝑙 )) ⊢ 𝜓 (Since 𝑇 is a valid template)

∀𝑡 ∈ 𝑇 .𝑁
app
𝑘+1:𝑙 (𝑡) ∈ 𝛾 (𝐴D (𝑇, 𝑁 app

𝑘+1:𝑙 )) (Using Definition 8)

∀𝑡 ∈ 𝑇 .𝜓 (𝑁 app
𝑘+1:𝑙 (𝑡)) = 𝑡𝑟𝑢𝑒 (Combining the equations above)
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Algorithm 3 Verifying approximate network

Input: 𝑁 app
, property (𝜙 ,𝜓 ), templates for approximate network T app

, intermediate layer 𝑘

Output: Boolean indicating if the specification (𝜙 ,𝜓 ) is verified

1: T app = {𝑇 ∈ T app | 𝛾 (𝐴D (𝑇, 𝑁 app
𝑘+1:𝑙 )) ⊢ 𝜓 }

2: for 𝐼 ∈ 𝜙 do
3: 𝑏 = false

4: J = 𝛾 (𝐴D (𝐼 , 𝑁 app
1:𝑘

))
5: for 𝑇 ∈ T app do
6: if J ⊆ 𝑇 then
7: 𝑏 = true

8: break
9: end if
10: end for
11: if ¬𝑏 then
12: 𝑏 = 𝛾 (𝐴D (J , 𝑁

app
𝑘+1:𝑙 )) ⊢ 𝜓

13: end if
14: if ¬𝑏 then
15: return false

16: end if
17: end for
18: return true

𝛾 (𝐴D (𝐼 , 𝑁 app
1:𝑘

)) ⊆ 𝑇 (From the Theorem statement)

∀𝑡 ∈ 𝛾 (𝐴D (𝐼 , 𝑁 app
1:𝑘

)) .𝜓 (𝑁 app
𝑘+1:𝑙 (𝑡)) = 𝑡𝑟𝑢𝑒 (Combining the equations above)

∀𝑋 ∈ 𝐼 .𝑁
app
1:𝑘

(𝑋 ) ∈ 𝛾 (𝐴D (𝐼 , 𝑁 app
1:𝑘

)) (Using Definition 8)

∀𝑋 ∈ 𝐼 .𝜓 (𝑁 app
𝑘+1:𝑙 (𝑁

app
1:𝑘

(𝑋 ))) = 𝑡𝑟𝑢𝑒 (combining the last two equations)

∀𝑋 ∈ 𝐼 .𝜓 (𝑁 app (𝑋 )) = 𝑡𝑟𝑢𝑒

□

We further state the theorem that characterizes the precision of our algorithm:

Theorem 3 (Precision of Verification Algorithm 3). Algorithm 3 is at least as precise as the
baseline verifier 𝑉 .

Proof. This is an immediate consequence of the statement in line 12: whenever we cannot verify

the input region using the template containment, we instead use the analyzer from the baseline

verifier to verify it. Hence, our algorithm is at least as precise as the baseline verifier 𝑉 . □

Although having more templates can improve the chances of the intermediate shape containment

and will result in faster proof, the addition of each template (by the algorithms in Sections 4.3

and 4.4) also costs additional time for proving the template validity and checking the containment.

Hence, it is important to balance this trade-off and find the right number of templates.
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4.6 Time Complexity of FANC
The time complexity of FANC depends on the analyzer used in the verifier. In general, the complexity

of the verifier for a given network and specification is a complicated function of the parameters

of the network architecture (e.g., number of layers 𝑙 and maximum number of neurons across

all layers 𝑛) and specification (e.g., perturbation bounds, number of neurons that can take both

negative and positive values). We make a simplifying assumption that for all networks with the

same architecture, the verifier complexity for propagating abstract shapes through each layer

is the same for all specifications and it depends on the maximum number of neurons across all

layers. In this way, the cost of the verifier on a given network can be characterized using the

network parameters 𝑙 and 𝑛. Let 𝜏𝐴D be a function that provides the analyzer cost as a function

of 𝑛. Therefore, we assume that on average the analyzer takes O(𝜏𝐴D (𝑛)) time for propagation

through one layer. A verifier using such an analyzer on a verification task on a neural network with

𝑙 layers takes O(𝑙 · 𝜏𝐴D (𝑛)) time for running the analyzer. Checking if the output abstract shape

can satisfy the property𝜓 can take different time based on the complexity of𝜓 . For this discussion,

we assume that𝜓 is a robustness classification property (see Definition 4) – usually checking this

property takes asymptotically lower time than running the analyzer [Singh et al. 2018b, 2019b],

therefore we ignore it. Overall, a baseline verifier for an end-to-end verification task 𝜙 will take

O(𝑙 · |𝜙 | · 𝜏𝐴D (𝑛)) time. We divide this expression by |𝜙 |, and define the average time per interval

specification 𝐼 (𝑋 ) ∈ 𝜙 for the baseline as

𝐴𝑉𝑇bl = O(𝑙 · 𝜏𝐴D (𝑛)) .

We define 𝜆 as the containment fractionwhich is the fraction of the input regions that get captured

in one of the templates in T app
. Assuming that all the templates are created at layer 𝑘 , the time

complexity of running our fast verifier FANC is O(𝜆 ·𝑘 · |𝜙 | ·𝜏𝐴D (𝑛)+(1−𝜆) ·𝑙 · |𝜙 | ·𝜏𝐴D (𝑛)). We do not

add the containment checking time since it is asymptotically lower for our box shaped templates.

If 𝜔𝑇 is the number of iterations our template generator takes to create a single valid template

for the original network, then its cost is O(𝜔𝑇 · 𝑙 · |T | · 𝜏𝐴D (𝑛)) time - since it performs validity

check on each iteration. We evaluate the template generation time in Section 6. In the evaluation,

we observe that 𝜔𝑇 is typically between 5 to 10.

The template transformer takes O(𝑛 · |𝜙 | ·𝑘 · |T |) time as the verifier needs to check the validity

of transformed templates T app
. This validity check takes O(𝑙 · |T | · 𝜏𝐴D (𝑛)) time. If we sum the

time taken by all the components we get the overall complexity:

O(𝜔𝑇 ·𝑙 · |T | ·𝜏𝐴D (𝑛))+O(𝑛 · |𝜙 | · |T | ·𝑘)+O(𝑙 · |T | ·𝜏𝐴D (𝑛))+O(𝜆 ·𝑘 · |𝜙 | ·𝜏𝐴D (𝑛)+(1−𝜆) ·𝑙 · |𝜙 | ·𝜏𝐴D (𝑛))

The analyzer time 𝜏𝐴D (𝑛) is usually at least quadratic [Singh et al. 2018b, 2019b; Wang et al.

2018b]. Hence, the second term for template transformation is asymptotically lower and can be

ignored. The first term for template generation on the original network dominates the third term

which represents the time for validating the transformed templates on the approximate network,

and hence, we can ignore the third term asymptotically. Therefore the average time taken for

verification per input specification 𝐼 (𝑋 ) ∈ 𝜙 is obtained by dividing the remaining terms with |𝜙 |.
We get:

𝐴𝑉𝑇pt = O
(
𝜔𝑇 · 𝑙 · |T |

|𝜙 | · 𝜏𝐴D (𝑛)
)
+ O

(
𝜆 · 𝑘 · 𝜏𝐴D (𝑛) + (1 − 𝜆) · 𝑙 · 𝜏𝐴D (𝑛)

)
.

If we achieve 𝜆 close to 1, then we get the minimum possible value for the second term in the

expression for 𝐴𝑉𝑇pt. If we compare 𝐴𝑉𝑇bl and 𝐴𝑉𝑇pt, we see that lower values of 𝑘 , 𝜔𝑇 and
|T |
|𝜙 |

are essential for getting the maximum speedup.
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Table 1. Models used for the evaluation.

Model Architecture Dataset #Neurons

FCN7-MNIST 7 × 200 linear layers MNIST 1400

FCN7-CIFAR 7 × 200 linear layers CIFAR10 1400

CONV2-MNIST 2 Conv layers, 4 linear layers MNIST 2456

CONV4-CIFAR 4 Conv layers, 4 linear layers CIFAR10 8960

FANC works well for verification against low-dimensional perturbations that result in smaller

templates to specifications ratio
|T |
|𝜙 | (such perturbations includes patches, 𝐿0, rotation and bright-

ness). For 𝐿∞ adversarial attacks, our online template generation strategy does not achieve a low

enough value of
|T |
|𝜙 | to achieve overall speedup.

5 METHODOLOGY
Networks: Table 1 presents the models used in evaluation. All the models are robustly trained

using the training procedure from Chiang et al. [2020]. The approximate network versions are

generated using post-training quantization and pruning. In the case of CNN, only the weight

parameters corresponding to the fully-connected layers are pruned. For non-robustly trained

networks, even the verification on the original network fails most of the time (as we empirically

observed) and approximating such networks is unlikely to lead to robust networks. Since the

verification is unlikely to succeed, we did not use such networks in our evaluation.

Perturbations: We used the patch, two versions of 𝐿0 attack (𝐿0-random and 𝐿0-center), rotation

and brightness attacks presented in Section 3
2
:

• For the 𝐿0-random attack, we first choose 3 as the threshold for perturbation. Proving robustness

against all possible 3-pixel perturbation is currently impractical since it takes

(
729

3

)
verification

instance for one MNIST image. Hence, we perform verification against 1000 randomly sampled

combinations of 3 pixels.

• For the 𝐿0-center choose all the combinations of 3 pixels from the center of the picture since the

center of the image contains an important part of the image in both MNIST and CIFAR10. We

selected all

(
20

3

)
set of 3 pixels from the central 5 × 4 patch in the image.

• For the patch attack, we verify the model against all perturbations in 2 × 2 patches.

• We consider rotation attack that rotates MNIST images at an angle 𝛾 ∈ [−5, 5] degrees. Similar

to Sprecher et al. [2021], we split these images to obtain precise certification. Currently, it is not

possible to obtain CIFAR10 networks that are robust to rotation. Thus, we consider only MNIST

images for the rotation experiment.

• The brightness attack is defined only on gray-scale MNIST images [Pei et al. 2017] . To increase

certification precision we also use splitting of the brightness parameters.

Quantization: In this paper, we consider int8, int16 and float16 post-training quantizations. The

quantization scheme is of the form [TFLite 2017]:

𝑟 = 𝑠 (𝑞 − 𝑧𝑝) (4)

Here, 𝑞 is the quantized value and 𝑟 is the real value. 𝑠 which is the scale and 𝑧𝑝 which is the zero

point are the parameters of quantization. For our experiments, we use symmetric quantization that

uses 𝑧𝑝 = 0. The quantization scheme uses a single set of quantization parameters for all values

within each layer. At inference, weights are converted from quantized value to the floating point and

2
The definitions from Section 3 assume a single color channel for notational convenience but they can be straightforwardly

extended for images with multiple color channels like CIFAR10.
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computations are performed using floating-point kernels. We randomly selected 25 images from the

dataset for the quantization experiments. Each image generates 729 verification instances in case of a

patch attack on MNIST, and similarly, there are multiple verification instances generated from a sin-

gle image for other perturbations (𝐿0-random, 𝐿0-center, rotation, brightness) as described earlier.

Pruning: At each iteration, we prune the smallest 10% model weights in each layer. Similar to

many other iterative pruning techniques, we prune only affine layers (we do not prune weights in

the convolution layer or biases, since they are much fewer in number than affine layer weights). We

verify the robustness of each model against patch perturbation. We randomly select 10 images from

the dataset and create input regions for every possible 2 × 2 patch perturbation. The number of

input regions per image is 729 for MNIST and 961 for CIFAR10. In this experiment, we perform 10

pruning iterations. However, our technique can be used in any setting with many more iterations,

if the transformed templates are valid and have a high value for the containment ratio 𝜆.

Implementation: Code for our tool is written in Python and it is implemented on top of the

ELINA library [Singh et al. 2018b, 2019b] for numerical abstractions. For all our experiments, we

use DeepZ [Singh et al. 2018b] as the library underlying our analyzer and verifier. We use the

zonotope abstract domain for the analysis. However, we store the templates using box abstraction

since checking containment in the box is much faster. We do not expect to lose much precision

by using box abstraction for storing templates, as we expect a high containment ratio 𝜆 in our

experiments (and have observed it in Table 6).

Table 2. Hyperparameter val-
ues used by FANC

Model 𝜅 k

FCN7-MNIST 7 2

CONV2-MNIST 14 3

FCN7-CIFAR 16 3

CONV4-CIFAR 32 3

Baseline: As the baseline, we use the plain DeepZ verifier for ver-

ification without proof transfer. We use the publicly available imple-

mentation of DeepZ in ERAN library [Singh et al. 2018a].

Hyperparameters: For getting the best possible performance we

need to set the hyperparameter values. The possible values for the

layer at which templates are created, 𝑘 , is bounded by the number

of layers in the model. Since we fix these values for each model and

the search space is reasonably small, we choose them offline during

the training.

Table 2 presents the values of 𝜅 and 𝑘 we used in the evaluation of each benchmark. For each

network, we chose the hyperparameters by running FANC to verify 𝐿0-random perturbations on a

small subset of the images on the original network. We use the same hyperparameters for each

network irrespective of the approximation and the attack. As a result, the hyperparameter tuning

induces only a small overhead. For the tuning, we generate the templates using FANC and verify

the original network. We selected 𝜅 by sweeping across fractions of the image width and selecting

the best. We selected 𝑘 by trying across values up to the number of layers and selecting the best.

Experimental Setup: For all the experiments we use 24 cores of an Intel Xeon E5-2687W CPU

with a main memory of 64 GB running Linux operating system.

6 EXPERIMENTAL EVALUATION
We evaluates the effectiveness of FANC on verifying quantized and pruned networks. We then

analyze how various tool components contribute to the overall result.

6.1 Effectiveness of FANC

Analysis and Verification Times: Tables 3 and 4 summarize the verification results for different

quantization approximations. In each table, Column𝑇Base is the time for running the baseline verifi-

cation. Column 𝑇Fanc is the time for verification using proof transfer over the network. Column 𝑆𝑝

represents the speedup obtained by FANC’s core verification with proof transfer compared to the
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Table 3. Average time (seconds) for verification for 𝐿0-random, 𝐿0-center and patch attacks.

𝐿0-random 𝐿0-center patch

Model Approximation 𝑇Base 𝑇Fanc 𝑆𝑝 𝑇Base 𝑇Fanc 𝑆𝑝 𝑇Base 𝑇Fanc 𝑆𝑝

FCN7-MNIST float16 41.44 13.67 3.03 47.84 18.16 2.63 30.71 13.66 2.25

int16 42.58 12.99 3.28 47.76 21.46 2.23 30.78 13.74 2.24

int8 40.99 10.44 3.93 47.31 30.22 1.57 30.28 11.5 2.63

CONV2-MNIST float16 47.81 27.78 1.72 54.77 35.71 1.53 35.07 24.85 1.41

int16 47.78 27.71 1.72 54.89 36.04 1.52 34.74 24.74 1.4

int8 47.61 29.63 1.61 54.25 37.97 1.43 34.29 25.56 1.34

FCN7-CIFAR float16 72.3 48.12 1.5 72.33 48.05 1.51 80.66 49.32 1.64

int16 69.52 39.73 1.75 70.97 40.53 1.75 71.25 48.40 1.47

int8 70.31 70.31 1 79.69 69.88 1.14 78.28 69.21 1.13

CONV4-CIFAR float16 142.91 104.43 1.37 160.38 125.02 1.28 150.43 106.53 1.41

int16 148.21 106.51 1.39 160.77 128.3 1.25 151.21 108.72 1.39

int8 138.81 116.57 1.19 163.26 129.42 1.26 149.84 117.13 1.28

Table 4. Average time (seconds) for verification for rotation and brightness attacks.

rotation brightness

Model Approximation 𝑇Base 𝑇Fanc 𝑆𝑝 𝑇Base 𝑇Fanc 𝑆𝑝

FCN7-MNIST float16 46.54 19.43 2.40 38.09 9.22 4.13

int16 42.80 21.10 2.03 36.81 11.33 3.25

int8 32.92 18.66 1.76 33.33 11.89 2.8

CONV2-MNIST float16 52.34 41.02 1.28 54.51 21.73 2.51

int16 48.32 36.68 1.32 41.34 20.68 2.0

int8 42.84 29.86 1.43 40.16 26.56 1.51

baseline (without the template creation). In each case, the time in the table is averaged over all

the images used in the experiment. Tables 3 and 4 do not add the template generation time to the

FANC verification time. We generate templates on the original network and leverage them to speed

up its verification. We reuse the templates for the verification of all other approximate networks in

Tables 3 and 4. We present the end-to-end savings with the template generation times included in

Table 5.

In most quantized networks proof transfer results in better verification time. For example,

in Table 3, for CONV2-MNIST network we get about 1.72x speedup for both float16 and int16

quantization on the 𝐿0-random attack. Similarly, we see 1.45x speedup on the 𝐿0-center attack.

We also perform experiments where we skip the template transformation step and use the

generated templates without any modification. We observe that the transformation step contributes

to a major improvement in the speedup. The total speedup with the template transformation step

is 1.5x and without it is 1.26x.

End-to-end Speedup: To present a realistic use case and end-to-end time savings we consider

the task of verifying the original and one approximate network. The baseline verifier needs to be

executed twice. In contrast, with FANC, the verification consists of (1) running the verifier on the

original network, which also creates the template, and (2) running the verifier on the approximate

network using the template. The speedup is in this case:

𝑆𝑝tot =
𝑇Base (𝑁 ) +𝑇Base (𝑁 app)

𝑇Fanc (𝑁 ) +𝑇Fanc (𝑁 app) +𝑇tg
(5)
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Table 5. The end-to-end speedup for each attack on quantization when verifying the original and a single
approximate network.

End-to-end speedup (𝑆𝑝tot)

Model Approximation 𝐿0-random 𝐿0-center patch rotation brightness

FCN7-MNIST float16 2.17 1.95 1.8 1.87 2.27

int16 2.23 1.82 1.8 1.74 2.11

int8 2.35 1.56 1.91 1.63 1.98

CONV2-MNIST float16 1.54 1.29 1.25 1.17 2.06

int16 1.54 1.28 1.25 1.18 1.85

int8 1.49 1.25 1.22 1.22 1.64

FCN7-CIFAR float16 1.18 1.15 1.29 - -

int16 1.25 1.21 1.3 - -

int8 0.99 1.03 1.1 - -

CONV4-CIFAR float16 1.14 1.09 1.2 - -

int16 1.15 1.08 1.19 - -

int8 1.07 1.08 1.15 - -

Table 6. The containment fraction 𝜆 for each attack on quantization.

Containment ratio 𝜆

Model Approximation 𝑐 𝐿0-random 𝐿0-center patch rotation brightness

FCN7-MNIST float16 2.0e-7 0.99 0.99 0.99 0.95 0.99

int16 2.0e-6 0.99 0.99 0.99 0.91 0.99

int8 0.038 0.98 0.94 0.91 0.86 0.98

CONV2-MNIST float16 2.4e-6 0.72 0.68 0.71 0.54 0.98

int16 1.2e-5 0.72 0.67 0.70 0.41 0.97

int8 0.116 0.68 0.62 0.68 0.52 0.97

FCN7-CIFAR float16 2.3e-3 0.91 0.79 0.88 - -

int16 0.078 0.89 0.74 0.86 - -

int8 0.23 0.64 0.61 0.54 - -

CONV4-CIFAR float16 7.9e-5 0.69 0.63 0.59 - -

int16 7.4e-4 0.66 0.55 0.53 - -

int8 0.036 0.49 0.49 0.46 - -

Wemeasured the time for template creation and template transfer (which happen only once). The

template creation time (𝑇tg) for FCN7-MNIST is 11.21s, for CONV2-MNIST 6.93s, for FCN7-CIFAR

26.48s and for CONV4-CIFAR 31.62s. These times are small relative to the verification time even for

a single (original) network, resulting often (especially for the MNIST networks) in faster verification

than with the baseline.

Table 5 presents the end-to-end savings for this scenario. For each approximate network, the

columns present the speedups obtained by each transformation. The speedups for the networks are

between 1.1x and 2.27x. The only exception is the FCN7-CIFAR network for int8 approximation,

which is due to the high dissimilarity of the original and the approximate networks. The cost of

template creating amortizes further when verifying multiple approximations, since FANC can reuse

the template (the results from Tables 3 and 4 present the upper bound).

Impact of the Containment Fraction: Table 6 presents the value of constant 𝜆 for each attack

on the quantization approximations. Columns 1 and 2 present the network and the approximation.

Column 3 presents the approximation constant for the network (lower indicates more similar net-

works; Section 4.1). Columns 4-7 present the 𝜆 value for each attack (higher is better). The speedup
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Table 7. Average time (seconds) for verification of 10 pruned MNIST models.

Model FCN7-MNIST CONV2-MNIST

Prune(%) 𝑐 𝑇Base 𝑇Fanc 𝑆𝑝 𝑐 𝑇Base 𝑇Fanc 𝑆𝑝

0 0 31.71 11.31 2.8 0 34.97 23.36 1.5

10 3e-3 31.07 11.42 2.72 5e-4 34.73 23.38 1.49

20 1e-2 30.64 11.13 2.75 4e-3 34.58 23.09 1.5

30 2.7e-2 30.36 11.02 2.75 9e-3 34.68 22.6 1.53

40 4.7e-2 30.14 10.76 2.8 1.7e-2 34.32 23.16 1.48

50 6.9e-2 29.77 10.75 2.77 3.9e-2 34.48 22.8 1.51

60 0.1 29.49 10.62 2.78 8.6e-2 34.41 23.1 1.49

70 0.16 28.62 26.26 1.09 0.16 34.12 22.98 1.48

80 0.27 28.32 29.13 0.97 0.27 34.25 25.21 1.36

90 0.62 27.39 27.67 0.99 0.47 33.48 34.67 0.97

End-to-end 297.52 171.27 1.73x 344.02 251.28 1.36x

Table 8. Average time (seconds) for verification of 10 pruned CIFAR10 models.

Model FCN7-CIFAR CONV4-CIFAR

Prune(%) 𝑐 𝑇Base 𝑇Fanc 𝑆𝑝 𝑐 𝑇Base 𝑇Fanc 𝑆𝑝

0 0 80.98 43.27 1.87 2.3e-4 147.96 105.05 1.41

10 8.1e-4 77.13 42.11 1.83 2.3e-4 149.18 106.75 1.4

20 2.8e-3 73.46 44.71 1.64 2.3e-4 149.88 105.56 1.42

30 4.2e-3 70.53 41.21 1.71 2.3e-4 149.48 105.85 1.41

40 1.1e-2 67.47 41.71 1.62 2.3e-4 148.19 105.68 1.4

50 1.5e-2 64.3 41.52 1.55 2.3e-4 150.75 104.9 1.44

60 1.6e-2 60.92 41.82 1.46 1.4e-2 149.16 105.88 1.41

70 4.1e-2 57.97 41.39 1.4 1.4e-2 148.49 105.34 1.41

80 7.8e-2 53.59 42.23 1.27 1.5e-2 147.83 105.47 1.4

90 0.3 48.95 42.11 1.16 1.7e-2 146.13 111.21 1.31

End-to-end 655.31 448.56 1.46x 1487.04 1093.3 1.36x

of the proof transfer is positively correlated with the containment fraction 𝜆 for a fixed model. For

FCN7-MNIST we get 𝜆 close to 1 for all of the quantization schemes. One example where the proof

transfer does not work well is FCN7-CIFAR on int8 quantization. In this case, the approximation

constant 𝑐 is 1.92, which indicates the network is quite dissimilar from the original network.

6.2 Multiple Network Proof Transfer for Pruning
In this section, we show that how proof transfer can be used in a setting that continuously changes

the model by pruning. For these experiments, we use the patch attack.

Table 7 presents the average verification times for all the MNIST models. Table 8 presents the

average verification times for all the CIFAR10 models. We use the same notation 𝑇Base, 𝑇Fanc and

𝑆𝑝 from Section 6.2 for the columns. Row ”End-to-end“ for Column 𝑇Fanc shows the total time for

verification, including the template generation time, and for Column 𝑆𝑝 shows the total end-to-end

speedup that we get (as computed by Equation 5).

In Tables 7 and 8, we present the 𝑐 value for each of the networks (Section 4.1). It shows that

FANC speedup is inversely proportional to 𝑐 . For a particular network, one could easily compute

𝑐 in negligible time as a heuristic before using FANC and estimate the likelihood of obtaining

speedup with FANC. For instance, if we know that FANC on an approximate network version 𝑁1

with 𝑐 = 0.1 obtains 2x speedup then another approximate network version 𝑁2 with 𝑐 < 0.1 will

likely obtain more than 2x speedup.
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For instance, in the Table 7, when we prune 40% of model weights in the FCN7-MNIST network

then 𝑐 = 0.047 and our technique gives about 3x speedup. However, when we prune 70% of model

weights, then 𝑐 = 0.1 and our technique gives only 1.1x speedup. In most cases, the speedups are

higher with the template transformation. In Table 8, if we prune FCN7-CIFAR network 30%, then

the speedup of the verifier without the template transformation is about 1.4x, and the speedup with

the transformation is about 1.7x. A similar pattern is observed in all the cases for CONV2-MNIST,

FCN7-CIFAR and CONV4-CIFAR. The speedup is obtained even if we have to perform verification

of a single approximate network. However, we emphasize that the same set of templates can work

on a class of possible approximate networks.

6.3 Template Transfer
In this section, we evaluate the hypothesis that a significant fraction of the templates generated

using the original network after transformation are valid for approximate networks. We expect

that the ratio 𝜂 =
|𝑣𝑎𝑙𝑖𝑑 (Tapp) |

|Tapp | is to be higher for float16 and int16 quantization, and it drops for

int8 quantization. Table 9 presents the result for each quantization scheme and the network. Each

cell contains the ratio 𝜂 for each network and approximation. As expected, we observe that the

template transfer ratio is higher for float16 and int16 quantization and reduces somewhat in the

case of int8 quantization.

Table 9. The template transfer ratio
𝜂 =

|𝑣𝑎𝑙𝑖𝑑 (Tapp) |
|Tapp | for all models and

quantization combinations.

Model float16 int16 int8

FCN7-MNIST 0.75 0.75 0.78

CONV2-MNIST 0.84 0.84 0.85

FCN7-CIFAR 0.54 0.54 0.28

CONV4-CIFAR 0.48 0.48 0.47

Table 10. Average verification speedup 𝑆𝑝 =
𝑇Fanc

𝑇Fanc [sp]
due to Algorithm 2 over template gen-

eration from Sprecher et al. [2021]

Attack int8 int16 float16 prune-50%

𝐿0-random 1.27x 1.15x 1.11x 1.06x

𝐿0-center 1.17x 1.18x 1.15x 1.1x

patch 1.15x 1.06x 1.04x 1.07x

rotation 1.05x 1.07x 1.18x 1.12x

brightness 1.1x 1.1x 1.12x 1.15x

6.4 Ablation Study
In this section, we present an ablation study comparing instantiating FANC with Algorithm 2

for the template generation step and FANC with Sprecher et al. [2021] (which is a special case

of Algorithm 2 when 𝜅 = ℎ = 𝑤 ), keeping all other components the same. Sprecher et al. [2021]

generates a single template per image. Whereas FANC can generate multiple templates per image.

Our main motivation for using Algorithm 2 to generate multiple templates is that if some of the

templates are not valid for the approximate network then other templates could be used instead.

We perform the experiment on all combinations of attacks and all approximations. Tables 10 and 11

present the results of our ablation study.

Each entry in Table 10 presents the average speedup across all verification instances of a par-

ticular perturbation type (shown as rows) and all models with the same approximation (shown

as columns).The speedup of each instance is computed as 𝑆𝑝 =
𝑇Fanc

𝑇Fanc [sp]
where 𝑇Fanc,𝑇Fanc [sp] are

the time taken by FANC verification with template generation from Algorithm 2 and Sprecher

et al. [2021] respectively. Overall, the results show that Algorithm 2 yields improvement across all

approximations and perturbations, ranging between 1.27x (int8 with 𝐿0-random attack) and 1.04x

(float16 with patch attack). Sprecher et al. [2021] template generation algorithm results in smaller

containment ratios for more aggressive approximations (higher value of 𝑐). For these cases with

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 75. Publication date: April 2022.



Proof Transfer for Fast Certification of Multiple Approximate Neural Networks 75:25

Table 11. Average verification speedup due to Algorithm 2 over Sprecher et al. [2021] template generation for
int8 quantization

Attack Model 𝑆𝑝 𝜆𝐹𝐴𝑁𝐶 [𝑠𝑝 ] 𝜆𝐹𝐴𝑁𝐶

𝐿0-random FCN7-MNIST 1.64x 0.73 0.98

CONV2-MNIST 1.13x 0.61 0.68

FCN7-CIFAR 1.3x 0.52 0.67

CONV4-CIFAR 1x 0.49 0.49

𝐿0-center FCN7-MNIST 1.31x 0.84 0.94

CONV2-MNIST 1.16x 0.46 0.62

FCN7-CIFAR 1.18x 0.61 0.64

CONV4-CIFAR 1x 0.49 0.49

patch FCN7-MNIST 1.35x 0.74 0.91

CONV2-MNIST 1.14x 0.55 0.68

FCN7-CIFAR 1.1x 0.47 0.61

CONV4-CIFAR 1x 0.46 0.46

rotation FCN7-MNIST 1.1x 0.69 0.86

CONV2-MNIST 1x 0.43 0.52

brightness FCN7-MNIST 1x 0.99 0.99

CONV2-MNIST 1.2x 0.8 0.99

larger values of 𝑐 , Algorithm 2 shows more improvement in the containment ratios and results

in higher speedup. In these cases having more templates is useful in improving the containment

ratio. As indicated by the 𝑐 values from Table 6 and Table 7, prune-50% network is less approximate

than the quantized network for each model, and therefore results in a smaller improvement with

Algorithm 2.

Since the results in Table 10 show that our Algorithm 2 is particularly useful in the case of int8

quantization, we present detailed results for the verification of each network in Table 11. Column

𝜆𝐹𝐴𝑁𝐶 [𝑠𝑝 ] presents the template containment ratio for the templates generated using the algorithm

from Sprecher et al. [2021]. Column 𝜆𝐹𝐴𝑁𝐶 presents the ratio for the templates generated using

the Algorithm 2. The results show a substantial improvement in the containment ratio 𝜆 due to

Algorithm 2 that results in the consistent speedup across different networks. In particular, the

Pearson correlation coefficient between speedup and the differences of 𝜆 is 0.8 (highly positive

on the scale from -1.0 to 1.0). In Table 11, CONV4-CIFAR cases do not yield speedups since the

best choice of 𝜅 = 32 is the same as in Sprecher et al. [2021]. For these cases, the containment

ratio 𝜆 is higher for 𝜅 = 32 (average 𝜆 = 0.49) than for 𝜅 = 16 (average 𝜆 = 0.44) or 𝜅 = 8 (average

𝜆 = 0.45). Hence, generating multiple templates by using smaller 𝜅 does not always improve the

containment ratio. Finally, for FCN7-MNIST under the brightness perturbation, the verification

problem is simple, and even a coarse 𝜅 leads to a high containment ratio (𝜆 = 0.99).

7 RELATEDWORK
Proof Transfer: Sprecher et al. [2021] introduced the concept of proof transfer for neural network
certification between different input specifications. This approach enables proof effort reuse across

input specifications to reduce the overall verification cost between 1.2x and 2.9x on neural networks

with fully-connected layers. However, this approach cannot transfer proofs across different net-

works. Further, it is primarily aimed at networks with fully-connected layers, with a limited support

for convolutional layers – the proof transfer can occur only after all the convolutional layers, which

significantly reduces its applicability. FANC uses the idea of proof transfer to multiple approxi-

mate networks (as opposed to different inputs on the single network). The output values and the

intermediate activation values of the networks change due to the approximation. Thus, for the

verification of the approximate network, we cannot use templates created on the original network.
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To perform a sound transfer of the proof, we need templates that are valid on the new network.

Our unique template transformation approach enables modification of proof templates to work for

a specific approximate network. Hence, transforming the templates is essential in transferring the

proof to approximate networks. Our template generation algorithm can be applied for networks

with convolutional layers. The template generation algorithm from Sprecher et al. [2021] can be

encoded as a special case of our algorithm when 𝜅 = ℎ = 𝑤 .

Ashok et al. [2020] presented an approach transferring proof from an abstraction of a network to

the original network. The framework creates abstractions by clustering from experimental data; the

abstractions relate the neurons in (simpler) abstract network to the neurons in the original network.

As one application of their work, they show how one can transfer a proof from the abstract network

to the original one. The evaluation demonstrated that the approach works for fully-connected

feedforward neural network with 1.25x speedup. The goal of FANC is different: it transfers the

proof from the original network to an approximate network by creating an abstraction that aims to

over-approximate the network behavior. Moreover, our technique works on much larger models

with convolutions, and in the case of fully-connected networks we show up to 4.1x speedup.

Cheng and Yan [2020] reuse previous analysis results after the weights of neural network with

fully-connected layers are fine-tuned (retrained) in a continuous setting (the paper presents a

case study of a visual pipeline in autonomous vehicle model). In comparison to our work, their

verification goal is different and the models that the technique supports are significantly limited:

their verifier is used only for the verification of fully-connected linear layers at the end of the

network. In contrast, FANC operates on a more general class of networks and approximations, and

end-to-end verifies networks with both fully-connected and convolutional layers.

Differential neural network verification is a related concept that aims to bound the difference

between the output of original and approximate networks [Paulsen et al. 2020a,b]. However, this

approach and the solving mechanisms cannot be directly used to prove the robustness properties

of the approximate network.

Neural Network Verification: Researchers have proposed several techniques for verifying prop-

erties of neural networks [Anderson et al. 2019, 2020; Bunel et al. 2020; Ehlers 2017; Katz et al.

2017; Laurel et al. 2022; Singh et al. 2019c; Tjeng et al. 2017; Wang et al. 2018a, 2021]. To overcome

the inherent scalability limitations and support a broader range of neural networks, state-of-the-

art verifiers have explored the trade-offs between scalability and precision [Singh et al. 2019a,b;

Tjandraatmadja et al. 2020; Xu et al. 2020; Zhang et al. 2018], or computing estimates of robust-

ness [Baluta et al. 2021; Bastani et al. 2016;Weng et al. 2018b,a]. We anticipate that the improvements

in the verifier technology will lead to more interest in analyzing both the original and approximate

networks. While our implementation used a particular DeepZ verifier, most state-of-the-art incom-

plete verifiers (e.g., Fast-Lin [Weng et al. 2018a], CROWN [Zhang et al. 2018], Neurify [Wang et al.

2018a], Star sets [Tran et al. 2020]) can be reformulated as instances of abstract interpretation. The

idea of template generation and template transfer are general and can in principle be used with

other verifiers to save the overall verification effort and time.

8 CONCLUSION
The requirement for running neural networks on energy-constrained devices, or shifts in the input

distribution, will continue to drive the development of new approaches for approximating and

tuning neural networks. The current approaches for verifying neural networks, which simply

re-run the proofs from scratch, will not be able to keep up with the rate at which the networks are

modified during deployment.

In this paper, we presented FANC, the first general technique for transferring proofs between the

original neural network and its multiple approximated versions. FANC’s algorithms create templates

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 75. Publication date: April 2022.



Proof Transfer for Fast Certification of Multiple Approximate Neural Networks 75:27

(connected symbolic shapes at an intermediate network layers that capture the proof of the property

to verify) and present algorithms for efficient template transformations and checking. We evaluated

the effectiveness of our approach for verifying networks generated by various approximation

techniques, including quantization and pruning, on fully-connected and convolutional networks,

and against different adversarial attacks, including two 𝐿0 attacks, patch, rotation and brightness

attacks. Our results indicate that FANC can significantly improves verification speed, up to 4.1x

with median 1.55x for quantization and up to 2.8x with median 1.48x for pruning.
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