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Input-Relational Verification of Deep Neural Networks
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We consider the verification of input-relational properties defined over deep neural networks (DNNs) such

as robustness against universal adversarial perturbations, monotonicity, etc. Precise verification of these

properties requires reasoning about multiple executions of the same DNN. We introduce a novel concept of

difference tracking to compute the difference between the outputs of two executions of the same DNN at

all layers. We design a new abstract domain, DiffPoly for efficient difference tracking that can scale large

DNNs. DiffPoly is equipped with custom abstract transformers for common activation functions (ReLU, Tanh,

Sigmoid, etc.) and affine layers and can create precise linear cross-execution constraints. We implement an

input-relational verifier for DNNs called RaVeN which uses DiffPoly and linear program formulations to

handle a wide range of input-relational properties. Our experimental results on challenging benchmarks

show that by leveraging precise linear constraints defined over multiple executions of the DNN, RaVeN gains

substantial precision over baselines on a wide range of datasets, networks, and input-relational properties.

CCS Concepts: • Theory of computation→ Program verification; Abstraction; • Computing method-
ologies→ Neural networks.

Additional Key Words and Phrases: Abstract Interpretation, Deep Learning, Relational Verification

1 INTRODUCTION
Deep neural networks (DNNs) have become more powerful and widespread over the past few years

and have now penetrated almost all fields and application areas including safety-critical domains

such as autonomous driving [10] or medical diagnosis [2], etc. Especially in these domains, the

decisions generated from these DNNs are important and mistakes can have grave consequences.

However, it can be hard to reason about DNNs as they are constructed in a black-box manner and

have highly nonlinear behavior. As such, although the machine learning community has made

great strides towards discovering and defending against DNN vulnerabilities [33, 50, 54, 60, 72, 84],

these methods cannot guarantee safety. As a result, there has been a lot of work on verifying the

safety properties of DNNs [3, 4, 6, 13, 14, 22, 32, 38, 39, 43, 56–58, 67, 68, 70, 75, 76, 82, 83, 86, 87, 89].

Despite this progress, existing DNN verification techniques can be imprecise for input-relational

properties that arise in many practical scenarios. For example, most existing works mentioned

above focus on verifying the absence of an adversarial attack (imperceptible perturbations added

to an input) around a local neighborhood of test inputs. Recent work [46] has shown that attacks

against individual inputs can be unrealistic as they rely on the attacker having perfect knowledge

of the inputs processed by the DNN and being able to create perturbations specialized for that

input. Indeed, many practical attack scenarios [46, 47, 49] involve constructing universal adversarial

perturbations (UAPs) [54] that can work against a set of inputs. Other interesting input-relational

properties that have become popular in recent years include monotonicity [74], and fairness

[40]. Efficient verification of input-relational properties requires reasoning about the relationship

between multiple executions of the same DNN. Existing verifiers lack these capabilities and as a

result, are not precise. For the remainder of this paper, relational will refer to input-relational.

This Work. In this work, we propose a framework for verifying the relational properties of DNNs

- RaVeN (Relational Verifier of Neural Networks). To the best of our knowledge, RaVeN is the first

framework to verify a broad range of relational properties defined over multiple executions of the

Authors’ addresses: Debangshu Banerjee, University of Illinois Urbana-Champaign, USA; Changming Xu, University of

Illinois Urbana-Champaign, USA; Gagandeep Singh, University of Illinois Urbana-Champaign and VMware Research, USA.
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2 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

same DNN. Next, we detail the key technical contributions that allow RaVeN to verify relational

properties that state-of-the-art verifiers [68, 69, 88] cannot.

Main Contributions. Our main contributions are:

• A new abstract domain, DiffPoly with custom abstract transforms for affine and activation (ReLU,

Sigmoid, Tanh, etc.) layers allowing us to efficiently compute precise lower and upper bounds of

the difference between the outputs of a pair of DNN executions at each layer.

• A verification framework, RaVeN, which leverages the DiffPoly analysis to compute precise

layerwise linear constraints over outputs from different executions of the DNN. These cross-

execution linear constraints allow us to capture linear dependencies between the outputs of

different DNN executions at each layer, making RaVeN more precise than existing state-of-the-

art verifiers [68, 69, 88] which do not track linear dependencies at all layers. We use the linear

constraints from DiffPoly analysis to formulate a mixed-integer linear program (MILP) (Section 4).

We formally prove the soundness of RaVeN in Section 4.7.

• A complete implementation of RaVeN, including DiffPoly and MILP formulations capable of

handling diverse relational properties defined over the same DNNs with the popular feedforward

architectures and common activation functions like ReLU, Sigmoid, Tanh, etc.

• An extensive evaluation of RaVeN on a range of popular datasets, challenging fully-connected

and convolutional networks, and diverse relational properties (e.g., UAP verification, mono-

tonicity). Our results demonstrate that RaVeN achieves notably higher precision compared to

prior approaches and can verify relational properties that are beyond the capabilities of current

state-of-the-art verifiers (Section 5).

Our research can serve as a foundation for advancing relational verification in DNNs. Notably, our

results indicate that DNNs exhibit improved provable robustness against universal attacks (UAPs),

which are more realistic, compared to individual attacks. Recent studies [49, 85] demonstrate

that defending against UAPs enhances accuracy and empirical robustness more effectively than

defending against individual attacks [50]. In the future, integrating RaVeN into the training loop

[52, 55, 90] can lead to DNNs with superior accuracy and provable robustness against UAPs. The

supplementary materials
1
and code

2
are publicly available.

2 BACKGROUND
In this section, we present the essential background and notation used in this paper. Throughout

the subsequent sections, lowercase letters (𝑎, 𝑏, etc.) denote scalars, while uppercase letters (𝐴, 𝐵,

etc.) and the over barred lowercase letters (𝑎, ¯𝑏, etc.) represent vectors and matrices.

Neural Networks: We primarily focus on feed-forward neural networks. However, since we

use linear bound propagation techniques, similar to [86], our method can be extended to other

architectures that can be expressed as DAGs (directed acyclic graphs). We use "DNN" to refer

specifically to feed-forward neural networks. These DNNs, denoted as𝑁 : R𝑛0 → R𝑛𝑙
, are composed

of 𝑙 sequential layers 𝑁1, . . . , 𝑁𝑙 , where each 𝑁𝑖 : R𝑛𝑖−1 → R𝑛𝑖
is a function. Each layer 𝑁𝑖 applies

either an affine function (convolution or linear function) or a non-linear activation function, such

as ReLU, Sigmoid, or Tanh. Affine layers, represented as 𝑁𝑖 : R𝑛𝑖−1 −→ R𝑛𝑖
, are defined by

𝑁𝑖 (𝑥) = 𝐴𝑖 · 𝑋 + 𝐵𝑖 , where 𝐴𝑖 is the weight matrix, and 𝐵𝑖 is the bias vector.

2.1 Relational Verification of DNN
For a network 𝑁 : 𝑅𝑛0 → 𝑅𝑛𝑙 and a relational property defined over DNN inferences on 𝑘 inputs,

the input specification Φ : R𝑛0×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} is a boolean predicate. It encodes the input region

1
The latest version of the paper with appendix can be found at https://focallab.org/files/raven.pdf

2
The code for RaVeN can be found at https://github.com/uiuc-focal-lab/RaVeN.

https://focallab.org/files/raven.pdf
https://github.com/uiuc-focal-lab/RaVeN
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Φ𝑡 ⊆ R𝑛0×𝑘
encompassing all potential inputs corresponding to each of the 𝑘 DNN inferences. For

any 𝑋 ∈ R𝑛0×𝑘
satisfying Φ, 𝑋 = (𝑋1, . . . , 𝑋𝑘 ) is a tuple of 𝑘 points where ∀𝑖 ∈ [𝑘] .𝑋𝑖 ∈ 𝑅𝑛0

and 𝑋𝑖

is the input of the 𝑖-th DNN inference. Common DNN relational properties e.g. UAP verification

[88], monotonicity [74], etc. can be encoded as the conjunction of 𝑘 individual input specifications

𝜙𝑖
𝑖𝑛 : R𝑛0 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} and cross-execution input specification Φ𝛿

: R𝑛0×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}.
Each 𝜙𝑖

𝑖𝑛 : R𝑛0 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} defines the input region 𝜙𝑖
𝑡 ⊆ R𝑛0

for 𝑖-th execution. Meanwhile,

Φ𝛿
captures relationships between inputs used in distinct executions. Commonly Φ𝛿

bounds the

difference between any pair of inputs 𝑋𝑖 , 𝑋 𝑗 ∈ R𝑛0
used in different executions such as 𝐿𝑖, 𝑗 ≤

𝑋𝑖 − 𝑋 𝑗 ≤ 𝑈𝑖, 𝑗 where 𝐿𝑖, 𝑗 ,𝑈𝑖, 𝑗 ∈ R𝑛0
are constant real vectors. Individual input regions 𝜙𝑖

𝑡 are in

general 𝐿∞ regions [16] i.e. all𝑋𝑖 ∈ R𝑛0
such that ∥𝑋𝑖 −𝑋 ∗𝑖 ∥∞ ≤ 𝜖 around a concrete point𝑋 ∗𝑖 ∈ R𝑛0

with 𝜖 ∈ R+. For any pair of inputs 𝑋𝑖 , 𝑋 𝑗 ∈ R𝑛0
, the cross-execution input specification between

them 𝜙𝛿
𝑖,𝑗

are given by - 𝜙𝛿
𝑖,𝑗
(𝑋𝑖 , 𝑋 𝑗 ) = (𝐿𝑖, 𝑗 ≤ 𝑋𝑖 − 𝑋 𝑗 ) ∧ (𝑋𝑖 − 𝑋 𝑗 ≤ 𝑈𝑖, 𝑗 ). The output specification

for relational properties is a boolean predicate Ψ : R𝑛𝑙×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} defined over the outputs

of all 𝑘 DNN inferences. In this work, we consider output specifications Ψ that can be expressed as

a logical formula in CNF (conjunctive normal form) with𝑚 clauses where each clause𝜓𝑖 is of the

form below 𝐶𝑖, 𝑗,𝑖′ ∈ R𝑛𝑙
:

𝜓𝑖 (𝑌1, . . . , 𝑌𝑘 ) =
𝑛∨
𝑗=1

𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘 ) where𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘 ) =
(

𝑘∑︁
𝑖′=1

𝐶𝑇𝑖,𝑗,𝑖′𝑌𝑖′ ≥ 0

)
Definition 2.1 (DNN Relational Verification Problem). The relational verification problem for

a DNN 𝑁 : R𝑛0 → R𝑛𝑙
, an input specification Φ : R𝑛0×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} and an output spec-

ification Ψ : R𝑛𝑙×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} is to prove whether ∀𝑋1, . . . , 𝑋𝑘 ∈ R𝑛0 .Φ(𝑋1, . . . , 𝑋𝑘 ) =⇒
Ψ(𝑁 (𝑋1), . . . 𝑁 (𝑋𝑘 )) or provide a counterexample otherwise.

2.2 Interesting Relational Properties of DNNs
UAP Verification. UAP verification problem verifies whether there exists a single perturbation that

can be added to 𝑘 DNN inputs to make it misclassify all of them. The UAP verification problem is

fundamentally different from the commonly considered local 𝐿∞ robustness verification where the

adversary can perturb each input independently. However, as shown in recent studies [46, 47, 49]

generating input-specific adversarial perturbation is unrealistic, and practical attacks require

finding adversarial perturbation that works for a set of inputs instead of a single input. These works

suggest that considering robustness against input-specific adversarial attacks is too conservative

and presents a pessimistic view of practical DNN robustness. Since the adversarial perturbation

is common across a set of inputs, the UAP verification problem requires a relational verifier that

can exploit the dependency between perturbed inputs. We provide the input specification Φ and

the output specification Ψ of the UAP verification problem in Appendix A.3. We describe another

variation of UAP: targeted UAP in Appendix A.4.

Worst-case UAP accuracy: In general, for a given 𝑁 , finding an adversarial perturbation that

works for all inputs in a set is hard. However, an adversarial perturbation affecting a significant

proportion of inputs also poses a threat to the DNN. Hence, most of the existing works compute

the worst-case accuracy [88] of the DNN on an input set in the presence of a UAP adversary. The

formal definition of worst-case UAP accuracy is as follows.

Definition 2.2 (Worst-case UAP accuracy). Given a DNN 𝑁 , a set of inputs 𝐼 = {𝑋1, . . . , 𝑋𝑘 },
target outputs 𝑂 = {𝑌1, . . . , 𝑌𝑘 } and perturbation norm bound 𝜖 ∈ R the worst case UAP of 𝑁 is

𝑎∗ = 1/𝑘 min∥𝑉 ∥∞≤𝜖
∑𝑘

𝑖=1
(𝑁 (𝑋𝑖 +𝑉 ) = 𝑌𝑖 ) where 𝑉 is the added perturbation.

Monotonicity Verification. Recent works have shown that local monotonicity of DNNs is in-

teresting and verification for monotonic properties is desirable [21, 61]. This property asserts a
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Fig. 1. The overview of the proposed sound and incomplete RaVeN verifier. Given a network 𝑁 and a
relational property (Φ,Ψ) relating 𝑘 DNN inferences we show the flow of RaVeN along with the key steps -
(i) constructing the product DNN by duplicating 𝑁 𝑘 times and analyzing the product DNN with an existing
DNN abstract interpreter, (ii) computing pairwise differences of outputs of all 𝑘 inferences at each layer
with DiffPoly analysis that uses concrete lower and upper bounds of each variable in the product DNN,
(iii) combining DiffPoly analysis and product DNN analysis with an existing DNN abstract interpreter to
infer layerwise linear constraints over outputs of all 𝑘 DNN executions that preserves dependencies between
different DNN executions, (iv) encoding the postcondition as a MILP objective and formulate MILP with
layerwise linear constraints computed in step (iii). Finally, we use an off-the-shelf MILP solver [35] to verify
the relational property by solving the corresponding MILP.

monotonic relationship between an input feature and the output. For instance, in predicting housing

prices, a monotonic property could stipulate that a house with more rooms is consistently more

expensive than a house with fewer rooms. We encode monotonicity as a relational property over a

pair of DNN executions in Appendix A.6.

Hamming Distance. The Hamming distance between two strings is the number of substitutions

needed to turn one string into the other [36]. Given a binary string (a list of images of binary

digits), we want to formally verify the worst-case bounds on the hamming distance between the

original binary string and classified binary string where each image of the binary digits can be

perturbed by a common perturbation (formal definition in Appendix A.5). Hamming Distance

serves as a valuable metric for tasks involving input string processing [62], like text comprehension

or CAPTCHA solving.

Further Relational Verification Problems. Other than the properties described above, another

interesting DNN property is fairness verification [40]. In fairness verification, we want to show

a change in a sensitive feature does not change the output (i.e. the model is fair and unbiased

towards that feature). We can encode the problem similarly to the monotonicity verification problem

presented in the paper and verify it using RaVeN.

3 OVERVIEW
Fig. 1 illustrates the high-level idea behind the workings of RaVeN. It takes, as input, the DNN 𝑁

and a relational property (Φ,Ψ) defined over 𝑘 inferences of 𝑁 . RaVeN computes a product DNN

with 𝑘 copies (one for each inference) of network 𝑁 and runs existing DNN abstract interpreters

[68, 69, 87] on each copy of 𝑁 to obtain concrete lower and upper bounds of each variable in the
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product DNN. However, the existing abstract interpreters analyze each DNN execution in isolation

and as a result, fail to preserve the dependencies between outputs of different DNN executions. One

of our key contributions is the design of a new abstract domain DiffPoly that can efficiently compute

precise lower and upper bounds on differences between the outputs of a neuron corresponding to

two DNN executions. While DiffPoly can be extended to track bounds on any linear combination of

the layerwise outputs of any 𝑘 DNN executions (Appendix G.5), we specifically focus on a pair of

executions and track differences, not alternatives (e.g., sum), between them. This choice is motivated

by the fact that for existing DNN relational properties (UAP verification, monotonicity, etc.), the

difference between inputs used in multiple executions is bounded. Therefore, we naturally opt

to track differences between the DNN’s outputs across multiple executions at subsequent hidden

layers and the output layer. RaVeN combines the analysis of existing abstract interpreters on the

product DNN and DiffPoly analysis on all

(
𝑘
2

)
pair of executions to infer linear constraints over the

outputs of all 𝑘 executions at each layer. The linear constraints computed by RaVeN capture the

dependencies between different DNN executions at each layer making RaVeN more precise than

the state-of-the-art relational verifier [88] that only tracks dependencies at the input layer but not

at the hidden layers and loses precision as a result. At the final layer of 𝑁 , we encode the output

specification Ψ as a set of mixed-integer linear programming (MILP) constraints over the outputs

of all 𝑘 executions. Note that we use integer variables only to encode the output specification Ψ to

limit the number of integer variables in the MILP formulation and subsequently avoid exponential

blowup in MILP optimization time. Next, we elaborate on the workings of RaVeNwith an illustrative

example.

3.1 Illustrative Example
3.1.1 Network: For this example, we consider the network, 𝑁𝑒𝑥 , with three layers: two affine

layers and one ReLU layer with two neurons each (Fig. 2). The weights on the edges represent

the coefficients of the weight matrix used by the affine transformations applied at each layer and

the learned bias for each neuron is shown above or below it. 𝑁𝑒𝑥 can be viewed as a loop-free

straight-line program composed of a sequence of assignment statements - ReLU assignments 𝑥𝑖 ←
𝑚𝑎𝑥 (0, 𝑥 𝑗 ) and affine assignments 𝑥𝑖 ← 𝑣 +∑𝑛

𝑗=1
𝑤 𝑗 · 𝑥 𝑗 where 𝑣 ∈ R and𝑊 = [𝑤1, . . . ,𝑤𝑛]𝑇 ∈ R𝑛

.

In the example, 𝑁𝑒𝑥 is a program with 12 variables: 2 input variables - {𝑖1, 𝑖2}, two output variables -
{𝑜1, 𝑜2}, 8 intermediate variables {𝑥1, . . . , 𝑥8} and a sequence assignment statements shown below:

𝑥1 ← 𝑖1 𝑥3 ← 𝑥1 − 𝑥2 𝑥5 ← max(0, 𝑥3) 𝑥7 ← 𝑥5 − 𝑥6 𝑜1 ← 𝑥7

𝑥2 ← 𝑖2 𝑥4 ← −2 · 𝑥1 + 𝑥2 𝑥6 ← max(0, 𝑥4) 𝑥8 ← −𝑥5 + 𝑥6 𝑜2 ← 𝑥8

(1)

3.1.2 Relational property: We verify the UAP verification problem described in Section 2.2 on

𝑁𝑒𝑥 where the relational property is defined over 2 separate executions of 𝑁𝑒𝑥 . Here the input

specification ∀𝑋1, 𝑋2 ∈ R2.Φ(𝑋1, 𝑋2) is defined as follows where 𝑋 ∗
1
= [14, 11]𝑇 , 𝑋 ∗

2
= [11, 14]𝑇 ,

and 𝜖 = 6.

Φ(𝑋1, 𝑋2) = (∥𝑋1 − 𝑋 ∗1 ∥∞ ≤ 𝜖) ∧ (∥𝑋2 − 𝑋 ∗2 ∥∞ ≤ 𝜖) ∧ (𝑋1 − 𝑋2 = 𝑋 ∗
1
− 𝑋 ∗

2
) (2)

In UAP verification, an adversary can select to attack the DNN with any perturbation 𝛿 such that

∥𝛿 ∥∞ ≤ 𝜖 but the same perturbation 𝛿 must be applied to both inputs - 𝑋 ∗
1
, 𝑋 ∗

2
. Therefore the two

executions are related and tracking this relationship improves precision. In contrast, in the common

local robustness problem, an adversary can choose different perturbations for the two inputs and

therefore the two executions are unrelated and can be verified independently. Any input 𝑋1 ∈ R2

inside the 𝐿∞ ball defined by ∥𝑋1−𝑋 ∗1 ∥∞ ≤ 𝜖 is not misclassified if (𝑁𝑒𝑥 (𝑋1) = [𝑜1, 𝑜2]𝑇 )∧(𝑜1−𝑜2 ≥
0) holds. Conversely, any input𝑋2 ∈ R2

lying inside the 𝐿∞ ball - ∥𝑋2−𝑋 ∗2 ∥∞ ≤ 𝜖 is not misclassified

if (𝑁𝑒𝑥 (𝑋2) = [𝑜1, 𝑜2]𝑇 ) ∧ (𝑜2 − 𝑜1 ≥ 0) holds. We want to formally verify that there does not
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6 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

exist an adversarial perturbation 𝛿 ∈ R2
with ∥𝛿 ∥∞ ≤ 𝜖 such that both the inferences on inputs

𝑋1 = 𝑋 ∗
1
+ 𝛿 and 𝑋2 = 𝑋 ∗

2
+ 𝛿 produces incorrect classification results. In this case, the output

specification Ψ can be encoded such that ∀𝛿 ∈ R2
and ∥𝛿 ∥∞ ≤ 𝜖 the network 𝑁𝑒𝑥 correctly classifies

at least one of the two perturbed inputs 𝑋1 = 𝑋 ∗
1
+ 𝛿 and 𝑋2 = 𝑋 ∗

2
+ 𝛿 .

Ψ(𝑁𝑒𝑥 (𝑋1), 𝑁𝑒𝑥 (𝑋2)) = (𝐶𝑇
1
𝑁𝑒𝑥 (𝑋1) ≥ 0)∨(𝐶𝑇

2
𝑁𝑒𝑥 (𝑋2) ≥ 0) where 𝐶1 = [1,−1]𝑇 ∧𝐶2 = [−1, 1]𝑇

Fig. 2. Representation of 𝑁𝑒𝑥 used in the illustrative example

3.1.3 Product DNN construction & analysis: The input specification Φ (Eq. 2) relates two DNN

executions on inputs from two input regions 𝜙1

𝑡 , 𝜙
2

𝑡 (not necessarily disjoint) defined by ∀𝑋1 ∈
R2 .∥𝑋1 − 𝑋 ∗1 ∥∞ ≤ 𝜖 and ∀𝑋2 ∈ R2 .∥𝑋2 − 𝑋 ∗2 ∥∞ ≤ 𝜖 respectively. So we construct the product DNN

with two separate copies of the DNN - 𝑁 1

𝑒𝑥 and 𝑁 2

𝑒𝑥 where 𝑁 1

𝑒𝑥 and 𝑁 2

𝑒𝑥 track execution of 𝑁𝑒𝑥

on inputs from 𝜙1

𝑡 and 𝜙
2

𝑡 respectively. The product DNN construction involves maintaining two

separate copies of all 12 variables and all 10 assignment statements used in 𝑁𝑒𝑥 . In the product DNN,

for each network 𝑁
𝑗
𝑒𝑥 where 𝑗 ∈ {1, 2}, we rename input variables as {𝑖 𝑗

1
, 𝑖

𝑗

2
}, output variables as

{𝑜 𝑗
1
, 𝑜

𝑗

2
} and intermediate variables as {𝑥 𝑗

1
, . . . , 𝑥

𝑗

8
}. 𝑁 1

𝑒𝑥 and 𝑁 2

𝑒𝑥 can be analyzed with any existing

complete [24, 39] or incomplete DNN verifiers [69, 87]. However, for scalability, we use sound but

incomplete abstract interpretation-based DNN verification techniques. We use the existing DeepZ

[68] abstract interpreter to compute an overapproximated range of the possible values of each

variable in 𝑁 1

𝑒𝑥 and 𝑁 2

𝑒𝑥 w.r.t. input regions 𝜙1

𝑡 and 𝜙
2

𝑡 respectively. Fig. 12 in the appendix shows

the range of values for each variable in the product DNN obtained by DeepZ analysis. The detailed

execution of DeepZ for this example is in Appendix A.7.

3.1.4 Capturing dependencies betweenDNN executions: DeepZ (or, any other existing non-relational

DNN verifier) analyze 𝑁 1

𝑒𝑥 , 𝑁
2

𝑒𝑥 in isolation and do not track the relation captured in the cross-

execution input constraint such as in Eq. 2 ∀𝑋1, 𝑋2 .(𝑋1 −𝑋2 = 𝑋 ∗
1
−𝑋 ∗

2
) that bounds the difference

between the inputs used in different executions of the network. In contrast, the proposed DiffPoly

can efficiently compute the bounds on the difference between two copies of the same variable

corresponding to two different executions and as a result, can capture the dependencies between

multiple executions. For example, given any variable 𝑥𝑖 in 𝑁𝑒𝑥 DiffPoly computes lower and upper

bound of (𝑥1

𝑖 −𝑥2

𝑖 ) that holds for all possible inputs satisfying Φ. Overall, for any relational property
defined over 𝑘 DNN executions, we run

(
𝑘
2

)
DiffPoly for each pair of DNN executions. Note that

since for any variable 𝑥𝑖 , (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ) = −(𝑥𝑏𝑖 − 𝑥𝑎𝑖 ), for any pair of execution over inputs from 𝜙𝑎
𝑡 ,

and 𝜙𝑏
𝑡 , we only run DiffPoly analysis if 𝑎 < 𝑏 to avoid redundant computations. For the rest of the

paper, given a pair of variables < 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 > we use 𝛿

𝑎,𝑏
𝑥𝑖 to denote their difference (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ).

3.1.5 DiffPoly domain: For two copies of the same variable from two separate executions e.g. 𝑥𝑎𝑖 ,

𝑥𝑏𝑖 , the DiffPoly domain (formally described in Section 4.1), associates six linear constraints with

< 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 >: three upper linear constraints (symbolic upper bounds) 𝛿

𝑎,𝑏,≥
𝑥𝑖 , 𝑥

𝑎,≥
𝑖

, 𝑥
𝑏,≥
𝑖

and three lower

linear constraints (symbolic lower bounds) 𝛿
𝑎,𝑏,≤
𝑥𝑖 , 𝑥

𝑎,≤
𝑖

, 𝑥
𝑏,≤
𝑖

. The 𝛿-constraints are the symbolic
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Fig. 3. Concrete bounds of difference as computed by DiffPoly analysis on the example network.

lower and upper bound on the difference (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ) satisfying 𝛿
𝑎,𝑏,≤
𝑥𝑖 ≤ (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ) ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖 while the

other four constraints represent symbolic bounds on the variables 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 respectively. Additionally,

the domain tracks concrete bounds - concrete lower bounds for each variable (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ), 𝑥𝑎𝑖 , and 𝑥𝑏𝑖
i.e. Δ𝑎,𝑏,𝑥𝑖

𝑙𝑏
, 𝑙𝑎,𝑥𝑖 , and 𝑙𝑏,𝑥𝑖 and concrete upper bounds Δ𝑎,𝑏,𝑥𝑖

𝑢𝑏
, 𝑢𝑎,𝑥𝑖 , and 𝑢𝑏,𝑥𝑖 . Note that as depicted

in Fig 1, the concrete bounds - 𝑙𝑎,𝑥𝑖 , and 𝑙𝑏,𝑥𝑖 𝑢𝑎,𝑥𝑖 , and 𝑢𝑏,𝑥𝑖 are obtained from the analysis of the

product DNN. At a high level, DiffPoly combines the ideas from the Zone domain [51], used for

classical program analysis, that tracks concrete lower and upper bound on the difference of a pair

of variables e.g. 𝑙𝑥𝑦 ≤ (𝑥 − 𝑦) ≤ 𝑢𝑥𝑦 and the DeepPoly domain [69] that tracks symbolic lower

and upper bound on variables of the DNN. However, DiffPoly is more precise than both the Zone

domain which does not track symbolic bounds on the difference, and the DeepPoly domain which

does not explicitly track any difference constraints making DiffPoly well suited for computing

difference bounds across multiple DNN executions. Next, we show the format of symbolic bounds

associated with DiffPoly below where 𝛿
𝑎,𝑏
𝑥 𝑗

= (𝑥𝑎𝑗 − 𝑥𝑏𝑗 ).

𝛿
𝑎,𝑏,≥
𝑥𝑖 = 𝑣 +

𝑛∑︁
𝑗=1

(
𝑤𝛿
𝑗 · 𝛿

𝑎,𝑏
𝑥 𝑗
+𝑤𝑎

𝑗 · 𝑥
𝑎
𝑗 +𝑤

𝑏
𝑗 · 𝑥

𝑏
𝑗

)
𝑥
𝑎,≥
𝑖

= 𝑣𝑥𝑎 +
𝑛∑︁
𝑗=1

𝑤
𝑎,𝑥
𝑗
· 𝑥𝑎𝑗 𝑥

𝑏,≥
𝑖

= 𝑣𝑥
𝑏
+

𝑛∑︁
𝑗=1

𝑤
𝑏,𝑥
𝑗
· 𝑥𝑏𝑗 (3)

In Eq. 3, 𝑣, 𝑣𝑥𝑎 , 𝑣
𝑥
𝑏
∈ R,𝑊 𝛿 ,𝑊 𝑎,𝑊 𝑏,𝑊 𝑎,𝑥 ,𝑊 𝑏,𝑥 ∈ R𝑛

are the coefficients of the variables with

𝑤𝑖 denoting the 𝑖-th coefficient for any vector𝑊 ∈ R𝑛
, 𝑛 is the number of neurons in 𝑁𝑒𝑥 . We

restrict the format of symbolic bounds and enforce ∀𝑗 ≥ 𝑖 𝑤𝛿
𝑗
= 𝑤𝑎

𝑗 = 𝑤𝑏
𝑗 = 𝑤

𝑎,𝑥
𝑗

= 𝑤
𝑏,𝑥
𝑗

= 0 so

that symbolic bounds of any pair of variables < 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 > involve only variables that come before

𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 (having smaller index) and their difference. These restrictions ensure that there are no cyclic

dependencies between the symbolic bounds of the variables. Moreover, similar to the DeepPoly

domain, we only allow a single symbolic lower, and upper bound to reduce the computation cost

required to evaluate the concrete bounds for each variable. Otherwise, the unrestricted Polyhedra

domain [20] though more precise, does not scale to the large DNNs considered in this work.

3.1.6 DiffPoly analysis: The analysis start with computing the symbolic and concrete bounds

corresponding to < 𝑥1

1
, 𝑥2

1
> and < 𝑥1

2
, 𝑥2

2
>. All pair of inputs𝑋1, 𝑋2 satisfying input specification Φ

satisfy 𝑋1 − 𝑋2 = 𝑋 ∗
1
− 𝑋 ∗

2
= [3,−3]𝑇 . The linear constraints and concrete lower and upper bounds

defining the range of the difference are as follows.

𝛿1,2,≤
𝑥1

= 𝛿1,2,≥
𝑥1

= 3 𝛿1,2,≤
𝑥2

= 𝛿1,2,≥
𝑥2

= −3 (𝑥1

1
− 𝑥2

1
) ∈ [3, 3] (𝑥1

2
− 𝑥2

2
) ∈ [−3,−3]

At the input layer, the abstract elements also track linear constraints and concrete bounds for

variables 𝑥1

1
, 𝑥1

2
, 𝑥2

1
, and 𝑥2

2
. However, for this example, we primarily focus on constraints 𝛿

1,2,≥
𝑥𝑖

and 𝛿
1,2,≤
𝑥𝑖 and show the rest of the constraints in the Appendix A.8. Next, we apply the affine
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(a) Δ̂𝑙𝑏 ≥ 0 (b) Δ̂𝑢𝑏 ≤ 0 (c) Δ̂𝑙𝑏 < 0 ∧ Δ̂𝑢𝑏 > 0

Fig. 4. The optimal (in terms of area) convex approximations for 𝛿 = 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) where ˆ𝛿 = (𝑥 − 𝑦),
𝛿≥ , and 𝛿≤ are symbolic upper bound and lower bound of 𝛿 respectively.

transformer (defined in Section 4.1) to calculate bounds corresponding to < 𝑥1

3
, 𝑥2

3
> and < 𝑥1

4
, 𝑥2

4
>.

We show the derivation of linear constraints 𝛿
1,2,≥
𝑥3

and 𝛿
1,2,≤
𝑥3

below where 𝛿
1,2
𝑥1

= (𝑥1

1
− 𝑥2

1
) and

𝛿
1,2
𝑥2

= (𝑥1

2
− 𝑥2

2
). The symbolic bounds 𝛿

1,2,≥
𝑥4

and 𝛿
1,2,≤
𝑥4

are obtained similarly.

𝛿1,2
𝑥3

= (𝑥1

1
− 𝑥1

2
) − (𝑥2

1
− 𝑥2

2
) =⇒ 𝛿1,2,≥

𝑥3

= 𝛿1,2,≤
𝑥3

= (𝑥1

1
− 𝑥2

1
) − (𝑥1

2
− 𝑥2

2
) = 𝛿1,2

𝑥1

− 𝛿1,2
𝑥2

(4)

To compute the concrete lower bound Δ1,2,𝑥3

𝑙𝑏
(or, upper bound) of (𝑥1

3
− 𝑥2

3
) we substitute the

concrete bounds of 𝛿
1,2
𝑥1

and 𝛿
1,2
𝑥2

in lower (upper) symbolic bounds of Eq. 4 for example:

𝛿1,2,≤
𝑥3

= 𝛿1,2
𝑥1

− 𝛿1,2
𝑥2

=⇒ Δ1,2,𝑥3

𝑙𝑏
= Δ1,2,𝑥1

𝑙𝑏
− Δ1,2,𝑥3

𝑢𝑏
= 6

Next, we compute bounds corresponding to < 𝑥1

5
, 𝑥2

5
> by using the ReLU abstract transformer

(formally introduced in Section 4.2) for the assignments 𝑥1

5
← 𝑅𝑒𝐿𝑈 (𝑥1

3
) and 𝑥2

5
← 𝑅𝑒𝐿𝑈 (𝑥2

3
).

In this case, choices for the symbolic bounds are non-unique. Fig. 4a shows one of two possible

choices for linear constraints 𝛿
1,2,≥
𝑥5

= 𝛿
1,2
𝑥3

and 𝛿
1,2,≤
𝑥5

= 0. 𝛿
1,2,≥
𝑥5

= 𝑥
1,≥
5
− 𝑥2,≤

5
and 𝛿

1,2,≤
𝑥5

= 𝑥
1,≤
5
− 𝑥2,≥

5

are alternative candidates. However, in the abstract domain, we only allow only one choice for

𝛿
1,2,≥
𝑥5

and one choice for 𝛿
1,2,≤
𝑥5

so we greedily select one of two possible candidates for both 𝛿
1,2,≥
𝑥5

and 𝛿
1,2,≤
𝑥5

. For both choices, we first evaluate the concrete bounds of (𝑥1

5
− 𝑥2

5
) by substituting all

variables in the symbolic lower (or upper) bound with their respective concrete bounds and then

pick the candidate with the more precise concrete bound. For example, the choice 𝛿
1,2,≥
𝑥5

= 𝛿
1,2
𝑥3

yields concrete bound Δ1,2,𝑥5

𝑢𝑏
= 6.0 which is more precise than Δ1,2,𝑥5

𝑢𝑏
= 20.625 calculated from

𝛿
1,2,≥
𝑥5

= 𝑥
1,≥
5
− 𝑥

2,≤
5

. Thus, we select 𝛿
1,2,≥
𝑥5

= 𝛿
1,2
𝑥3
. Finally, we obtain bounds corresponding to

< 𝑥1

7
, 𝑥2

7
> and < 𝑥1

8
, 𝑥2

8
> by applying the affine abstract transformer. We show concrete bounds

for the difference of each pair of variables (𝑥1

𝑖 − 𝑥2

𝑖 ) in Fig. 3 and detailed analysis in Appendix A.8.

3.1.7 Back-substitution for concrete bounds: We obtain the concrete bounds of each (𝑥1

𝑖 −𝑥2

𝑖 ) by the
back-substitution strategy used in most of the popular non-relational DNN verifiers e.g. CROWN

[92], DeepPoly [69], 𝛼-CROWN [86], etc. In back-substitution, we start with the symbolic bounds

𝛿
𝑎,𝑏,≥
𝑥𝑖 (or, 𝛿

𝑎,𝑏,≤
𝑥𝑖 ) of (𝑥1

𝑖 − 𝑥2

𝑖 ) and then obtain concrete bounds Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

(or, Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

) of (𝑥1

𝑖 − 𝑥2

𝑖 ) by
substituting concrete bounds of all the variables in 𝛿

𝑎,𝑏,≥
𝑥𝑖 (or, 𝛿

𝑎,𝑏,≤
𝑥𝑖 ). Commonly, back-substitution

does not stop after a single concrete substitution step rather it refines Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

(or, Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

) by a

sequence of steps with each step including a symbolic substitution, where all the variables in 𝛿
𝑎,𝑏,≥
𝑥𝑖

(or, 𝛿
𝑎,𝑏,≤
𝑥𝑖 ) are replaced by the corresponding symbolic bounds, followed by a concrete substitution.

Although back-substitution is computationally more expensive than a single concrete substitution

step, it obtains more precise concrete bounds Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

(or, Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

) which in turn improves the precision

of RaVeN.
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3.2 Using Analysis Bounds to Solve the UAP Verification Problem
We will now explain how RaVeN combines DiffPoly analysis with product DNN analysis to create

the MILP formulation. Additionally, through our illustrative example, we will compare RaVeN’s

approach to state-of-the-art baseline methods like [40] and [88]. This comparison will demonstrate

that while the baseline methods fall short in confirming the absence of a UAP in our example, our

approach successfully verifies the non-existence of a UAP.

3.2.1 State-of-the-art DNN relational verifiers. [40] only analyzes the product DNN and uses

the concrete bounds obtained independently for each execution to verify UAP robustness. This

approach does not track any dependencies across executions and just leverages standard DNN

local robustness verification of individual inferences. However, DeepZ analysis on the product

DNN computes for input region 𝜙1

𝑡 the lower bound of 𝐶𝑇
1
𝑁𝑒𝑥 (𝑋1) is −13.25 and for 𝜙2

𝑡 the lower

bound of 𝐶𝑇
2
𝑁𝑒𝑥 (𝑋2) is −31.44. Since the lower bounds of both 𝐶𝑇

1
𝑁𝑒𝑥 (𝑋1) and 𝐶𝑇

2
𝑁𝑒𝑥 (𝑋2) are less

than 0 this method can not prove that UAP does not exist. Next, we focus on the state-of-the-art

approach (referred to as I/O formulation in the rest of the paper) for UAP verification introduced by

[88]. The I/O formulation initially applies non-relational DNN verifiers (e.g., DeepZ) to the product

DNN. Based on DeepZ analysis, for each execution, it extracts linear constraints connecting output

variables to input variables specific to that execution. Lastly, it translates the cross-execution input

constraints into linear constraints, represents the output specification Ψ as a MILP objective, and

employs standard MILP solvers to find the optimal solution (detailed formulation in Appendix B.1).

For our illustrative example, the I/O formulation can only prove the absence of a UAP when the

MILP solution is non-negative. However, the optimal MILP solution in this case is −5.306 < 0,

highlighting that the I/O formulation lacks the precision to verify the relational property. This

imprecision arises because the I/O formulation, while tracking dependencies at the input layers,

neglects subsequent hidden layers, leading to a loss of precision.

Fig. 5. For the variables 𝑥1

5

and 𝑥2

5
the convex region

(green) obtained with con-
straints from DiffPoly analy-
sis is more precise than the
convex region (blue) formed
without the difference con-
straints.

3.2.2 RaVeN MILP formulation. We introduce a two-step enhance-

ment to the MILP encoding in comparison to I/O formulation (same

MILP objective) using our tool, RaVeN. To begin with, we relate the

output of each layer to the output of the preceding layer by employ-

ing a set of linear constraints, commencing from the input layer. We

replace non-linear activation layers (e.g., ReLU, Sigmoid, etc.) with con-

vex overapproximations using concrete bounds obtained from DeepZ

analysis, such as triangle relaxation [70] for ReLU. RaVeN’s layerwise

approach effectively captures linear dependencies across executions

at the hidden layers, yielding an improved optimal solution of −1.564

compared to the I/O formulation (details behind this improvement in

Appendix B.2). Nonetheless, it remains insufficient for verifying the

absence of UAP. In this case, the issue lies in the isolated computation of

convex overapproximations for non-linear activation functions, which

disregards the inter-dependencies between executions. To address this

limitation, RaVeN utilizes the DiffPoly analysis and incorporates Diff-

Poly’s custom abstract transformers for non-linear activation functions

defined over pairs of executions. This approach computes convex overapproximations that consider

inter-dependencies between execution pairs. Figure 5 illustrates this enhancement, showing how

constraints derived from the DiffPoly analysis enhance the precision of the convex region at the

hidden layers. The addition of the difference constraints from the DiffPoly analysis to the layerwise

formulation of RaVeN improves the optimal value to 0 thereby proving the absence of UAP in the

illustrative example. It is important to note that RaVeN employs the same MILP encoding for Ψ
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as utilized in the I/O formulation. The observed improvement is the result of RaVeN’s enhanced

capability in capturing the linear dependencies between outputs from multiple executions. The

detailed MILP formulation for RaVeN is in Appendix B.3.

4 RAVEN ALGORITHM
In this section, we present RaVeN’s pseudocode, discuss its key components, and assess its asymp-

totic runtime. We provide a sketch of the soundness proofs of RaVeN in Section 4.7 with detailed

proofs in Appendix F. We first formally introduce the product DNN.

Definition 4.1 (Product DNN). Given any 𝑙 layer DNN 𝑁 : R𝑛0 → R𝑛𝑙
and input specifiction Φ

defined over 𝑘 executions of 𝑁 the product DNN N𝑘
: R𝑛0×𝑘 → R𝑛𝑙×𝑘

defined as sequential com-

position of 𝑙 functions N𝑘
𝑖 : R𝑛𝑖−1×𝑘 → R𝑛𝑖×𝑘

where N𝑘
𝑖 ((𝑋 𝑖

1
, . . . , 𝑋 𝑖

𝑘
)) = [𝑁𝑖 (𝑋 𝑖

1
), . . . , 𝑁𝑖 (𝑋 𝑖

𝑘
)]𝑇 ,

for all 𝑗 ∈ [𝑘] . 𝑋 𝑖
𝑗 ∈ R𝑛𝑖−1

and 𝑁𝑖 : R𝑛𝑖−1 → R𝑛𝑖
is the 𝑖-th layer of 𝑁 .

Algorithm 1 shows the pseudocode for RaVeN. For the product DNN, an existing non-relational

verifier (e.g. DeepZ) is used to obtain the concrete bounds for the outputs of all 𝑘 executions at all

layers, say𝒜
𝑘
(line 5). We use the concrete bounds from product DNN analysis (line 7) to initialize

DiffPoly analysis for all 𝜅 =
(
𝑘
2

)
pair of executions (line 8). Next, DiffPoly computes the symbolic and

concrete bounds (denoted as 𝒜
𝑎,𝑏

𝛿
) of the outputs and their differences w.r.t each pair of executions

(line 8). Note that aside from handling differences, DiffPoly also maintains symbolic bounds on

the variables from the product DNN that are relevant to the pair of executions it is analyzing.

This allows DiffPoly to calculate the concrete bounds of these product DNN variables using back-

substitution although DiffPoly can also be run independently from product DNN analysis. However,

we decide to utilize the concrete bounds from the product DNN analysis, as they can be more precise

compared to the bounds obtained by DiffPoly. Furthermore, this approach enables DiffPoly to

benefit from any improvements made in the product DNN analysis. We produce linear constraints

for all layers by utilizing the symbolic and concrete bounds obtained from DiffPoly analysis on all

𝜅 pairs of executions. (line 10). After layerwise linear constraints computation, we encode Ψ, as a
MILP objective (line 11). Finally, we invoke a MILP solver on the MILP formulated using the linear

constraints and MILP objective function to verify the relational verification problem (line 12). Note,

Algorithm 1 shows a sequential implementation of RaVeN. However, we can parallelly run existing

DNN abstract interpreters on each of 𝑘 copies of 𝑁 and parallelly execute DiffPoly interpreter

on all

(
𝑘
2

)
difference networks. Next, we formally define the building blocks of RaVeN algorithm:

DiffPoly domain and layerwise MILP formulation.

4.1 DiffPoly Abstract Domain
Next, we formally introduce the DiffPoly domain and the corresponding abstract transformers

for the affine and activation (ReLU, Sigmoid, Tanh, etc.) assignments. For a list of 2𝑛 variables

[𝑥𝑎
1
, . . . , 𝑥𝑎𝑛], [𝑥𝑏1 , . . . , 𝑥𝑏𝑛] corresponding to a pair of execution of 𝑁 the corresponding element in

the DiffPoly domain A2𝑛 is defined as 𝑎 = [𝑎1, . . . , 𝑎𝑛]. Here each 𝑎𝑖 is associated with a pair of

variables < 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 >. 𝑎𝑖 associates (i) six symbolic bounds: symbolic lower and upper bounds for

𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 and (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ) and (ii) six concrete bounds: concrete lower and upper bounds for 𝑥𝑎𝑖 , 𝑥

𝑏
𝑖 and

(𝑥𝑎𝑖 − 𝑥𝑏𝑖 ). We represent each 𝑎𝑖 as a tuple 𝑎𝑖 =< 𝐶𝑖
𝑠𝑦𝑚,𝐶

𝑖
𝑐𝑜𝑛 > with 𝐶𝑖

𝑠𝑦𝑚 and 𝐶𝑖
𝑐𝑜𝑛 denoting the

symbolic and concrete bounds respectively:

𝐶𝑖
𝑠𝑦𝑚 = {𝑥𝑎,≤

𝑖
, 𝑥

𝑏,≤
𝑖

, 𝛿
𝑎,𝑏,≤
𝑥𝑖 , 𝑥

𝑎,≥
𝑖

, 𝑥
𝑏,≥
𝑖

, 𝛿
𝑎,𝑏,≥
𝑥𝑖 } 𝐶𝑖

𝑐𝑜𝑛 = {𝑙𝑎,𝑥𝑖 , 𝑙𝑏,𝑥𝑖 ,Δ
𝑎,𝑏,𝑥𝑖
𝑙𝑏

, 𝑢𝑎,𝑥𝑖 , 𝑢𝑏,𝑥𝑖 ,Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

}

The monotonic concretization function 𝛾2𝑛 : A2𝑛 → ℘(R2𝑛) mapping each abstract element 𝑎 to

the corresponding element in the concrete domain ℘(R2𝑛) (powerset of R2𝑛
), is shown in Eq. 5
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Algorithm 1 RaVeN Algorithm

1: procedure RaVeN(Φ,Ψ, 𝑁 )

2: Input: Φ : R𝑛0×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, Ψ : R𝑛1×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, 𝑁 : R𝑛0 → R𝑛𝑙
.

3: Verify: ∀𝑋1, . . . , 𝑋𝑘 ∈ R𝑛0 . Φ(𝑋1, . . . , 𝑋𝑘 ) =⇒ Ψ(𝑁 (𝑋1), . . . , 𝑁 (𝑋𝑘 )).
4: N𝑘 ← ConstructProductDNN(𝑁,Φ)
5: 𝒜

𝑘 ← ProdDNNAnalyzer(N𝑘 ,Φ,V) ⊲V is existing non-relational DNN verifier

6: for 𝑎, 𝑏 ∈ [𝑘] ∧ 𝑎 < 𝑏 do
7: L𝑎,U𝑎,L𝑏,U𝑏 ←ExtractConcreteBounds(𝒜𝑘

𝑖 , 𝑎, 𝑏)
8: 𝒜

𝑎,𝑏

𝛿
← DiffPolyExecutor(𝑁𝑎, 𝑁𝑏,Φ,L𝑎,U𝑎,L𝑏,U𝑏)

9: end for
10: M ← [LayerwiseConstraints(𝒜𝑎,𝑏

𝛿
, 𝑁 ,Φ) | 𝑎, 𝑏 ∈ [𝑘] ∧ 𝑏 < 𝑎] ⊲ Constraints

11: MΨ ←RaVeNObjectiveFunction(Ψ) ⊲ Objective Function Formulation

12: return MILPSolver(M,MΨ) ⊲ MILP Solver Invocation

13: end procedure

where for any 𝑋 ∈ R𝑛
we represent 𝑖-th coordinate of 𝑋 as 𝑥𝑖 .

𝜑𝛿
2𝑛 (𝑋

𝑎, 𝑋𝑏 ) = (𝑋𝑎, 𝑋𝑏 ∈ R𝑛) ∧ (∀𝑖 ∈ [𝑛] .(𝛿𝑎,𝑏,≤𝑥𝑖 ≤ (𝑥𝑎𝑖 − 𝑥
𝑏
𝑖 ) ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖 ∧ Δ𝑎,𝑏,𝑥𝑖

𝑙𝑏
≤ (𝑥𝑎𝑖 − 𝑥

𝑏
𝑖 ) ≤ Δ𝑎,𝑏,𝑥𝑖

𝑢𝑏
))

𝜑𝑛 (𝑋𝑎) = (𝑋𝑎 ∈ R𝑛) ∧ (∀𝑖 ∈ [𝑛] .(𝑥𝑎,≤
𝑖
≤ 𝑥𝑎𝑖 ≤ 𝑥

𝑎,≥
𝑖
∧ 𝑙𝑎,𝑥𝑖 ≤ 𝑥𝑎𝑖 ≤ 𝑢𝑎,𝑥𝑖 ))

𝛾2𝑛 (𝑎) = {(𝑋𝑎, 𝑋𝑏 ) | 𝑋𝑎, 𝑋𝑏 ∈ R𝑛 ∧ 𝜑𝑛 (𝑋𝑎) ∧ 𝜑𝑛 (𝑋𝑏 ) ∧ 𝜑𝛿
2𝑛 (𝑋

𝑎, 𝑋𝑏 )} (5)

In the DiffPoly domain, for any deterministic function 𝑓 : R𝑛 → R𝑚
the abstract transformer

𝑇
♯

𝑓
: A2𝑛 → A2𝑚 is required to satisfy the following soundness condition for all abstract elements

𝑎 ∈ A2𝑛 where 𝑇𝑓 : ℘(R2𝑛) → ℘(R2𝑚) defines the corresponding concrete transformer

𝑇𝑓 (𝛾2𝑛 (𝑎)) ⊆ 𝛾2𝑚 (𝑇 ♯

𝑓
(𝑎)) where ∀X ∈ ℘(R2𝑛). 𝑇𝑓 (X) = {(𝑓 (𝑋 ), 𝑓 (𝑌 )) | (𝑋,𝑌 ) ∈ X}

Next, we define abstract transformers for the DiffPoly domain.

4.2 DiffPoly ReLU Abstract Transformer

𝑅𝑒𝐿𝑈 : R → R is defined as 𝑅𝑒𝐿𝑈 (𝑥) = max(0, 𝑥). Let, 𝑇 ♯

𝑅
: A2𝑖 → A2𝑖+2 be the abstract

transformer that executes assignment statements 𝑦𝑎𝑖 ← 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ), 𝑦𝑏𝑖 ← 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ). For 𝑎 =

[𝑎1, . . . , 𝑎𝑖 ] ∈ A2𝑖 , let𝑎
′ = 𝑇

♯

𝑅
(𝑎) represent the output of the transformer. First, for𝑎′ = [𝑎′

1
, . . . , 𝑎′𝑖+1],

we compute the symbolic bounds𝐶
′𝑗
𝑠𝑦𝑚 for each𝑎′𝑗 where 𝑗 ∈ [𝑖+1]. In this case, for all 𝑗 ∈ [𝑖] .𝑎′𝑗 = 𝑎 𝑗

and 𝑎′𝑖+1 is associated with the variable pair < 𝑦𝑎𝑖 , 𝑦
𝑏
𝑖 >. Since 𝑅𝑒𝐿𝑈 is piecewise linear, we separately

analyze cases where 𝑅𝑒𝐿𝑈 acts as a linear function and cases where it demonstrates non-linear

behavior. Table 1 summarizes the separate cases we consider while designing the abstract trans-

former for 𝑅𝑒𝐿𝑈 . In Table 1, for any variable 𝑣 , 𝑣+ (or, 𝑣−) denotes the case when values taken by 𝑣

are always positive (or negative) and 𝑣± denotes the case when 𝑣 can be both positive and negative.

Symbolic bounds for (𝑦𝑎𝑖 − 𝑦𝑏𝑖 ). We first consider cases where at least one of 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ) or
𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) behaves as a linear function and separately consider the case where both of them are

non-linear. Similarly, we consider 3 scenarios based on the concrete bounds of 𝛿
𝑎,𝑏
𝑥𝑖 = 𝑥𝑎𝑖 −𝑥𝑏𝑖 (shown

in Fig. 4) where we characterize the convex region having a minimum area that captures all possible

values of (𝑦𝑎𝑖 − 𝑦𝑏𝑖 ). In Table 2, we show the computation of the symbolic bounds for (𝑦𝑎𝑖 − 𝑦𝑏𝑖 )
based on the cases for 𝑥𝑎𝑖 and 𝑥𝑏𝑖 . The first column shows the case, the second column shows the

symbolic expression for (𝑦𝑎𝑖 −𝑦𝑏𝑖 ), and the last column shows its symbolic bounds. For the first four
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Table 1. DiffPoly ReLU Cases

Cases from 𝑥𝑎𝑖 𝑥𝑎,𝑖− = (𝑢𝑎,𝑥𝑖 ≤ 0) 𝑥
𝑎,𝑖
+ = (𝑙𝑎,𝑥𝑖 ≥ 0) 𝑥

𝑎,𝑖
± = ¬𝑥𝑎,𝑖− ∧ ¬𝑥𝑎,𝑖+

Cases from 𝑥𝑏𝑖 𝑥𝑏,𝑖− = (𝑢𝑏,𝑥𝑖 ≤ 0) 𝑥
𝑏,𝑖
+ = (𝑙𝑏,𝑥𝑖 ≥ 0) 𝑥

𝑏,𝑖
± = ¬𝑥𝑏,𝑖− ∧ ¬𝑥𝑏,𝑖+

Cases from 𝛿
𝑎,𝑏
𝑥𝑖 𝛿𝑖− = (Δ𝑎,𝑏,𝑥𝑖

𝑢𝑏
≤ 0) 𝛿𝑖+ = (Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

≥ 0) 𝛿𝑖± = ¬𝛿𝑖− ∧ ¬𝛿𝑖+

Table 2. Computation of the symbolic bounds for 𝛿𝑎,𝑏𝑦𝑖 based on cases for 𝑥𝑎
𝑖
and 𝑥𝑏

𝑖
.

Case 𝛿
𝑎,𝑏
𝑦𝑖 Symbolic bounds 𝛿

𝑎,𝑏,≤
𝑦𝑖 and 𝛿

𝑎,𝑏,≥
𝑦𝑖

𝑥𝑎,𝑖− ∧ 𝑥𝑏,𝑖− 0 (𝛿𝑎,𝑏,≤𝑦𝑖 = 0) ∧ (𝛿𝑎,𝑏,≥𝑦𝑖 = 0)
𝑥
𝑎,𝑖
+ ∧ 𝑥𝑏,𝑖+ 𝑥𝑎𝑖 − 𝑥𝑏𝑖 (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝛿

𝑎,𝑏
𝑥𝑖 ) ∧ (𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝛿

𝑎,𝑏
𝑥𝑖 )

𝑥
𝑎,𝑖
+ ∧ 𝑥𝑏,𝑖− 𝑥𝑎𝑖 (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝑥𝑎𝑖 ) ∧ (𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝑥𝑎𝑖 )

𝑥𝑎,𝑖− ∧ 𝑥𝑏,𝑖+ −𝑥𝑏𝑖 (𝛿𝑎,𝑏,≤𝑦𝑖 = −𝑥𝑏𝑖 ) ∧ (𝛿
𝑎,𝑏,≥
𝑦𝑖 = −𝑥𝑏𝑖 )

𝑥
𝑎,𝑖
± ∧ 𝑥𝑏,𝑖− 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ) (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝑦

𝑎,≤
𝑖
) ∧ (𝛿𝑎,𝑏,≥𝑦𝑖 = 𝑦

𝑎,≥
𝑖
)

𝑥𝑎,𝑖− ∧ 𝑥𝑏,𝑖± −𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) (𝛿𝑎,𝑏,≤𝑦𝑖 = −𝑦𝑏,≥
𝑖
) ∧ (𝛿𝑎,𝑏,≥𝑦𝑖 = −𝑦𝑏,≤

𝑖
)

𝑥
𝑎,𝑖
± ∧ 𝑥𝑏,𝑖+ 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ) − 𝑥𝑏𝑖 (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝑦

𝑎,≤
𝑖
− 𝑥𝑏𝑖 ) ∧ (𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝑦

𝑎,≥
𝑖
− 𝑥𝑏𝑖 )

𝑥
𝑎,𝑖
+ ∧ 𝑥𝑏,𝑖± 𝑥𝑎𝑖 − 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝑥𝑎𝑖 − 𝑦

𝑏,≥
𝑖
) ∧ (𝛿𝑎,𝑏,≥𝑦𝑖 = 𝑥𝑎𝑖 − 𝑦

𝑏,≤
𝑖
)

𝑥
𝑎,𝑖
± ∧ 𝑥𝑏,𝑖± 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ) − 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) (𝛿

𝑎,𝑏,≤
𝑦𝑖 = 𝑦

𝑎,≤
𝑖
− 𝑦𝑏,≥

𝑖
) ∧ (𝛿𝑎,𝑏,≥𝑦𝑖 = 𝑦

𝑎,≥
𝑖
− 𝑦𝑏,≤

𝑖
)

Table 3. Computation of the symbolic bounds for 𝛿𝑎,𝑏𝑦𝑖 based on cases for (𝑥𝑎
𝑖
− 𝑥𝑏

𝑖
).

Case Symbolic bounds 𝛿
𝑎,𝑏,≤
𝑦𝑖 and 𝛿

𝑎,𝑏,≥
𝑦𝑖 for ReLU activation

𝛿𝑖+ (𝛿𝑎,𝑏,≤𝑦𝑖 = 0) ∧ (𝛿𝑎,𝑏,≥𝑦𝑖 = 𝛿
𝑎,𝑏
𝑥𝑖 )

𝛿𝑖− (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝛿
𝑎,𝑏
𝑥𝑖 ) ∧ (𝛿

𝑎,𝑏,≥
𝑦𝑖 = 0)

𝛿𝑖± (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝜆𝛿
𝑙𝑏
· 𝛿𝑎,𝑏𝑥𝑖 + 𝜇𝛿𝑙𝑏) ∧ (𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝜆𝛿

𝑢𝑏
· 𝛿𝑎,𝑏𝑥𝑖 + 𝜇𝛿𝑢𝑏) with

𝜆𝛿
𝑢𝑏

=
Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

, 𝜆𝛿
𝑙𝑏

= − Δ
𝑎,𝑏,𝑥𝑖
𝑙𝑏

Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

, −𝜇𝛿
𝑢𝑏

= 𝜇𝛿
𝑙𝑏

=
Δ
𝑎,𝑏,𝑥𝑖
𝑙𝑏

×Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

cases, 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ) − 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) behaves as a linear function and therefore our symbolic bounds are

exact. For the remaining 5 cases, we compute symbolic bounds for (𝑦𝑎𝑖 − 𝑦𝑏𝑖 ) overapproximating

the exact values based on the symbolic bounds of 𝑦𝑎𝑖 , 𝑦
𝑏
𝑖 , 𝑥

𝑎
𝑖 and 𝑥𝑏𝑖 . We also consider 3 separate

cases depicted in Table 3 (and in Fig 4) based on concrete bounds of (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ) where 𝛿
𝑎,𝑏,≤
𝑦𝑖 and

𝛿
𝑎,𝑏,≥
𝑦𝑖 are linear function of 𝛿

𝑎,𝑏
𝑥𝑖 = (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ). The cases described above are not mutually exclusive,

resulting in multiple symbolic bound choices for (𝑦𝑎𝑖 − 𝑦𝑏𝑖 ). However, in DiffPoly, we only allow

a single symbolic upper bound and a lower bound for (𝑦𝑎𝑖 − 𝑦𝑏𝑖 ). To resolve this, as described in

Section 3, we greedily select the symbolic bounds that yield more precise concrete bounds based on

concrete substitution (see Eq. 7). For example, consider the case specified by (𝑥𝑎,𝑖± ∧ 𝑥𝑏,𝑖± ∧ 𝛿+) there
are two choices for 𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝑦

𝑎,≥
𝑖
− 𝑦𝑏,≤

𝑖
and 𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝛿

𝑎,𝑏
𝑥𝑖 . Let, 𝑆𝑐 (𝑦

𝑎,≥
𝑖
− 𝑦𝑏,≤

𝑖
) and 𝑆𝑐 (𝛿𝑎,𝑏𝑥𝑖 ) be their

respective concrete upper bounds. Then we pick 𝛿
𝑎,𝑏,≥
𝑦𝑖 = 𝑦

𝑎,≥
𝑖
− 𝑦𝑏,≤

𝑖
if 𝑆𝑐 (𝑦𝑎,≥𝑖

− 𝑦𝑏,≤
𝑖
) < 𝑆𝑐 (𝛿𝑎,𝑏𝑥𝑖 )

otherwise select 𝛿
𝑎,𝑏,≥
𝑦𝑖 = 𝛿

𝑎,𝑏
𝑥𝑖 . Next, we discuss symbolic bound computation for 𝑦𝑎𝑖 and 𝑦𝑏𝑖 .

Symbolic bounds for 𝑦𝑎𝑖 and 𝑦𝑏𝑖 . For cases 𝑥
𝑎,𝑖
− and 𝑥

𝑎,𝑖
+ where the 𝑅𝑒𝐿𝑈 behaves like a linear

function, the symbolic bounds for 𝑦𝑎𝑖 can be directly expressed as a linear function of 𝑥𝑎𝑖 . However,

for the case, 𝑥
𝑎,𝑖
± the 𝑅𝑒𝐿𝑈 function is no longer linear and we apply the linear relaxation [69, 92]

to obtain the symbolic bounds of 𝑦𝑎𝑖 using the concrete bounds 𝑙𝑎,𝑥𝑖 and 𝑢𝑎,𝑥𝑖 . The details are in the

Appendix (Fig. 13). Bounds for 𝑦𝑏𝑖 are derived similarly.

Concrete bounds for 𝑦𝑎𝑖 , 𝑦𝑏𝑖 .We get concrete bounds for 𝑦𝑎𝑖 , 𝑦𝑏𝑖 from the product DNN execution.
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Concrete bounds for (𝑦𝑎𝑖 − 𝑦𝑏𝑖 ). For (𝑦𝑎𝑖 − 𝑦𝑏𝑖 ), we find concrete bounds using back-substitution.
Each back-substitution step recursively applies symbolic substitution (Eq. 6) followed by concrete

substitution (Eq. 7) to generate a set of possible candidates for concrete bounds and picks the most

precise one. We provide a pseudo-code of the back-substitution algorithm in Appendix E. For any

variable 𝛿 , its symbolic upper bound 𝛿≥ = 𝑣0+
∑

𝑖 𝑤𝑖 ·𝑣𝑖 and symbolic lower bound 𝛿≤ = 𝑣0+
∑

𝑖 𝑤𝑖 ·𝑣𝑖 ,
the symbolic substitutions 𝑆𝑠 (𝛿≥), 𝑆𝑠 (𝛿≤) and concrete substitutions 𝑆𝑐 (𝛿≥), 𝑆𝑐 (𝛿≤) are shown
below. Here, 𝑣0, 𝑣0 ∈ R and 𝑣𝑖

≥, 𝑣𝑖
≤
, 𝑣𝑖
≥, 𝑣𝑖 ≤ are symbolic bounds of variables, 𝑣𝑖

𝑙𝑏, 𝑣𝑖
𝑢𝑏
, 𝑣𝑖

𝑙𝑏, 𝑣𝑖
𝑢𝑏

are the respective concrete bounds and 𝑤𝑖
+
= max(0,𝑤𝑖 ), 𝑤𝑖

−
= min(0,𝑤𝑖 ), 𝑤𝑖

+
= max(0,𝑤𝑖 ),

𝑤𝑖
− = min(0,𝑤𝑖 ). Note, both symbolic and concrete substitutions for upper and lower bounds

satisfy that (𝑆𝑠 (𝛿≥) ≥ 𝛿) ∧ (𝑆𝑐 (𝛿≥) ≥ 𝛿) and (𝑆𝑠 (𝛿≤) ≤ 𝛿) ∧ (𝑆𝑐 (𝛿≤) ≤ 𝛿).
𝑆𝑠 (𝛿≥ ) = 𝑣0 +

∑︁
𝑖

𝑤𝑖
+ · 𝑣𝑖 ≥ +

∑︁
𝑖

𝑤𝑖
− · 𝑣𝑖 ≤ 𝑆𝑠 (𝛿≤ ) = 𝑣0 +

∑︁
𝑖

𝑤𝑖
+
· 𝑣𝑖 ≤ +

∑︁
𝑖

𝑤𝑖
−
· 𝑣𝑖 ≥ (6)

𝑆𝑐 (𝛿≥ ) = 𝑣0 +
∑︁
𝑖

𝑤𝑖
+ · 𝑣𝑖𝑢𝑏 +

∑︁
𝑖

𝑤𝑖
− · 𝑣𝑖 𝑙𝑏 𝑆𝑐 (𝛿≤ ) = 𝑣0 +

∑︁
𝑖

𝑤𝑖
+
· 𝑣𝑖 𝑙𝑏 +

∑︁
𝑖

𝑤𝑖
−
· 𝑣𝑖𝑢𝑏 (7)

4.3 DiffPoly Abstract Transformer For Differentiable Activations

For any differentiable function 𝑔 : R→ R, we define 𝑇 ♯
𝑔 : A2𝑖 → A2𝑖+2 as the abstract transformer

for the assignments 𝑦𝑎𝑖 ← 𝑔(𝑥𝑎𝑖 ) and 𝑦𝑏𝑖 ← 𝑔(𝑥𝑏𝑖 ). Both Sigmoid and Tanh, being differentiable

everywhere, can be modeled via 𝑔. We use the lower bound and the upper bound on the derivative

of 𝑔 to compute the symbolic bounds of (𝑦𝑎𝑖 − 𝑦𝑏𝑖 ). The concrete bounds of 𝑦𝑎𝑖 and 𝑦𝑏𝑖 are obtained

from product DNN analysis while concrete bounds of (𝑦𝑎𝑖 −𝑦𝑏𝑖 ) are calculated by back-substitution.

Symbolic bounds computation: Let, 𝑙𝑔′ and 𝑢𝑔′ be the lower and upper bound of 𝑔′ (𝑥) over
the range 𝑥 ∈ [𝑙, 𝑢] where 𝑙 = min(𝑙𝑎,𝑥𝑖 , 𝑙𝑏,𝑥𝑖 ) and 𝑢 = max(𝑢𝑎,𝑥𝑖 , 𝑢𝑏,𝑥𝑖 ). We consider three cases

from the 3rd row of Table 1 and show the symbolic bounds of (𝑦𝑎𝑖 − 𝑦𝑏𝑖 ) for all three cases in

Table 4 (also depicted in Appendix Fig. 14). This formulation holds for any differentiable function 𝑔

provided 𝑙𝑔′ and 𝑢𝑔′ are easy to compute. For Sigmoid and Tanh, the derivative 𝑔′ (𝑥) has a closed
form, and 𝑔′ (𝑥) is maximum at 𝑥 = 0 and decreases as 𝑥 increases (or, decreases). So, 𝑙𝑔′ and 𝑢𝑔′

computation only takes constant time given values of 𝑙 and𝑢. For𝑦𝑎𝑖 and𝑦
𝑏
𝑖 , we use concrete bounds

- 𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖 , 𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖 and apply the linear relaxation from [92], which also extends to differentiable

functions with a closed form of the differential.

Table 4. Computation of the symbolic bounds for (𝑦𝑎
𝑖
− 𝑦𝑏

𝑖
) based on cases for (𝑥𝑎

𝑖
− 𝑥𝑏

𝑖
).

Case Symbolic bounds 𝛿
𝑎,𝑏,≤
𝑦𝑖 and 𝛿

𝑎,𝑏,≥
𝑦𝑖 for any differentiable activation 𝑔

𝛿𝑖+ (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝑙𝑔′ · 𝛿𝑎,𝑏𝑥𝑖 ) ∧ (𝛿
𝑎,𝑏,≥
𝑦𝑖 = 𝑢𝑔′ · 𝛿𝑎,𝑏𝑥𝑖 )

𝛿𝑖− (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝑢𝑔′ · 𝛿𝑎,𝑏𝑥𝑖 ) ∧ (𝛿
𝑎,𝑏,≥
𝑦𝑖 = 𝑙𝑔′ · 𝛿𝑎,𝑏𝑥𝑖 )

𝛿𝑖± (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝜆𝛿
𝑙𝑏
· 𝛿𝑎,𝑏𝑥𝑖 + 𝜇𝛿𝑙𝑏) ∧ (𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝜆𝛿

𝑢𝑏
· 𝛿𝑎,𝑏𝑥𝑖 + 𝜇𝛿𝑢𝑏) with

𝑙𝑔′ = min

𝑥∈[𝑙,𝑢 ]
𝑔′ (𝑥) and 𝑢𝑔′ = max

𝑥∈[𝑙,𝑢 ]
𝑔′ (𝑥)

𝜆𝛿
𝑢𝑏

=
𝑢𝑔′×Δ

𝑎,𝑏,𝑥𝑖
𝑢𝑏

−𝑙𝑔′×Δ
𝑎,𝑏,𝑥𝑖
𝑙𝑏

Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

, 𝜆𝛿
𝑙𝑏
=

𝑙𝑔′×Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−𝑢𝑔′×Δ
𝑎,𝑏,𝑥𝑖
𝑙𝑏

Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

, −𝜇𝛿
𝑢𝑏

= 𝜇𝛿
𝑙𝑏

=
(𝑢𝑔′−𝑙𝑔′ )×Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

×Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

4.4 DiffPoly Affine Abstract Transformer

We describe the affine abstract transformer 𝑇
♯

𝐴
: A2𝑖 → A2𝑖+2 corresponding to the assignment

statements 𝑥𝑎𝑖+1 ← 𝑣 +∑𝑖
𝑗=1

𝑤 𝑗 · 𝑥𝑎𝑗 and 𝑥𝑏𝑖+1 ← 𝑣 +∑𝑖
𝑗=1

𝑤 𝑗 · 𝑥𝑏𝑗 where 𝑣 and all𝑤 𝑗 are real numbers.

In this case, the difference (𝑥𝑎𝑖+1−𝑥𝑏𝑖+1) can represented as (𝑥𝑎𝑖+1−𝑥𝑏𝑖+1) =
∑𝑖

𝑗=1
𝑤 𝑗 · (𝑥𝑎𝑗 −𝑥𝑏𝑗 ). Since for

affine assignments, 𝑥𝑎𝑖+1 (and 𝑥
𝑏
𝑖+1) is a linear function over 𝑥

𝑎
𝑗 s (and 𝑥

𝑏
𝑗 s), we can directly compute the
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linear constraints that represent the symbolic bounds. For 𝑎 ∈ A2𝑖 , let 𝑎
′ = [𝑎′

1
, . . . , 𝑎′𝑖+1] = 𝑇

♯

𝐴
(𝑎)

where 𝑎′ ∈ A2𝑖+2 and ∀𝑗 ∈ [𝑖] . (𝑎 𝑗 = 𝑎′𝑗 ). We show the symbolic bounds corresponding to 𝑎′𝑖+1 in

Eq. 8. The product DNN analysis provides the concrete bounds of 𝑥𝑎𝑖+1 and 𝑥
𝑏
𝑖+1 while Δ

𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

and

Δ𝑎,𝑏,𝑥𝑖+1
𝑢𝑏

are calculated by performing back-substitution on 𝛿
𝑎,𝑏,≤
𝑥𝑖+1 and 𝛿

𝑎,𝑏,≥
𝑥𝑖+1 respectively.

𝑥
𝑎,≤
𝑖+1 = 𝑥

𝑎,≥
𝑖+1 = 𝑣 +

𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑎𝑗 𝑥
𝑏,≤
𝑖+1 = 𝑥

𝑏,≥
𝑖+1 = 𝑣 +

𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑏𝑗 𝛿𝑎,𝑏,≤𝑥𝑖+1 = 𝛿𝑎,𝑏,≥𝑥𝑖+1 =

𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝛿𝑎,𝑏𝑥 𝑗
(8)

DiffPoly vs DeepPoly with transformer for the difference of activations: In Section 3.1.5, we

explain why the existing DeepPoly domain is not suited for difference-bound computation between

the outputs of a pair of DNN executions. It is natural to ask whether the precision improvement

in difference tracking achieved by DiffPoly can be replicated by just designing a new abstract

transformer for theDeepPoly domain handling the following assignments𝑦𝑎𝑖 ← 𝜎 (𝑥𝑎𝑖 ), 𝑦𝑏𝑖 ← 𝜎 (𝑥𝑏𝑖 )
and (𝑦𝑎𝑖 −𝑦𝑏𝑖 ) ← 𝜎 (𝑥𝑎𝑖 ) − 𝜎 (𝑥𝑏𝑖 ) where 𝜎 : R→ R is the non-linear activation function. In this case,

the DeepPoly domain lacks concrete, symbolic bounds on the difference (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ) and can only use

the concrete, symbolic bounds of the individual variables 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 . This results in imprecise concrete

bounds Δ
𝑎,𝑏,𝑦𝑖

𝑙𝑏
and Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
of (𝑦𝑎𝑖 − 𝑦𝑏𝑖 ) which in turn results in imprecise symbolic bounds (Table 3

and 4 uses the sign of the concrete bounds of difference for selecting the symbolic bounds). For

instance, in the illustrative example, the symbolic upper bound of (𝛿1,2
𝑥5
) with DeepPoly bounds

results in concrete upper bound Δ1,2,𝑥5

𝑢𝑏
= 20.625 while DiffPoly produces more precise concrete

upper bound Δ1,2,𝑥5

𝑢𝑏
= 6.0. Overall DiffPoly is more general and can precisely handle bivariate non-

linear functions such as 𝜎 (𝑥) −𝜎 (𝑦) with inputs 𝑥,𝑦 coming from two distinct copies of the network.

Furthermore, we demonstrate in Appendix G.5 that DiffPoly can be expanded to encompass any

linear combination of variables from 𝑘 executions. This makes DiffPoly the first domain capable of

computing precise bounds (both concrete and symbolic) of any linear combination of DNN outputs

at each layer coming from different related executions.

4.5 RaVeN’s Layerwise Constraint Formulation
In this section, we formally introduce RaVeN’s layerwise constraint formulation. Consider𝒜Δ =

[𝒜1

𝛿
, . . . ,𝒜𝜅

𝛿
]𝑇 , that stores the symbolic and concrete bounds computed by all 𝜅 DiffPoly analyses,

with𝒜
𝑗

𝛿
representing the bounds computed by the 𝑗-th analysis. RaVeN’s constraint formulation

algorithm takes as input 𝒜Δ, network 𝑁 : R𝑛0 → R𝑛𝑙
, and the input specification Φ and generates

a set of linear constraints for each layer. Let, L𝑖
represent the set of linear constraints over the

outputs of the 𝑖th layer, defining the convex region L𝑖
𝑡 ⊆ R𝑛𝑖×𝑘

. In this case, L𝑖
𝑡 contains all possible

outputs at 𝑖-th layer for all 𝑘 executions. We compute L𝑖
by adding linear constraints for all 𝑛𝑖

variables at the 𝑖-th layer for each pair of executions using the concrete and symbolic bounds from

the DiffPoly analysis for that pair. For instance, consider 𝑎 ∈ [𝑘] ∧𝑏 ∈ [𝑘] ∧ (𝑎 < 𝑏), which defines

a pair of executions. Here, [𝑥𝑎
1
, . . . , 𝑥𝑎𝑛𝑖 ] and [𝑥

𝑏
1
, . . . , 𝑥𝑏𝑛𝑖 ] represent variables at the 𝑖-th layer for

the pair of executions (𝑎, 𝑏). Then the linear constraints added for this pair of executions are as

follows where 𝑗 ∈ [𝑛𝑖 ] and the concrete and symbolic bounds are from the DiffPoly analysis which

in turn inherits the concrete bounds 𝑙𝑎,𝑥 𝑗
, 𝑢𝑎,𝑥 𝑗

, 𝑙𝑏,𝑥 𝑗
, 𝑢𝑏,𝑥 𝑗

from product DNN analysis:

𝑥
𝑎,≤
𝑗
≤ 𝑥𝑎𝑗 ≤ 𝑥

𝑎,≥
𝑗

𝑥
𝑏,≤
𝑗
≤ 𝑥𝑎𝑗 ≤ 𝑥

𝑏,≥
𝑗

𝛿𝑎,𝑏,≤𝑥 𝑗
≤ (𝑥𝑎𝑗 − 𝑥𝑏𝑗 ) ≤ 𝛿𝑎,𝑏,≥𝑥 𝑗

𝑙𝑎,𝑥 𝑗
≤ 𝑥𝑎𝑗 ≤ 𝑢𝑎,𝑥 𝑗

𝑙𝑏,𝑥 𝑗
≤ 𝑥𝑎𝑗 ≤ 𝑢𝑏,𝑥 𝑗

Δ
𝑎,𝑏,𝑥 𝑗

𝑙𝑏
≤ (𝑥𝑎𝑗 − 𝑥𝑏𝑗 ) ≤ Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
(9)

In Eq. 9, the third column illustrates the additional difference constraints added for a variable

pair, while the remaining constraints constitute RaVeN’s layerwise formulation, as elaborated in
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Section 3.2.2. Note that, as discussed earlier, in DiffPoly analysis, up to two valid symbolic lower or

upper bounds can be generated for each variable and their difference. For efficiency in concrete

bounds computation with back-substitution, DiffPoly restricts to a single symbolic lower and upper

bound. However, in the MILP formulation, all valid bounds are incorporated. The input specification

Φ, defined as a conjunction of linear constraints over the inputs, is directly encoded as a set of

linear constraints L0
at the input layer. The linear constraints for all 𝑙 layers are then generated by

aggregating layerwise constraints L𝑖
with input linear constraints L0

.

4.6 RaVeN MILP encoding
We provide the general encoding of Ψ as MILP objective for relational DNN specifications described

in Section 2.1. We add the MILP encoding of Ψ to the layerwise constraints from Section 4.5 to

formulate the MILP instance. Let 𝑌1, . . . , 𝑌𝑘 be the DNN’s output for 𝑘 executions, for all 𝑖 ∈ [𝑚]
and 𝑗 ∈ [𝑛], 𝑥𝑖, 𝑗 and 𝑧𝑖 be integer variables and for all 𝑖′ ∈ [𝑘], 𝐶𝑖, 𝑗,𝑖′ ∈ R𝑛𝑙

where𝑚 is the number

of clauses in Ψ and 𝑛 is number of literals in each clause (see Section 2.1). Then the MILP objective

is as follows

min

(𝑌1,...,𝑌𝑘 )

𝑚∑︁
𝑖=1

𝑧𝑖 s.t. 𝑥𝑖, 𝑗 = 𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘 ) =
(

𝑘∑︁
𝑖′=1

𝐶𝑇
𝑖,𝑗,𝑖′𝑌𝑖′ ≥ 0

)
; 𝑧𝑖 =

(
𝑛∑︁
𝑗=1

𝑥𝑖, 𝑗 ≥ 0

)
(10)

The proof of the correctness of the MILP formulation is in Appendix F.6. For the common properties

(e.g. UAP, targeted-UAP, worst-case hamming distance, etc.)𝑚 = 𝑘 , 𝑛 = 𝑛𝑙 and the MILP objective

introduces only 𝑘 × (𝑛𝑙 + 1) integer variables where 𝑛𝑙 is the output dimension of the DNN

(Appendix G.4). Hence irrespective of the size of the network, the number of integer variables

only depends on the number of executions 𝑘 and 𝑛𝑙 which is in general a small constant (i.e. 10

for commonly used MNIST and CIFAR10 networks). Since the number of integer variables is the

primary bottleneck of MILP optimization, RaVeN scales to large DNNs by only introducing a small

number of integer variables (𝑛𝑙 +1) per execution. This differs from the naive MILP which introduces

an integer variable at each activation and does not scale past even small networks containing a

few hundred neurons. Besides decreasing the count of integer variables, RaVeN efficiently infers

linear constraints for the MILP encoding that are sound while improving the precision of the over-

approximated convex region (illustrated in Figure 5 of the paper). This requires - (i) recognizing

that tracking the difference between the outputs of a pair of DNN executions helps in improving

precision while maintaining scalability, and (ii) designing and leveraging DiffPoly analysis on

(
𝑘
2

)
pairs of executions while computing provably correct constraints across multiple executions.

4.7 Soundness Proof Sketch of RaVeN
In this section, we outline the soundness proof for various components of RaVeN. Detailed proofs

are in Appendix F. We start with the soundness proofs of all DiffPoly transformers.

4.7.1 Soundness of DiffPoly ReLU tansformer. We first state the lemmas required to prove the

soundness of 𝑇
♯

𝑅
. Proofs of all cases shown in Fig. 4, Lemma 4.2, and 4.3 are in Appendix G.1.

Lemma 4.2. (Correctness of symbolic bounds in Table 2 and 3) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖 ], 𝑥𝑏𝑖 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖 ]
and 𝛿𝑎,𝑏𝑥𝑖 = (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ) ∈ [Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏
] and 𝛿𝑎,𝑏𝑦𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ) −𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) then 𝛿

𝑎,𝑏,≤
𝑦𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑦𝑖

where 𝛿𝑎,𝑏,≤𝑦𝑖 and 𝛿𝑎,𝑏,≥𝑦𝑖 defined in Table 2 and 3.

Lemma 4.3. (Correctness of concrete bounds computed by the ReLU transformer) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖 ],
𝑥𝑏𝑖 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖 ] and 𝛿

𝑎,𝑏
𝑥𝑖 = (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ) ∈ [Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏
], 𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ), 𝑦𝑏𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ), 𝛿

𝑎,𝑏
𝑦𝑖 =
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𝑦𝑎𝑖 − 𝑦𝑏𝑖 then 𝑙𝑎,𝑦𝑖 ≤ 𝑦𝑎𝑖 ≤ 𝑢𝑎,𝑦𝑖 , 𝑙𝑏,𝑦𝑖 ≤ 𝑦𝑏𝑖 ≤ 𝑢𝑏,𝑦𝑖 , and Δ
𝑎,𝑏,𝑦𝑖

𝑙𝑏
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
where Δ𝑎,𝑏,𝑦𝑖

𝑙𝑏
and

Δ
𝑎,𝑏,𝑦𝑖

𝑢𝑏
computed by applying back-substitution on 𝛿𝑎,𝑏,≤𝑦𝑖 and 𝛿𝑎,𝑏,≥𝑦𝑖 respectively.

The concrete transformer 𝑇𝑅 : ℘(R2𝑖 ) → ℘(R2𝑖+2) for the ReLU assignments 𝑦𝑎𝑖 ← 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ),
𝑦𝑏𝑖 ← 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) is defined as𝑇𝑅 (X) = {([𝑥𝑎1 , . . . , 𝑥𝑎𝑖 , 𝑦𝑎𝑖 ]𝑇 , [𝑥𝑏1 , . . . , 𝑥𝑏𝑖 , 𝑦𝑏𝑖 ]𝑇 ) | (𝑋𝑎, 𝑋𝑏) ∈ X}where
𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ), 𝑦𝑏𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ), X ⊆ R2𝑖

and 𝑋𝑎 = [𝑥𝑎
1
, . . . , 𝑥𝑎𝑖 ]𝑇 ∈ R𝑖

, 𝑋𝑏 = [𝑥𝑏
1
, . . . , 𝑥𝑏𝑖 ]𝑇 ∈ R𝑖

.

Theorem 4.4. (Soundness of DiffPoly Relu Transformer) For any abstract element 𝑎 ∈ A2𝑖

𝑇𝑅 (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯

𝑅
(𝑎)).

Proof. The proof is in Appendix F.1. □

4.7.2 Soundness of DiffPoly differentiable activation transformer. Proof of all the cases from Table. 4

are in Appendix G.2. Lemma F.1 proves the soundness of the symbolic bounds, while Lemma F.2

proves the soundness of concrete bounds. The comprehensive soundness proof for the DiffPoly’s

transformer for differentiable activations is in Appendix F.2.

4.7.3 Soundness of DiffPoly Affine transformer. Lemma F.4 proves the soundness of the symbolic

bounds corresponding to the DiffPoly affine transformer, while Lemma F.5 proves the soundness

of the corresponding concrete bounds. A comprehensive soundness proof for the DiffPoly affine

transformer is in Appendix F.3.

4.7.4 Soundness of product DNN analysis. We prove that the output region P ⊆ R𝑛𝑙×𝑘
obtained

by running existing DNN abstract interpreters e.g. [68] on each of 𝑘 copies of 𝑁 contains all

possible output w.r.t all 𝑘 executions on inputs satisfying Φ. Let, ∀𝑖 ∈ [𝑘] 𝜙𝑖
𝑖𝑛 : R𝑛0 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}

defines the 𝐿∞ input region 𝜙𝑖
𝑡 = ∥𝑋 − 𝑋 ∗𝑖 ∥∞ ≤ 𝜖 for each of 𝑘 executions. Existing DNN abstract

interpreters operate on these individual input regions 𝜙𝑖
𝑡 and compute the overapproximated output

region P𝑖 ⊆ R𝑛𝑙
that satisfies ∀𝑋 ∈ R𝑛0 .𝜙𝑖

𝑖𝑛 (𝑋 ) =⇒ (𝑁 (𝑋 ) ∈ P𝑖 ). The output region P ⊆ R𝑛𝑙×𝑘

is the cross-product of all 𝑘 output regions P =
>𝑘

𝑖=1
P𝑖 . Now, we show that P contains all possible

outputs of N𝑘 (𝑋 ) provided 𝑋 ∈ R𝑛0 × 𝑘 satisfies Φ.

Theorem 4.5. (Soundness of Product DNN analysis) ∀(𝑋1, . . . , 𝑋𝑘 ) ∈ R𝑛0×𝑘 .Φ((𝑋1, . . . , 𝑋𝑘 )) =⇒
(N𝑘 ((𝑋1, . . . , 𝑋𝑘 )) ∈ P).
Proof. The proof is in Appendix F.4. □

4.7.5 Soundness of RaVeN MILP formulation. We prove that for all layer 𝑖 ∈ [𝑙] the convex region
L𝑖

𝑡 ⊆ R𝑛𝑖×𝑘
defined by the linear constraints L𝑖

contain all possible outputs at 𝑖-th layer for all 𝑘

executions. For the input region, we show Φ𝑡 ⊆ L0

𝑡 .

Theorem 4.6. (Soundness of Linear constraints)Φ𝑡 ⊆ L0

𝑡 and∀𝑖 ∈ [𝑙] .∀𝑋1, . . . 𝑋𝑘 ∈ R𝑛0 .Φ(𝑋1, . . . , 𝑋𝑘 )
=⇒ (𝑁 𝑖 (𝑋1), . . . , 𝑁 𝑖 (𝑋𝑘 )) ∈ L𝑖

𝑡 where 𝑁
𝑖

: R𝑛0 → R𝑛𝑖 is the composition of first 𝑖 layers of the
network 𝑁 , 𝑁 𝑖 = 𝑁1 ◦ · · · ◦ 𝑁𝑖 .

Proof. The proof is in Appendix F.5. □

4.8 Asymptotic Runtime Analysis
First, we describe the runtime analysis of DiffPoly. Let the original DNN have 𝑛 neurons. Symbolic

bound computations for each variable pair < 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 > at worst take 𝑂 (𝑛) time. Overall, the worst-

case complexity for symbolic bound computation for all variable pairs is𝑂 (𝑛2). The back-substitution
algorithm used for computing concrete bounds in the worst case explores 𝑂 (𝑛) symbolic bounds

before terminating. Obtaining the concrete bounds by substituting concrete values for all variables

in each symbolic bound takes𝑂 (𝑛) time. The worst-case runtime for obtaining concrete bounds for
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each variable pair is 𝑂 (𝑛2) and the asymptotic runtime of a single DiffPoly analysis is 𝑂 (𝑛3). Since
we consider

(
𝑘
2

)
pairs of executions the total cost of DiffPoly analysis is 𝑂 (𝑘2 · 𝑛3). For product

DNN analysis we use an existing DNN abstract interpreter for each of 𝑘 copies of the original

network 𝑁 . We assume analyzing each copy of 𝑁 takes 𝐶𝑁 time. So analyzing the product DNN

takes 𝑘 · 𝐶𝑁 time. For the MILP formulation, we add in the worst-case 𝑂 (𝑘) of constraints per
variable and the product DNN contains 𝑂 (𝑘 · 𝑛) variables. Then the total size of the MILP in terms

of the number of linear constraints is 𝑂 (𝑘2 · 𝑛). Since we formulate the MILP using the constraints

obtained from the DiffPoly analysis, in the worst case, MILP formulation takes 𝑂 (𝑘2 · 𝑛3). Suppose
it takes 𝐶M worst case time to optimize the MILP, then worst case time complexity of RaVeN is

𝑂 (𝑘2 · 𝑛3) + 𝑘 ·𝐶𝑁 +𝐶M . Note, 𝐶M depends on the MILP encoding of Ψ which is the only source

of integer variables in RaVeN’s formulation.

5 EVALUATION
We evaluate the effectiveness of RaVeN on a wide range of relational properties and a diverse set of

neural networks and datasets. We consider the following relational properties: UAP, targeted UAP,

hamming distance, and monotonicity as formally defined in Appendix A.3. For UAP and Hamming

Distance properties, we compare our method to the existing baselines highlighted above in Section

3. The first baseline we consider is individual verification (see Section 3.2.1) which is work by

Khedr and Shoukry [40]. The second baseline is an instantiation of the work done by Zeng et al.

[88] with state-of-the-art non-relational verifiers DeepZ [68] and DeepPoly [69] which we call I/O

Formulation (see Section 3.2.1). For these properties, our experimental results indicate that RaVeN

is always more precise than existing methods and can verify significantly more properties. For

monotonicity, we compare our methods to two existing baselines Liu et al. [48] and Pasado [44].

5.1 Experimental Setup
Datasets. For UAP based experiments, we use the popular MNIST [45] and CIFAR10 [42] image

datasets. We also use MNIST for the Hamming distance experiments. For our monotonicity exper-

iments, we use the Boston Housing (BH) dataset [37] and the Adult dataset [8]. The BH dataset

contains 12 housing attributes such as age, tax, rooms, etc. and the target is housing price. The

Adult dataset contains 87 features such as age, education, marital status, etc.

Neural Networks. Table 5 shows the MNIST, CIFAR10, BH, and Adult neural network archi-

tectures used in our experiments. We use standard network architectures (Convolutional and

Fully-connected) commonly seen in other neural network verification works [68, 69]. We consider

networks trained with standard training, DiffAI [53], CROWN-IBP [90], projected gradient descent

(PGD) [50], and a monotonicity training scheme [34].

Non-relational verifier. We instantiate both RaVeN and I/O Formulation with either DeepPoly

or DeepZ. Although RaVeN works with other non-relational verifiers including SOTA "Branch

and Bound" based verifiers like 𝛼, 𝛽-CROWN [79] and MNBaB [28]. We use DeepPoly or DeepZ

because they are fast and widely used for initializing complete verifiers. For example, 𝛼, 𝛽-CROWN

uses CROWN (equivalent to DeepPoly). We also compare RaVeN’s performance with 𝛼, 𝛽-CROWN

and MNBaB in Section 5.6.

Implementation Details. We implemented our method in Python with Pytorch V1.11 and Gurobi

V10.0.3 as an off-the-shelf MILP solver. Our MNIST experiments were performed on an Intel(R)

Core(TM) i7-12800HX@ 4.80 GHz with 16 GB of memory and the remainder of our experiments on

an Intel(R) Core(TM) i9-9900KS CPU@ 4.00GHz with 64 GB of memory. Unless otherwise specified,

we use DeepZ [68] to perform bound analysis on the product DNN and use the same verifier for

the baselines. We use Gurobi with a timeout of 5 minutes to solve MILP problems.
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Table 5. Network Information and Runtime (s) averaged over 𝜖 values considered in this paper

Dataset Model Type Train # Layers # Params Ind. Veri. I/O Form. RaVeN MILP time

MNIST IBP-Small Conv IBP 7 60k 0.04 0.12 1.98 1.01

ConvSmall Conv DiffAI 7 80k 0.30 0.39 7.40 4.06

IBP Conv IBP 9 400k 0.42 0.46 19.33 7.79

ConvBig Conv DiffAI 13 1.8M 6.46 6.50 23.19 16.61

Hamming FC PGD 3 39k 0.04 0.14 2.21 2.02

CIFAR10 IBP-Small Conv IBP 7 60k 0.29 0.47 8.39 5.03

ConvSmall Conv DiffAI 7 80k 0.44 0.57 12.59 6.61

IBP Conv IBP 9 2.2M 36.44 36.56 200.16 161.66

ConvBig Conv DiffAI 13 2.5 M 16.19 16.29 185.05 161.63

Dataset Model Type Train # Layers # Params Liu et al. Pasado RaVeN DiffPoly

BH 12x1 FC Mono 3 312 0.25 × - 0.02

Adult 10 x 10 FC Standard 5 980 × 36.70 4.23 0.87

5.2 Relational Properties
The formal definitions for UAP, targeted UAP, and hamming distance given in Appendix A.3 involve

verifying that there does not exist an attack that can change all DNN predictions on a given input

set by perturbing all the inputs with a single perturbation. While RaVeN can handle this problem,

it is pessimistic and perturbations of this nature, although dangerous, rarely occur in reality.

Instead, we bound the worst-case accuracy of the neural network under a UAP attack. Formally,

we report 𝑎 the verified worst-case accuracy which is a lower bound (as RaVeN is incomplete) on

𝑎∗, the true worst-case accuracy. For network 𝑁 and inputs 𝑋1, . . . 𝑋𝑘 where ∀𝑣 ∈ R𝑛0
s.t. | |𝑣 | |𝑝 ≤

𝜖. 1

𝑘

∑𝑘
𝑖=1
(𝑁 (𝑋𝑖 + 𝑣) = 𝑌𝑖 ) ≥ 𝑎 and 𝑌𝑖 is the correct label of 𝑋𝑖 . Note that a result is better if it more

tightly approximates 𝑎∗ in this case since all presented methods are sound the best result is the one

with the greatest value. For hamming distance, we perform a similar relaxation upper bounding the

true worst case hamming distance. Thus, for hamming distance, smaller is better. For monotonicity,

we are given a set of monotonic features and report the percentage of those features we can verify.

For monotonicity, larger is better.

5.3 Universal Adversarial Perturbation Verification
We compare the performance of RaVeN vs the two baselines for worst-case accuracy under UAP

attack on the MNIST and CIFAR10 networks. For each experiment, we verify a batch of 5 images.

We repeat 20 times on randomly selected images, reporting the average worst-case accuracy. We

use the standard 𝜖 values used in the literature [68, 69]. We additionally analyze RaVeN vs. baselines

on the targeted UAP verification problem in Appendix H.1.

(a) IBP-Small (b) ConvSmall (c) IBP (d) ConvBig
Fig. 6. Average worst case UAP accuracy for convolutional networks trained on CIFAR10

5.3.1 Comparison on CIFAR10 networks. Figure 6 compares the worst-case accuracy (%) on the

CIFAR10 dataset with a variety of training methods (Crown-IBP, DiffAI) and network architectures
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(IBP-Small, ConvSmall, IBP, ConvBig).We observe that RaVeN outperforms all baselines significantly

for all networks, training methods, and 𝜖s. For example, we see that for IBP-Small trained with

Crown-IBP that RaVeN obtains at least 25% higher average worst case accuracy verified when

compared to baselines on all 𝜖s and a maximum of 38% higher accuracy at 𝜖 = 4.5. On the same

network, I/O Formulation, the SOTA UAP verification method, obtains at most 1% higher than the

Individual baseline. For the IBP-Small network, even when the baselines achieve close to 0% at

𝜖 = 8/255 RaVeN still obtains 37% accuracy. We observe similar results on the other networks.

(a) IBP-Small (b) ConvSmall (c) IBP (d) ConvBig
Fig. 7. Average Worst case UAP accuracy for convolutional networks trained on MNIST

5.3.2 Comparison on MNIST Networks. Figure 7 shows similar results to CIFAR10 with the same

diverse range of networks and training methods. Particularly, we observe that for IBP-Small RaVeN

verifies an additional 53% accuracy when compared to baselines at 𝜖 = 0.15. We observe that as 𝜖

grows RaVeN’s relative benefit is greater, this is especially clear when for IBP (Figure 7 c).

5.3.3 Runtime Analysis. Table 5 shows the average runtime in seconds for each method.We observe

that RaVeN time > I/O Formulation time > Independent Verification time. We note that even with

more time the baseline approaches would not achieve any better results as they are limited and

can not get more precise. Note that a majority of the time for RaVeN is taken by the MILP solver

as seen in Table 5. As RaVeN is the first tool to show that cross-execution information aids in

relational verification we believe runtime can be improved with future research. We also note that

our timings are comparable to the timeouts given in the SOTA competition for verification of NNs

(VNN-Comp [12]) (216 seconds per instance) even though we are verifying sets of 5 images.

(a) ReLU (b) Sigmoid (c) Tanh
Fig. 8. Average Worst Case Hamming Distance with different activation functions (smaller is better)

5.4 Hamming Distance Verification
We use MNIST as the base dataset and train a 3-layer fully connected network with 200 neurons in

the hidden layers. We use a range of activation functions (ReLU, Tanh, Sigmoid). The network is

adversarially trained with PGD to identify between classes 0 and 1. In this experiment, DeepPoly is

used to instantiate both the baselines and RaVeN. Figure 8 shows the worst case hamming distance

for strings of length 20 for different activation functions and 𝜖 values. For all 𝜖 values and string

lengths, RaVeN outperforms both baselines, e.g. at 𝜖 = 0.3 for Tanh the baselines obtain 20 and

19.85 while RaVeN obtains 15. We especially see that for Sigmoid and Tanh activations the baselines

perform identically while RaVeN significantly outperforms both of them.
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5.5 Monotonicity Verification

Fig. 9. Average % of Verified Monotonic Fea-
tures on Adult Dataset

We verify the monotonicity of networks with both

Tanh and ReLU activations trained on the Adult [8]

and BH [37] datasets respectively. We compare our

methods against the SOTA monotonicity verifier for

Tanh networks, Pasado [44] using the Adult dataset

with 5 monotonic features (same features as previous

works [44, 66]). Monotonicity can be verified directly

by DiffPoly without the need for any MILP formulation.

For incomplete verifiers such as RaVeN, imprecisions

accumulate during the analysis. By splitting the input

region and verifying each region separately we can get

a sound analysis which is sometimes more precise than

the original analysis with some additional computation cost. Input splitting is a common tool

used in other verification papers as a way to increase precision [38]. We use input splitting for

monotonicity for two reasons: 1. the monotonic input specification only has one dimension of

variation and is thus easy to split, and 2. DiffPoly/RaVeN verifies monotonicity very quickly in

comparison to SOTA methods so we can split to gain precision while still having faster runtime.

For both RaVeN and DiffPoly we split the input region 10 times before verifying. Figure 9 shows

the results of RaVeN and DiffPoly compared to Pasado and its baselines (Zonotope, Interval). For

small 𝜖 Pasado slightly outperforms RaVeN (92% vs 94%); however, as 𝜖 grows the benefit of RaVeN

becomes clear (66% vs 2% at 𝜖 = 4). We observe that DiffPoly alone can perform on par with Pasado

while running significantly faster (0.87s vs 36.7s, while RaVeN sits in the middle at 4.23s). For

ReLU networks we compare against Liu et al. [48] as Pasado is unable to handle ReLU (Liu et al.

[48] only handles ReLU). We verify a single feature on the Boston Housing dataset over the 98

test images. Liu et al. [48] can verify all 98 inputs for monotonicity for each 𝜖 = [10, 20, 30]. On
the other hand, DiffPoly is able to verify [96, 95, 95] inputs for 𝜖 = [10, 20, 30], but we note that
DiffPoly is significantly faster (0.02s vs 0.25s). We observe that DiffPoly and RaVeN are powerful

monotonicity verifiers that can handle a wider range of networks/activation functions than both

baselines achieving good results in significantly less time.

5.6 Ablation Studies
In this section, we show an ablation study comparing RaVeN to stronger individual verifiers: MNBaB

[28] and 𝛼, 𝛽-CROWN [79]. We further show an ablation study on the benefits of adding difference

constraints compared to only adding the layerwise formulation. In Appendix H.2, we show RaVeN

performs well compared to baselines when all of them use DeepPoly [69] instead of DeepZ [68].

(a) IBP-Small (CIFAR) (b) Hamming (ReLU) (c) Hamming (Sigmoid) (d) Hamming (Tanh)

Fig. 10. Comparison of RaVeN against MNBaB and 𝛼, 𝛽-CROWN

5.6.1 Comparison to MNBaB and 𝛼, 𝛽-CROWN. MNBaB [28] and 𝛼, 𝛽-CROWN [79] use branching

to obtain better precision at the cost of runtime. Although both MNBaB and 𝛼, 𝛽-CROWN are
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complete for non-relational properties for DNNs with piece-wise linear activations such as ReLU,

they are imprecise for relational verification as they do not take the cross-execution constraints

into account. Furthermore, both MNBaB and 𝛼, 𝛽-CROWN cannot verify monotonicity, whereas

both DiffPoly and RaVeN can handle monotonicity. We instantiate MNBaB and 𝛼, 𝛽-CROWN with

a 2-minute timeout per individual input. Note that although RaVeN is given a timeout of 5 minutes

for MILP solving, for individual verifiers to perform UAP verification they must individually verify

each input in the batch giving MNBaB and 𝛼, 𝛽-CROWN a total of 10 and 40 minutes for UAP and

hamming distance verification respectively. Figure 10 compares RaVeN to MNBaB and 𝛼, 𝛽-CROWN

on UAP verification for IBP-Small on CIFAR10 and for hamming distance verification on MNIST

with different activations. Note that MNBaB does not currently support Sigmoid or Tanh activations.

Similar to the above experiments, we instantiate RaVeN with DeepZ for IBP-Small and DeepPoly

for hamming distance networks. We observe that RaVeN consistently performs better than MNBaB

and 𝛼, 𝛽-CROWN (except for the hamming distance network with sigmoid activations for small

𝜖s). For example, for hamming distance with ReLU activations at 𝜖 = 0.25, RaVeN can verify an

average worst-case hamming distance of 10 while MNBaB and 𝛼, 𝛽-CROWN only obtain 18 and

18.5 respectively. For IBP-Small on CIFAR10 at 𝜖 = 8/255, RaVeN can verify a worst-case UAP

accuracy of 37% while MNBaB and 𝛼, 𝛽-CROWN only obtain 25% and 16% respectively.

In Table 6, we show a runtime comparison between RaVeN, MNBaB, and 𝛼, 𝛽-CROWN on

the same networks as Figure 10. We observe that RaVeN takes less time than MNBaB and 𝛼, 𝛽-

CROWN in all instances. Note that for Sigmoid and Tanh activations, 𝛼, 𝛽-CROWN is equivalent

to 𝛼-CROWN [87] which does not support branching resulting in lower runtimes. In all instances,

MNBaB and 𝛼, 𝛽-CROWN take significantly more time (> 37.7× more time for hamming distance

with ReLU activations).

Table 6. Runtime Comparison (in secs) between RaVeN, MNBaB, and 𝛼, 𝛽-CROWN

Dataset Model Activation RaVeN MNBaB 𝛼, 𝛽-CROWN

MNIST Hamming ReLU 4.92 209.38 185.91

Hamming Sigmoid 1.15 × 3.05

Hamming Tanh 2.37 × 5.77

CIFAR10 IBP-Small ReLU 8.39 23.13 39.92

Adult 10 × 10 Tanh 4.23 × ×

5.6.2 Benefits of Difference Constraints. Figure 11 shows the benefits of adding difference con-

straints. In each example, RaVeN with difference constraints outperforms RaVeN layerwise without

difference constraints. For example, for IBP-Small on CIFAR10 we see at 𝜖 = 8 adding difference

constraints increases the accuracy bound from 15% to 37%. The benefit of difference constraints is

especially highlighted in the hamming distance example (d) as only by adding difference constraints

is RaVeN able to outperform the baseline methods. A runtime comparison between RaVeN layerwise

and RaVeN with difference constraints can be found in Appendix H.3.

6 RELATEDWORK
DNN verifiers. Prior works in DNN verification [1] primarily focus on proving whether a DNN

satisfies 𝐿∞ robustness [69, 80] property. In this case, existing DNN verifiers show that all inputs

inside a given 𝐿∞ region [16] are properly classified. The DNN verifiers are broadly categorized into

three main categories - (i) sound but incomplete verifiers which may not always prove property

even if it holds [31, 63, 67–69, 86, 87], (ii) complete verifiers that can always prove the property

if it holds [5, 13, 14, 25, 28, 30, 64, 71, 78, 79, 91] and (iii) verifiers with probabilistic guarantees
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(a) IBP-Small (MNIST) (b) ConvSmall (MNIST) (c) IBP-Small (CIFAR10) (d) Hamming (Sigmoid)

Fig. 11. Comparison of RaVeN with difference constraints with RaVeN with only layerwise formulation.

[19]. However, all of these verifiers verify properties defined over single DNN execution and are

ineffective for verifying interesting relational properties [17] such as UAP verification [88] and

monotonicity [74] defined over multiple DNN executions.

DNN relational verifiers. Existing DNN relational verifiers can be grouped into two main cat-

egories - (i) verifiers for relational properties (UAP, monotonicity, etc.) defined over multiple

executions of the same DNN, [40, 88], (ii) verifiers for relational properties (local DNN equivalence

[58]) defined over multiple executions of different DNN on the same input [58, 59]. For relational

properties defined over multiple executions of the same DNN the existing verifiers [40] reduce

the verification problem into 𝐿∞ robustness problem by constructing product DNN with multiple

copies of the same DNN. However, the relational verifier in [40] treats all 𝑘 executions of the DNN

as independent and loses precision. The state-of-the-art DNN relational verifier [88] although

tracks the relationship between inputs used in multiple executions at the input layer, does not track

the relationship between the inputs fed to the subsequent hidden layers and can only achieve a

marginal improvement over the baseline verifiers that treat all executions independently. ITNE

[81] is a verifier for global robustness based on difference tracking. Global robustness measures

the largest change to the output of a single class over the entire dataset (local robustness lifted to

the dataset) whereas the UAP property considered in this work focuses on the number of points a

single perturbation can cause to misclassify over a set of inputs which can be from different classes.

Furthermore, RaVeN is more precise (Eq. 6 in [81] is covered by Table 2, RaVeN gains precision by

also considering the constraints in Table 3) and handles more activations than ITNE.

Relational verification of programs. Compared to DNNs, significantly more work exist for

verifying different relational properties, such as information flow security, determinism, etc. on

programs [7, 9, 11, 15, 18, 26, 27, 29, 41, 65, 73, 77]. Standard programs and DNNs have different

computational structure. For example, programs have loops while DNNs have a large number of

non-linear activations. These structural differences create specific challenges for the relational

verification of DNNs not seen for programs and vice-versa.

7 CONCLUSION
In this work, we developed a new framework called RaVeN to verify the relational properties of

DNNs based on our novel approach of difference tracking with the DiffPoly abstract domain. We run

extensive experiments on multiple relational properties including UAP verification, monotonicity,

etc., and show that RaVeN outperforms the state-of-the-art relational verifier [88] on all of them.

We have primarily considered relational properties defined over multiple executions of the same

DNN, however, RaVeN can be extended to relational properties involving two or more different

DNNs - local equivalence of pair of DNNs [58], properties defined over an ensemble of DNNs, etc.

RaVeN can also be integrated inside the training loop to obtain more trustworthy and safe neural

networks. We leave this as future work. Also, the current implementation of RaVeN is sequential

but as stated above certain steps like the product DNN analysis and pairwise difference computation

with DiffPoly can be parallelized to reduce the verification cost.
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A ADDITIONAL BACKGROUND
A.1 Adversarial Perturbations
An adversarial perturbation, 𝑣 , added to an input, 𝑥 , it is attacking is an adversarial example, 𝑥 ′ = 𝑥+𝑣 .
Additionally, 𝑥 ′ is only adversarial if it causes the target model to misclassify, in other words, if

𝑓 (𝑥) = 𝑦 then 𝑓 (𝑥 ′) ≠ 𝑦. It is typically assumed that these perturbations are small so as they do

not effect the semantic context of the image (a human would still correctly classify the adversarial

example). The most common bound is an 𝐿𝑝 bound, i.e ∥𝑋 ∥𝑝 ≤ 𝜖 .

In the case where standard adversarial perturbations are not feasible, verification against universal

adversarial perturbations (UAPs) is desirable. A UAP consists of a single perturbation 𝑢 which is

adversarial for many inputs. We will start by formally defining strong UAPs.

A.2 Universal Adversarial Perturbations
An universal adversarial perturbation (UAP), 𝑢, added to an input, 𝑥 , causes the target model

to misclassify on a set of inputs 𝑋1, . . . 𝑋𝑘 , in other words, if ∀𝑖 ∈ [𝑘] .𝑓 (𝑋𝑖 ) = 𝑦𝑖 then ∀𝑖 ∈
[𝑘] .𝑓 (𝑋𝑖 + 𝑢) ≠ 𝑦𝑖 . Formally,

Definition A.1. A universal adversarial perturbation is a vector u ∈ R𝑑
which, when added to all

datapoints in 𝜇 causes the classifier 𝑓 to misclassify. Formally, given 𝛾 , a bound on universal ASR,

and 𝑙𝑝 -norm with corresponding bound 𝜖 , u is a UAP iff ∀𝑥,𝑦 ∈ 𝜇𝑓 (𝑥) ≠ 𝑦 and | |u| |𝑝 < 𝜖 .

A.3 UAP verification
Definition A.2 (UAP Verification Problem). Given points 𝑋 ∗ = 𝑋 ∗

1
, ..., 𝑋 ∗

𝑘
∈ R𝑛0

and 𝜖 ∈ R we can

first define individual input constraints ∀𝑖 ∈ [𝑘] .𝜙𝑖
𝑖𝑛 = ∥𝑋 ∗𝑖 − 𝑋𝑖 ∥∞ ≤ 𝜖 . We define Φ𝛿

as follows:

Φ𝛿 (𝑋1, . . . , 𝑋𝑘 ) =
∧

(𝑖, 𝑗∈[𝑘 ] )∧(𝑖< 𝑗 )
(𝑋𝑖 − 𝑋 𝑗 = 𝑋 ∗𝑖 − 𝑋 ∗𝑗 ) (11)

Then, we have Φ =
∧𝑘

𝑖=1
𝜙𝑖
𝑖𝑛 ∧ Φ𝛿

. Next, we define Ψ as conjunction of 𝑘 × 𝑛𝑙 clauses where
∀𝑎 ∈ [𝑘],∀𝑏 ∈ [𝑛𝑙 ] the clause𝜓𝑎,𝑏 is defined as𝜓𝑎,𝑏 = (𝐶𝑇

𝑎,𝑏
𝑌𝑎 ≥ 0) and 𝐶𝑎,𝑏 ∈ R𝑛𝑙

is given below

∀𝑖 ∈ [𝑛𝑙 ] .𝑐𝑎,𝑏,𝑖 =


1 if 𝑖 ≠ 𝑏 and 𝑖 is the correct label for 𝑌𝑎

−1 if 𝑖 = 𝑏 and 𝑖 is not the correct label for 𝑌𝑎

0 otherwise

(12)

A.4 Targeted UAP verification
Unlike the unrestricted UAP attack above, in targeted UAP, the attacker tries to make the DNN

misclassify inputs to a given class. Here we check whether all inputs can be classified as a target

class 𝑡 by adding the same perturbation to each input. The formal definition of the targeted UAP

verification problem is in .

Definition A.3 (Targeted UAP Verification Problem). Given points 𝑋 ∗ = 𝑋 ∗
1
, . . . , 𝑋 ∗

𝑘
∈ R𝑛0

, 𝜖 ∈ R,
and target label 𝑡 , the targeted UAP verification problem has the same input specification as the

UAP verification problem, seen in Definition A.2. Next, we define Ψ as conjunction of 𝑘 ×𝑛𝑙 clauses
where ∀𝑎 ∈ [𝑘],∀𝑏 ∈ [𝑛𝑙 ] the clause𝜓𝑎,𝑏 is defined as𝜓𝑎,𝑏 = (𝐶𝑇

𝑎,𝑏
𝑌𝑎 ≥ 0) and 𝐶𝑎,𝑏 ∈ R𝑛𝑙

is:

∀𝑖 ∈ [𝑛𝑙 ] .𝑐𝑎,𝑏,𝑖 =


1 if 𝑖 ≠ 𝑏 and 𝑖 = 𝑡

−1 if 𝑖 = 𝑏 and 𝑖 ≠ 𝑡

0 otherwise

(13)
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A.5 Worst case Hamming distance verification
Definition A.4. Given points 𝑋 ∗ = 𝑋 ∗

1
, ..., 𝑋 ∗

𝑘
∈ R𝑛0

, 𝜖 ∈ R, and a binary digit classifier neural

network 𝑁2 : R𝑛0 → R2
we can define a binary digit string 𝑠 ∈ {0, 1}𝑘 as the conjunction of the

output of 𝑁2 on each input ∀𝑖 ∈ [𝑘] .𝑋𝑖 where each𝑋𝑖 is an image of a binary digit. We are interested

in bounding the worst-case hamming distance between 𝑠∗, the binary digit string classified by 𝑁2,

and 𝑠 the actual binary digit string corresponding to list of perturbed images ∀𝑖 ∈ [𝑘] .𝑋𝑖 +𝑉 s.t.

𝑉 ∈ R𝑛0
and |𝑉 |∞ ≤ 𝜖 . Given these definitions, we can use the Φ and Ψ defined in Definition A.2.

A.6 Monotonicity verification
Definition A.5 (Monotonic Verification Problem). Given a point 𝑋 ∗ ∈ R𝑛0

, 𝜖 ∈ R, network 𝑁𝑚 :

R𝑛0 → R, monotonic input dimension𝑚 ∈ [𝑛0], monotonic direction 𝑑 ∈ {−1, 1}, let 𝐶 𝑗 ∈ R𝑛0
be

the one-hot vector defined as all 0’s except for a 1 in the 𝑗 th dimension and 𝑗 ∈ [𝑛0]. We can define

∀𝑖 ∈ [2] .𝜙𝑖
𝑖𝑛 = (∥𝐶𝑇

𝑚𝑋
∗ −𝐶𝑇

𝑚𝑋𝑖 ∥∞ ≤ 𝜖) ∧𝜑𝑖 where 𝜑𝑖 = ∧𝑗∈[𝑛0 ]∧( 𝑗≠𝑚) (∥𝐶𝑇
𝑗 𝑋
∗ −𝐶𝑇

𝑗 𝑋𝑖 ∥∞ = 0). Now,
we can define 𝜙𝛿 = 𝐶𝑇

𝑚𝑋1 −𝐶𝑇
𝑚𝑋2 > 0 and Φ = 𝜙1

𝑖𝑛 ∧ 𝜙2

𝑖𝑛 ∧ 𝜙𝛿
. Finally, our output specification can

be defined as Ψ(𝑁𝑚 (𝑋1), 𝑁𝑚 (𝑋2)) = 𝑑 · (𝑁𝑚 (𝑋1) − 𝑁𝑚 (𝑋2)) ≥ 0.

A.7 Detailed execution of DeepZ abstract transformer on the example Product DNN

Fig. 12. Product DNN analysis on input regions 𝜙1

𝑡 and 𝜙2

𝑡 using DeepZ

First, we compute the zonotope expression, concrete lower bound, and concrete upper bound of

the input variables of both 𝑁
𝑋1

𝑒𝑥 and 𝑁
𝑋2

𝑒𝑥 . Note, the concrete lower bound, and concrete upper bound

of any variable are obtained by calculating the minimum and maximum value of the zonotope

expression associated with that variable.

𝛼 (𝑖1
1
) = 14 + 6 · 𝜂1

1
𝛼 (𝑖1

2
) = 11 + 6 · 𝜂1

2
𝛼 (𝑥1

1
) = 14 + 6 · 𝜂1

1
𝛼 (𝑥1

2
) = 11 + 6 · 𝜂1

2

𝛼 (𝑖2
1
) = 11 + 6 · 𝜂2

1
𝛼 (𝑖2

2
) = 14 + 6 · 𝜂2

2
𝛼 (𝑥2

1
) = 11 + 6 · 𝜂2

1
𝛼 (𝑥2

2
) = 14 + 6 · 𝜂2

2

𝑥1

1
∈ [8, 20] 𝑥1

2
∈ [5, 17] 𝑥2

1
∈ [5, 17] 𝑥2

2
∈ [8, 20]
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Next, the affine transform at the first layer computes the zonotope expressions for variables 𝑥1

3
, 𝑥1

4
,

𝑥2

3
, and 𝑥2

4
as shown below.

𝛼 (𝑥1

3
) = (14 + 6 · 𝜂1

1
) − (11 + 6 · 𝜂1

2
) = 3 + 6 · 𝜂1

1
− 6 · 𝜂1

2
𝛼 (𝑥1

4
) = −17 − 12 · 𝜂1

1
+ 6 · 𝜂1

2

𝛼 (𝑥2

3
) = (11 + 6𝜂2

1
) − (14 + 6 · 𝜂2

2
) = −3 + 6 · 𝜂2

1
− 6 · 𝜂2

2
𝛼 (𝑥2

4
) = −8 − 12 · 𝜂2

1
+ 6 · 𝜂2

2

Next, we use the ReLU transformer proposed in [68] to compute the zonotope expression

associate with the variables 𝑥1

5
, 𝑥1

6
, 𝑥2

5
, and 𝑥2

6
from the zonotope expression of 𝑥1

3
, 𝑥1

4
, 𝑥2

3
, and

𝑥2

4
. First, we describe the ReLU transformer (𝑅𝑒𝐿𝑈 ♯

) below where for any zonotope expression

𝛼 (𝑥) = 𝑣 + ∑𝑛
𝑖=1

𝑤𝑖 · 𝜂𝑖 (𝑣 ∈ R and 𝑤 ∈ R𝑛
) for any real 𝜆 ∈ R, 𝜇 ∈ R the zonotope expression

𝜆 ·𝛼 (𝑥) + 𝜇 denotes 𝜆 ·𝛼 (𝑥) + 𝜇 = 𝜆 · 𝑣 +∑𝑛
𝑖=1
(𝜆 ·𝑤𝑖 ) ·𝜂𝑖 , 𝑙𝑥 and 𝑢𝑥 denotes the concrete lower bound

and concrete upper bound of the variable 𝑥 respectively and 𝜂𝑛𝑒𝑤 denotes a new noise variable.

𝑅𝑒𝐿𝑈 ♯ (𝛼 (𝑥)) =

𝛼 (𝑥) if 𝑙𝑥 ≥ 0

0 if 𝑢𝑥 ≤ 0

𝜆 · 𝛼 (𝑥) + 𝜇 + 𝜇 · 𝜂𝑛𝑒𝑤 if (𝑙𝑥 < 0) ∧ (𝑢𝑥 > 0) where 𝜆 =
𝑢𝑥

𝑢𝑥−𝑙𝑥 and 𝜇 = − 𝑢𝑥 ·𝑙𝑥
2· (𝑢𝑥−𝑙𝑥 )

For soundness proof of 𝑅𝑒𝐿𝑈 ♯
refer to Theorem 3.1 of [68]. Using the the 𝑅𝑒𝐿𝑈 transformer 𝑅𝑒𝐿𝑈 ♯

we can compute the zonotope expression associated with 𝑥1

5
, 𝑥1

6
, 𝑥2

5
, and 𝑥2

6
. For example, we show

the computation of the zonotope expression 𝛼 (𝑥1

5
) below.

𝛼 (𝑥1

5
) = 𝜆 · 𝛼 (𝑥1

3
) + 𝜇 + 𝜇 · 𝜂1

5
where 𝜆 =

𝑢𝑥1

3

𝑢𝑥1

3

− 𝑙𝑥1

3

and 𝜇 = −
𝑢𝑥1

3

· 𝑙𝑥1

3

2 · (𝑢𝑥1

3

− 𝑙𝑥1

3

)

For the variables in the final layer 𝑥1

7
, 𝑥1

8
, 𝑥2

7
, and 𝑥2

8
and subsequently for the output variables 𝑜1

1
, 𝑜1

2
,

𝑜2

1
, and 𝑜2

2
we compute the zonotope expressions by applying the affine transform on the zonotope

expressions associated with the variables 𝑥1

5
, 𝑥1

6
, 𝑥2

5
, and 𝑥2

6
. For example, we show the computation

of the zonotope expression 𝛼 (𝑥1

7
) below.

𝛼 (𝑜1

1
) = 𝛼 (𝑥1

7
) = 𝛼 (𝑥1

5
) − 𝛼 (𝑥1

5
) = 9.347 + 8.167𝜂1

1
− 7.833𝜂1

2
+ 5.625𝜂1

3
− 0.972𝜂1

4

A.8 Detailed DiffPoly constraints on 𝑥1

𝑖 & 𝑥2

𝑖 for the illustrative example

𝑥
1,≤
1

= 8 𝑥
1,≥
1

= 20 𝑙1,𝑥1
= 8 𝑢1,𝑥1

= 20

𝑥
1,≤
2

= 5 𝑥
1,≥
2

= 17 𝑙1,𝑥2
= 5 𝑢1,𝑥2

= 17

𝑥
1,≤
3

= 𝑥1

1
− 𝑥1

2
𝑥

1,≥
3

= 𝑥1

1
− 𝑥1

2
𝑙1,𝑥3

= −9 𝑢1,𝑥3
= 15

𝑥
1,≤
4

= −2 · 𝑥1

1
+ 𝑥1

2
𝑥

1,≥
4

= −2 · 𝑥1

1
+ 𝑥1

2
𝑙1,𝑥4

= −35 𝑢1,𝑥4
= 1

𝑥
1,≤
5

= 𝑥1

3
𝑥

1,≥
5

=
5

24

· 𝑥1

3
+ 45

8

𝑙1,𝑥5
= −5

5

8

𝑢1,𝑥5
= 15

𝑥
1,≤
6

= 0 𝑥
1,≥
6

=
1

36

· 𝑥1

4
+ 35

36

𝑙1,𝑥6
= −35

36

𝑢1,𝑥6
= 1

𝑥
1,≤
7

= 𝑥1

5
− 𝑥1

6
𝑥

1,≥
7

= 𝑥1

5
− 𝑥1

6
𝑙1,𝑥7

= −6

5

8

𝑢1,𝑥7
= 15

35

36

𝑥
1,≤
8

= −𝑥1

5
+ 𝑥1

6
𝑥

1,≥
8

= −𝑥1

5
+ 𝑥1

6
𝑙1,𝑥8

= −15

35

36

𝑢1,𝑥8
= 16

2

9



1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Input-Relational Verification of Deep Neural Networks 31

𝑥
2,≤
1

= 5 𝑥
2,≥
1

= 17 𝑙2,𝑥1
= 5 𝑢2,𝑥1

= 17

𝑥
2,≤
2

= 8 𝑥
2,≥
2

= 20 𝑙2,𝑥2
= 8 𝑢2,𝑥2

= 20

𝑥
2,≤
3

= 𝑥2

1
− 𝑥2

2
𝑥

2,≥
3

= 𝑥2

1
− 𝑥2

2
𝑙2,𝑥3

= −15 𝑢2,𝑥3
= 9

𝑥
2,≤
4

= −2 · 𝑥2

1
+ 𝑥2

2
𝑥

2,≥
4

= −2 · 𝑥2

1
+ 𝑥2

2
𝑙2,𝑥4

= −26 𝑢2,𝑥4
= 10

𝑥
2,≤
5

= 0 𝑥
2,≥
5

=
3

8

· 𝑥2

3
+ 45

8

𝑙2,𝑥5
= −5

5

8

𝑢2,𝑥5
= 9

𝑥
2,≤
6

= 0 𝑥
2,≥
6

=
5

18

· 𝑥2

4
+ 65

9

𝑙2,𝑥6
= −7

2

9

𝑢2,𝑥6
= 10

𝑥
2,≤
7

= 𝑥2

5
− 𝑥2

6
𝑥

2,≥
7

= 𝑥2

5
− 𝑥2

6
𝑙2,𝑥7

= −15

5

8

𝑢2,𝑥7
= 16

2

9

𝑥
2,≤
8

= −𝑥2

5
+ 𝑥2

6
𝑥

2,≥
8

= −𝑥2

5
+ 𝑥2

6
𝑙2,𝑥8

= −16

2

9

𝑢2,𝑥8
= 15

5

8

B MILPS FOR THE ILLUSTRATIVE EXAMPLE
B.1 MILP formulation from state-of-the-art baseline [88]
The state-of-the-art baseline relates output variables as linear constraints over the input variables

based on the analysis of an existing non-relational verifier (in this case DeepZ) on the product DNN.

The cross-execution constraints (shown in blue) are only tracked at the input layer. The optimal

value of 𝑡 and the verification result for this formulation is shown below.

min 𝑡

subject to

𝑚𝑖𝑛(𝐹1) = 𝑧1, 𝑧1 ≤ 𝑡,𝑚𝑖𝑛(𝐹2) = 𝑧2, 𝑧2 ≤ 𝑡 [MILP encoding of Ψ]

𝐹1 = 𝑜1

1
− 𝑜1

2
, 𝐹2 = −𝑜2

1
+ 𝑜2

2

𝑥1

1
= 14 + 6 ∗ 𝜂1

1
, 𝑥1

2
= 11 + 6 ∗ 𝜂1

2

𝑥2

1
= 11 + 6 ∗ 𝜂2

1
, 𝑥2

2
= 14 + 6 ∗ 𝜂2

2

(𝑥1

1
− 𝑥2

1
) = 3, (𝑥1

2
− 𝑥2

2
) = −3 [cross-execution constraints at input layer]

𝑜1

1
= 9.347 + 8.167𝜂1

1
− 7.833𝜂1

2
+ 5.625𝜂1

3
− 0.972𝜂1

4

𝑜1

2
= −9.347 − 8.167𝜂1

1
+ 7.833𝜂1

2
− 5.625𝜂1

3
+ 0.972𝜂1

4

𝑜2

1
= −0.597 − 11.167𝜂2

1
+ 7.833𝜂2

2
− 5.625𝜂2

3
+ 7.222𝜂2

4

𝑜2

2
= 0.597 + 11.167𝜂2

1
− 7.833𝜂2

2
+ 5.625𝜂2

3
− 7.222𝜂2

4

− 1 ≤ 𝜂
𝑗

𝑖
≤ 1 ∀𝑖 ∈ {1, 2, 3, 4} ∀𝑗 ∈ {1, 2}

(14)

The optimal value of t: −5.306

Verification result: Inconclusive
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B.2 MILP formulation with RaVeN layerwise constraints on the illustrative example
We show the layerwise formulation of RaVeN with the concrete bounds from the DeepZ analysis.

We use the optimal neuron-level convex relaxation (triangle relaxation) for the ReLU activation.

For example, the linear constraints for ReLU assignment 𝑥1

5
← 𝑅𝑒𝐿𝑈 (𝑥1

3
) are shown below.

0 ≤ 𝑥1

5
, 𝑥1

3
≤ 𝑥1

5
, 𝑥1

5
≤ 5

8

· 𝑥1

3
+ 45

8

, 𝑥1

5
≤ 15

Similar to the approach in [88], the cross-execution constraints (highlighted in blue) are only

applied at the input layer. However, the RaVeN layerwise approach more effectively preserves

linear relationships across multiple executions. For instance, using constraints like (𝑥1

1
− 𝑥2

1
) = 3,

(𝑥1

2
−𝑥2

2
) = −3, and 𝑥1

3
= 𝑥1

1
−𝑥1

2
, 𝑥2

3
= 𝑥2

1
−𝑥2

2
, the layerwise formulation can deduce that (𝑥1

3
−𝑥2

3
) = 6.

Nevertheless, the layerwise approach loses precision in tracking dependencies beyond activation

layers (e.g., ReLU, Sigmoid) due to convex overapproximation. This is why we require a DiffPoly

analysis with custom abstract transformers explicitly designed for difference tracking. The optimal

value of 𝑡 and the verification result for this formulation is shown below.

min 𝑡

subject to

𝑚𝑖𝑛(𝐹1) = 𝑧1, 𝑧1 ≤ 𝑡,𝑚𝑖𝑛(𝐹2) = 𝑧2, 𝑧2 ≤ 𝑡 [MILP encoding of Ψ]

𝐹1 = 𝑥1

7
− 𝑥1

8
, 𝐹2 = −𝑥2

7
+ 𝑥2

8

𝑥1

8
= −𝑥1

5
+ 𝑥1

6
,−15

35

36

≤ 𝑥2

8
≤ 6

5

8

, 𝑥2

8
= −𝑥2

5
+ 𝑥2

6
,−16

2

9

≤ 𝑥2

8
≤ 15

5

8

𝑥1

7
= 𝑥1

5
− 𝑥1

6
,−6

5

8

≤ 𝑥1

7
≤ 15

35

36

, 𝑥2

7
= 𝑥2

5
− 𝑥2

6
,−15

5

8

≤ 𝑥2

7
≤ 16

2

9

𝑥1

4
≤ 𝑥1

6
≤ 1

36

· 𝑥1

4
+ 35

36

, 0 ≤ 𝑥1

6
≤ 1, 𝑥2

4
≤ 𝑥2

6
≤ 5

18

· 𝑥2

4
+ 65

9

, 0 ≤ 𝑥2

6
≤ 10

𝑥1

3
≤ 𝑥1

5
≤ 5

8

· 𝑥1

3
+ 45

8

, 0 ≤ 𝑥1

5
≤ 15, 𝑥2

3
≤ 𝑥2

5
≤ 3

8

· 𝑥2

3
+ 45

8

, 0 ≤ 𝑥2

5
≤ 9

𝑥1

4
= −2 · 𝑥1

1
+ 𝑥1

2
,−35 ≤ 𝑥1

4
≤ 1, 𝑥2

4
= −2 · 𝑥2

1
+ 𝑥2

2
,−26 ≤ 𝑥2

4
≤ 10

𝑥1

3
= 𝑥1

1
− 𝑥1

2
,−9 ≤ 𝑥1

3
≤ 15, 𝑥2

3
= 𝑥2

1
− 𝑥2

2
,−15 ≤ 𝑥2

3
≤ 9

(𝑥1

1
− 𝑥2

1
) = 3, (𝑥1

2
− 𝑥2

2
) = −3 [cross-execution constraints at input layer]

8 ≤ 𝑥1

1
≤ 20, 5 ≤ 𝑥1

2
≤ 17, 5 ≤ 𝑥2

1
≤ 17, 8 ≤ 𝑥2

2
≤ 20

(15)

The optimal value of t: −1.564

Verification result: Inconclusive
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B.3 MILP Formulation of RaVeN with difference tracking for Illustrative Example
We show the MILP formulation obtained by adding the difference constraints (shown in blue)

obtained from DiffPoly analysis to the layerwise formulation (Eq. 15). The optimal value of 𝑡 and

the verification result for this formulation is shown below.

min 𝑡

subject to

𝑚𝑖𝑛(𝐹1) = 𝑧1, 𝑧1 ≤ 𝑡,𝑚𝑖𝑛(𝐹2) = 𝑧2, 𝑧2 ≤ 𝑡 [MILP encoding of Ψ]

𝐹1 = 𝑥1

7
− 𝑥1

8
, 𝐹2 = −𝑥2

7
+ 𝑥2

8

𝑥1

8
= −𝑥1

5
+ 𝑥1

6
,−15

35

36

≤ 𝑥2

8
≤ 6

5

8

, 𝑥2

8
= −𝑥2

5
+ 𝑥2

6
,−16

2

9

≤ 𝑥2

8
≤ 15

5

8

𝑥1

7
= 𝑥1

5
− 𝑥1

6
,−6

5

8

≤ 𝑥1

7
≤ 15

35

36

, 𝑥2

7
= 𝑥2

5
− 𝑥2

6
,−15

5

8

≤ 𝑥2

7
≤ 16

2

9

𝑥1

4
≤ 𝑥1

6
≤ 1

36

· 𝑥1

4
+ 35

36

, 0 ≤ 𝑥1

6
≤ 1, 𝑥2

4
≤ 𝑥2

6
≤ 5

18

· 𝑥2

4
+ 65

9

, 0 ≤ 𝑥2

6
≤ 10

𝑥1

3
≤ 𝑥1

5
≤ 5

8

· 𝑥1

3
+ 45

8

, 0 ≤ 𝑥1

5
≤ 15, 𝑥2

3
≤ 𝑥2

5
≤ 3

8

· 𝑥2

3
+ 45

8

, 0 ≤ 𝑥2

5
≤ 9

𝑥1

4
= −2 · 𝑥1

1
+ 𝑥1

2
,−35 ≤ 𝑥1

4
≤ 1, 𝑥2

4
= −2 · 𝑥2

1
+ 𝑥2

2
,−26 ≤ 𝑥2

4
≤ 10

𝑥1

3
= 𝑥1

1
− 𝑥1

2
,−9 ≤ 𝑥1

3
≤ 15, 𝑥2

3
= 𝑥2

1
− 𝑥2

2
,−15 ≤ 𝑥2

3
≤ 9

8 ≤ 𝑥1

1
≤ 20, 5 ≤ 𝑥1

2
≤ 17, 5 ≤ 𝑥2

1
≤ 17, 8 ≤ 𝑥2

2
≤ 20

𝛿
1,2
1

= 𝑥1

1
− 𝑥2

1
, 3 ≤ 𝛿

1,2
1
≤ 3

𝛿
1,2
2

= 𝑥1

2
− 𝑥2

2
,−3 ≤ 𝛿

1,2
2
≤ −3

𝛿
1,2
1
− 𝛿1,2

2
≤ 𝛿

1,2
3
≤ 𝛿

1,2
1
− 𝛿1,2

2

𝛿
1,2
3

= 𝑥1

3
− 𝑥2

3
, 6 ≤ 𝛿

1,2
3
≤ 6

−2 · 𝛿1,2
1
+ 𝛿1,2

2
≤ 𝛿

1,2
4
≤ −2 · 𝛿1,2

1
+ 𝛿1,2

2

𝛿
1,2
4

= 𝑥1

4
− 𝑥2

4
,−9 ≤ 𝛿

1,2
4
≤ −9

𝛿
1,2
5

= 𝑥1

5
− 𝑥2

5
, 0 ≤ 𝛿

1,2
5
≤ 𝛿

1,2
3
, 0 ≤ 𝛿

1,2
5
≤ 6

𝛿
1,2
6

= 𝑥1

6
− 𝑥2

6
, 𝛿

1,2
4
≤ 𝛿

1,2
6
≤ 0,−9 ≤ 𝛿

1,2
6
≤ 0

𝛿
1,2
7

= 𝑥1

7
− 𝑥2

7
, 0 ≤ 𝛿

1,2
7
≤ 15

𝛿
1,2
8

= 𝑥1

8
− 𝑥2

8
,−15 ≤ 𝛿

1,2
8
≤ 0

(16)

The optimal value of t: 0.0

Verification result: UAP does not exist



1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

C CONVEX RELAXATION OF RELU

(a) 𝑢𝑥𝑖 < −𝑙𝑥𝑖 (b) 𝑢𝑥𝑖 ≥ −𝑙𝑥𝑖 (c) optimal

Fig. 13. The convex approximations for 𝑥 𝑗 = 𝑅𝑒𝐿𝑈 (𝑥𝑖 ) where 𝑥𝑖 ∈ [𝑙𝑥𝑖 , 𝑢𝑥𝑖 ] and (𝑙𝑥𝑖 < 0) ∧ (𝑢𝑥𝑖 > 0). The

D DIFFPOLY TRANSFORMER FOR DIFFERENTIABLE ACTIVATIONS

(a) Δ̂𝑙𝑏 ≥ 0 (b) Δ̂𝑢𝑏 ≤ 0 (c) Δ̂𝑙𝑏 < 0 ∧ Δ̂𝑢𝑏 > 0

Fig. 14. The optimal (in terms of area) convex approximations for 𝛿 = 𝑔(𝑥) − 𝑔(𝑦) where ˆ𝛿 = (𝑥 − 𝑦), 𝛿≥ ,
𝛿≤ are symbolic upper bound and lower bound of 𝛿 respectively and where 𝑔 is a differentiable activation
function.
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E PSEUDOCODE FOR BACK-SUBSTITUTION ALGORITHM

Algorithm 2 Back-substitution Algorithm

1: procedure Back-substitution(𝛿𝑎,𝑏,≤𝑥𝑖 , 𝛿
𝑎,𝑏,≥
𝑥𝑖 , a ∈ A2𝑖 )

2: Input: 𝛿𝑎,𝑏,≤𝑥𝑖 , 𝛿
𝑎,𝑏,≥
𝑥𝑖 , a ∈ A2𝑖

3: Output: Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

4: Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

← −∞; Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

←∞
5: while 𝑇𝑟𝑢𝑒 do
6: 𝑡Δ𝑙𝑏

← 𝑆𝑐 (𝛿𝑎,𝑏,≤𝑥𝑖 , a) ⊲ the concrete bounds required for concrete substitution are in a
7: 𝑡Δ𝑢𝑏

← 𝑆𝑐 (𝛿𝑎,𝑏,≥𝑥𝑖 , a) ⊲ the concrete bounds required for concrete substitution are in a
8: Δ𝑎,𝑏,𝑥𝑖

𝑙𝑏
← max(Δ𝑎,𝑏,𝑥𝑖

𝑙𝑏
, 𝑡Δ𝑙𝑏
); Δ𝑎,𝑏,𝑥𝑖

𝑢𝑏
← min(Δ𝑎,𝑏,𝑥𝑖

𝑢𝑏
, 𝑡Δ𝑢𝑏
)

9: if 𝛿𝑎,𝑏,≤𝑥𝑖 and 𝛿
𝑎,𝑏,≥
𝑥𝑖 have only input variables then

10: break;

11: end if
12: 𝛿

𝑎,𝑏,≤
𝑥𝑖 ← 𝑆𝑠 (𝛿𝑎,𝑏,≤𝑥𝑖 , a) ⊲ the symbolic bounds required for symbolic substitution are in a

13: 𝛿
𝑎,𝑏,≥
𝑥𝑖 ← 𝑆𝑐 (𝛿𝑎,𝑏,≥𝑥𝑖 , a) ⊲ the symbolic bounds required for symbolic substitution are in a

14: end while
15: end procedure
16: return Δ𝑎,𝑏,𝑥𝑖

𝑙𝑏
,Δ𝑎,𝑏,𝑥𝑖

𝑢𝑏
;

Lemma E.1. If (𝛿𝑎,𝑏,≤𝑥𝑖 ≤ 𝛿
𝑎,𝑏
𝑥𝑖 ) ∧ (𝛿

𝑎,𝑏
𝑥𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖 ) then the concrete lower Δ𝑎,𝑏,𝑥𝑖

𝑙𝑏
and concrete upper

bound Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

obtained with Back-Substitution on symbolic bounds 𝛿𝑎,𝑏,≤𝑥𝑖 and 𝛿𝑎,𝑏,≥𝑥𝑖 then Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

≤ 𝛿
𝑎,𝑏
𝑥𝑖

and 𝛿𝑎,𝑏𝑥𝑖 ≤ Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

holds.

Proof. For the proof refer to Theorem 4.9 of [69]. □
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F SOUNDNESS OF RAVEN
In this section, we formally prove the soundness of RaVeN. We first show the soundness of the

abstract transformers of DiffPoly.

F.1 Soundness Proof of the DiffPoly ReLU transformer
Theorem 4.4. (Soundness of DiffPoly Relu Transformer) For any abstract element 𝑎 ∈ A2𝑖

𝑇𝑅 (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯

𝑅
(𝑎)).

Proof. For any (𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎) we denote 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ) = 𝑦𝑎𝑖 and 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) = 𝑦𝑏𝑖 where 𝑋𝑎 =

[𝑥𝑎
1
, . . . , 𝑥𝑎𝑖 ]𝑇 ∈ R𝑖

, 𝑋𝑏 = [𝑥𝑏
1
, . . . , 𝑥𝑏𝑖 ]𝑇 ∈ R𝑖

. We use 𝛿
𝑎,𝑏
𝑦𝑖 to denote the difference 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑦𝑎𝑖 −𝑦𝑏𝑖 . For

any element 𝑎 ∈ A2𝑖 , 𝑎
′ = 𝑇

♯

𝑅
(𝑎) where 𝑎′ = [𝑎1, . . . , 𝑎𝑖 , 𝑎

′
𝑖+1] and 𝑎′𝑖 =< 𝐶′𝑖+1𝑠𝑦𝑚,𝐶

′𝑖+1
𝑐𝑜𝑛 > constructed

as described in Section 4.2. 𝐶′𝑖+1𝑠𝑦𝑚 and 𝐶′𝑖+1𝑐𝑜𝑛 given by

𝐶′𝑖+1𝑠𝑦𝑚 =< 𝑦
𝑎,≤
𝑖

, 𝑦
𝑏,≤
𝑖

, 𝛿𝑎,𝑏,≤𝑦𝑖
, 𝑦

𝑎,≥
𝑖

, 𝑦
𝑏,≥
𝑖

, 𝛿𝑎,𝑏,≥𝑦𝑖
> 𝐶′𝑖+1𝑐𝑜𝑛 =< 𝑙𝑎,𝑦𝑖 , 𝑙𝑏,𝑦𝑖 ,Δ

𝑎,𝑏,𝑦𝑖

𝑙𝑏
, 𝑢𝑎,𝑦𝑖 , 𝑢𝑏,𝑦𝑖 ,Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
>

We use symbolic bounds of 𝑦
𝑎,≤
𝑖

, 𝑦
𝑎,≥
𝑖

and 𝑦
𝑏,≤
𝑖

, 𝑦
𝑏,≥
𝑖

of 𝑦𝑎𝑖 , 𝑦
𝑏
𝑖 described in existing work [69, 92].

For the correctness of symbolic bounds, 𝑦
𝑎,≤
𝑖

, 𝑦
𝑎,≥
𝑖

and 𝑦
𝑏,≤
𝑖

, 𝑦
𝑏,≥
𝑖

we only the state the results and

refer the readers to [69, 92] for details.

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 )) ∧ (𝑦𝑏𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ))
=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎𝑗 ∈ [𝑙𝑎,𝑥 𝑗

, 𝑢𝑎,𝑥 𝑗
]) ∧ (𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗

, 𝑢𝑏,𝑥 𝑗
])

=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎,≤
𝑗
≤ 𝑥𝑎𝑗 ) ∧ (𝑥𝑎𝑗 ≤ 𝑥

𝑎,≥
𝑗
) ∧ (𝑥𝑏,≤

𝑗
≤ 𝑥𝑏𝑗 ) ∧ (𝑥𝑏𝑗 ≤ 𝑥

𝑏,≥
𝑗
)

=⇒ (𝑦𝑎,≤
𝑖
≤ 𝑦𝑎𝑖 ) ∧ (𝑦𝑎𝑖 ≤ 𝑦

𝑎,≥
𝑖
) ∧ (𝑦𝑏,≤

𝑖
≤ 𝑦𝑏𝑖 ) ∧ (𝑦𝑏𝑖 ≤ 𝑦

𝑏,≥
𝑖
) (17)

From Theorem 3.2 in [92] and Theorem 4.2 in [69]

=⇒ (𝑦𝑎𝑖 ∈ [𝑙𝑎,𝑦𝑖 , 𝑢𝑎,𝑦𝑖 ]) ∧ (𝑦𝑏𝑖 ∈ [𝑙𝑏,𝑦𝑖 , 𝑢𝑏,𝑦𝑖 ]) From Lemma 4.3 (18)

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 )) ∧ (𝑦𝑏𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ))

=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎𝑗 ∈ [𝑙𝑎,𝑥 𝑗
, 𝑢𝑎,𝑥 𝑗

]) ∧ (𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗
, 𝑢𝑏,𝑥 𝑗

]) ∧ (𝛿𝑎,𝑏𝑥 𝑗
∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
])

=⇒ (𝛿𝑎,𝑏,≤𝑦𝑖
≤ 𝛿𝑎,𝑏𝑦𝑖 ) ∧ (𝛿

𝑎,𝑏
𝑦𝑖
≤ 𝛿𝑎,𝑏,≥𝑦𝑖

) ∧ (𝛿𝑎,𝑏𝑥𝑖
∈ [Δ𝑎,𝑏,𝑦𝑖

𝑙𝑏
,Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
]) From Lemma 4.2 and 4.3 (19)

From 17, 18 and 19 we show that

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 )) ∧ (𝑦𝑏𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ))
=⇒ ([𝑥𝑎

1
, . . . , 𝑥𝑎𝑖 , 𝑦

𝑎
𝑖 ]𝑇 , [𝑥𝑏1 , . . . , 𝑥𝑏𝑖 , 𝑦𝑏𝑖 )]𝑇 ) ∈ 𝛾2𝑖+2 (𝑎′) (20)

□

Eq. 20 proves that 𝑇𝑅 (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯

𝑅
(𝑎))

F.2 Soundness Proof of the DiffPoly transformer for differentiable activations

We first state the lemmas required to prove the soundness of 𝑇
♯
𝑔 where 𝑔 represents differentiable

activation functions such as Sigmoid and Tanh. Proofs of the lemmas F.1, F.2 are in Appendix G.2.

Lemma F.1. (Correctness of symbolic bounds in Table 4) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖 ], 𝑥𝑏𝑖 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖 ] and
𝛿
𝑎,𝑏
𝑥𝑖 = (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ) ∈ [Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏
] and 𝛿𝑎,𝑏𝑦𝑖 = 𝑔(𝑥𝑎𝑖 ) − 𝑔(𝑥𝑏𝑖 ) then 𝛿

𝑎,𝑏,≤
𝑦𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑦𝑖 where 𝛿𝑎,𝑏,≤𝑦𝑖

and 𝛿𝑎,𝑏,≥𝑦𝑖 defined in Table 4.
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Lemma F.2. (Correctness of concrete bounds computed by 𝑇 ♯
𝑔 ) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖 ], 𝑥𝑏𝑖 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖 ]

and 𝛿𝑎,𝑏𝑥𝑖 = (𝑥𝑎𝑖 −𝑥𝑏𝑖 ) ∈ [Δ
𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏
],𝑦𝑎𝑖 = 𝑔(𝑥𝑎𝑖 ),𝑦𝑏𝑖 = 𝑔(𝑥𝑏𝑖 ), 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑦𝑎𝑖 −𝑦𝑏𝑖 then 𝑙𝑎,𝑦𝑖 ≤ 𝑦𝑎𝑖 ≤ 𝑢𝑎,𝑦𝑖 ,

𝑙𝑏,𝑦𝑖 ≤ 𝑦𝑏𝑖 ≤ 𝑢𝑏,𝑦𝑖 , and Δ
𝑎,𝑏,𝑦𝑖

𝑙𝑏
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
where Δ

𝑎,𝑏,𝑦𝑖

𝑙𝑏
and Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
computed by applying

back-substitution on 𝛿𝑎,𝑏,≤𝑦𝑖 and 𝛿𝑎,𝑏,≥𝑦𝑖 respectively.

The concrete transformer 𝑇𝑔 : ℘(R2𝑖 ) → ℘(R2𝑖+2) for the assignments 𝑦𝑎𝑖 ← 𝑔(𝑥𝑎𝑖 ), 𝑦𝑏𝑖 ← 𝑔(𝑥𝑏𝑖 )
is defined as 𝑇𝑔 (X) = {([𝑥𝑎1 , . . . , 𝑥𝑎𝑖 , 𝑦𝑎𝑖 ]𝑇 , [𝑥𝑏1 , . . . , 𝑥𝑏𝑖 , 𝑦𝑏𝑖 ]𝑇 ) | (𝑋𝑎, 𝑋𝑏) ∈ X} where 𝑦𝑎𝑖 = 𝑔(𝑥𝑎𝑖 ),
𝑦𝑏𝑖 = 𝑔(𝑥𝑏𝑖 ), X ⊆ R2𝑖

and 𝑋𝑎 = [𝑥𝑎
1
, . . . , 𝑥𝑎𝑖 ]𝑇 ∈ R𝑖

, 𝑋𝑏 = [𝑥𝑏
1
, . . . , 𝑥𝑏𝑖 ]𝑇 ∈ R𝑖

.

Theorem F.3 (Soundness of DiffPoly Sigmoid and Tanh Transformer). For any abstract
element 𝑎 ∈ A2𝑖 𝑇𝑔 (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯

𝑔 (𝑎)).
Proof. For any (𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎)we denote𝑔(𝑥𝑎𝑖 ) = 𝑦𝑎𝑖 and𝑔(𝑥𝑏𝑖 ) = 𝑦𝑏𝑖 where𝑋

𝑎 = [𝑥𝑎
1
, . . . , 𝑥𝑎𝑖 ]𝑇 ∈

R𝑖
, 𝑋𝑏 = [𝑥𝑏

1
, . . . , 𝑥𝑏𝑖 ]𝑇 ∈ R𝑖

. We use 𝛿
𝑎,𝑏
𝑦𝑖 to denote the difference 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑦𝑎𝑖 − 𝑦𝑏𝑖 . For any element

𝑎 = [𝑎1, . . . , 𝑎𝑖 ] ∈ A2𝑖 , 𝑎
′ = 𝑇

♯
𝑔 (𝑎) where 𝑎′ = [𝑎1, . . . , 𝑎𝑖 , 𝑎

′
𝑖+1] and 𝑎′𝑖+1 =< 𝐶′𝑖+1𝑠𝑦𝑚,𝐶

′𝑖+1
𝑐𝑜𝑛 > con-

structed as described in Section 4.3. 𝐶′𝑖+1𝑠𝑦𝑚 and 𝐶′𝑖+1𝑐𝑜𝑛 given by

𝐶′𝑖+1𝑠𝑦𝑚 =< 𝑦
𝑎,≤
𝑖

, 𝑦
𝑏,≤
𝑖

, 𝛿𝑎,𝑏,≤𝑦𝑖
, 𝑦

𝑎,≥
𝑖

, 𝑦
𝑏,≥
𝑖

, 𝛿𝑎,𝑏,≥𝑦𝑖
> 𝐶′𝑖+1𝑐𝑜𝑛 =< 𝑙𝑎,𝑦𝑖 , 𝑙𝑏,𝑦𝑖 ,Δ

𝑎,𝑏,𝑦𝑖

𝑙𝑏
, 𝑢𝑎,𝑦𝑖 , 𝑢𝑏,𝑦𝑖 ,Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
>

We use symbolic bounds of 𝑦
𝑎,≤
𝑖

, 𝑦
𝑎,≥
𝑖

and 𝑦
𝑏,≤
𝑖

, 𝑦
𝑏,≥
𝑖

of 𝑦𝑎𝑖 , 𝑦
𝑏
𝑖 described in existing work [69]. For

the correctness of symbolic bounds, 𝑦
𝑎,≤
𝑖

, 𝑦
𝑎,≥
𝑖

and 𝑦
𝑏,≤
𝑖

, 𝑦
𝑏,≥
𝑖

we only the state the results and refer

the readers to [69] for details.

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑦𝑎𝑖 = 𝑔(𝑥𝑎𝑖 )) ∧ (𝑦𝑏𝑖 = 𝑔(𝑥𝑏𝑖 ))
=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎𝑗 ∈ [𝑙𝑎,𝑥 𝑗

, 𝑢𝑎,𝑥 𝑗
]) ∧ (𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗

, 𝑢𝑏,𝑥 𝑗
])

=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎,≤
𝑗
≤ 𝑥𝑎𝑗 ) ∧ (𝑥𝑎𝑗 ≤ 𝑥

𝑎,≥
𝑗
) ∧ (𝑥𝑏,≤

𝑗
≤ 𝑥𝑏𝑗 ) ∧ (𝑥𝑏𝑗 ≤ 𝑥

𝑏,≥
𝑗
)

=⇒ (𝑦𝑎,≤
𝑖
≤ 𝑦𝑎𝑖 ) ∧ (𝑦𝑎𝑖 ≤ 𝑦

𝑎,≥
𝑖
) ∧ (𝑦𝑏,≤

𝑖
≤ 𝑦𝑏𝑖 ) ∧ (𝑦𝑏𝑖 ≤ 𝑦

𝑏,≥
𝑖
) (21)

From Theorem 4.3 [69] (22)

=⇒ (𝑦𝑎𝑖 ∈ [𝑙𝑎,𝑦𝑖 , 𝑢𝑎,𝑦𝑖 ]) ∧ (𝑦𝑏𝑖 ∈ [𝑙𝑏,𝑦𝑖 , 𝑢𝑏,𝑦𝑖 ]) From Lemma F.2 (23)

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑦𝑎𝑖 = 𝑔(𝑥𝑎𝑖 )) ∧ (𝑦𝑏𝑖 = 𝑔(𝑥𝑏𝑖 ))

=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎𝑗 ∈ [𝑙𝑎,𝑥 𝑗
, 𝑢𝑎,𝑥 𝑗

]) ∧ (𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗
, 𝑢𝑏,𝑥 𝑗

]) ∧ (𝛿𝑎,𝑏𝑥 𝑗
∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
])

=⇒ (𝛿𝑎,𝑏,≤𝑦𝑖
≤ 𝛿𝑎,𝑏𝑦𝑖 ) ∧ (𝛿

𝑎,𝑏
𝑦𝑖
≤ 𝛿𝑎,𝑏,≥𝑦𝑖

) ∧ (𝛿𝑎,𝑏𝑥𝑖
∈ [Δ𝑎,𝑏,𝑦𝑖

𝑙𝑏
,Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
]) From Lemma F.1 and F.2 (24)

From 21, 23 and 24 we show that

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑦𝑎𝑖 = 𝑔(𝑥𝑎𝑖 )) ∧ (𝑦𝑏𝑖 = 𝑔(𝑥𝑏𝑖 ))
=⇒ ([𝑥𝑎

1
, . . . , 𝑥𝑎𝑖 , 𝑦

𝑎
𝑖 ]𝑇 , [𝑥𝑏1 , . . . , 𝑥𝑏𝑖 , 𝑦𝑏𝑖 ]𝑇 ) ∈ 𝛾2𝑖+2 (𝑎′) (25)

Eq. 25 proves that (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯
𝑔 (𝑎)). □

F.3 Soundness Proof of the DiffPoly Affine Transformer
First, we describe the concrete affine transformer 𝑇𝐴 : ℘(R2𝑖 ) → ℘(R2𝑖+2). Let,𝑊 ∈ R𝑖

and

𝑣𝑖+1 ∈ R denote the weight vector and bias respectively then the concrete transformer is given

below where 𝑥𝑎𝑖+1 = 𝑣 +∑𝑖
𝑗=1

𝑤 𝑗 · 𝑥𝑎𝑗 and 𝑥𝑏𝑖+1 = 𝑣 +∑𝑖
𝑗=1

𝑤 𝑗 · 𝑥𝑏𝑗
𝑇𝐴 (X) = {([𝑥𝑎1 , . . . , 𝑥𝑎𝑖 , 𝑥𝑎𝑖+1]𝑇 , [𝑥𝑏1 , . . . , 𝑥𝑏𝑖 , 𝑥𝑏𝑖+1)]𝑇 ) | (𝑋𝑎, 𝑋𝑏) ∈ X}
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We first state a couple of lemmas needed to prove the soundness of𝑇
♯

𝐴
. The proof of the lemmas F.4

and F.5 is in Appendix G.3.

Lemma F.4. (Correctness of symbolic bounds computed by the affine transformer) If ∀𝑗 ∈ [𝑖] . 𝑥𝑎𝑗 ∈
[𝑙𝑎,𝑥 𝑗

, 𝑢𝑎,𝑥 𝑗
], ∀𝑗 ∈ [𝑖] . 𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗

, 𝑢𝑏,𝑥 𝑗
] and ∀𝑗 ∈ [𝑖] . 𝛿𝑎,𝑏𝑥 𝑗

∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
] and 𝑥𝑎𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 ·

𝑥𝑎𝑗 , 𝑥
𝑏
𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 · 𝑥𝑏𝑗 , and 𝛿

𝑎,𝑏
𝑥𝑖+1 = (𝑥𝑎𝑖+1 − 𝑥𝑏𝑖+1) then 𝑥

𝑎,≤
𝑖+1 ≤ 𝑥𝑎𝑖+1 ≤ 𝑥

𝑎,≥
𝑖+1 , 𝑥

𝑏,≤
𝑖+1 ≤ 𝑥𝑏𝑖+1 ≤ 𝑥

𝑏,≥
𝑖+1 and

𝛿
𝑎,𝑏,≤
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖+1 where 𝑥𝑎,≤

𝑖+1 , 𝑥
𝑎,≥
𝑖+1 , 𝑥

𝑏,≤
𝑖+1 , 𝑥

𝑏,≥
𝑖+1 , 𝛿

𝑎,𝑏,≤
𝑥𝑖+1 and 𝛿𝑎,𝑏,≥𝑥𝑖+1 defined in Eq. 8.

Lemma F.5. (Correctness of concrete bounds computed by the affine transformer) If ∀𝑗 ∈ [𝑖] . 𝑥𝑎𝑗 ∈
[𝑙𝑎,𝑥 𝑗

, 𝑢𝑎,𝑥 𝑗
], ∀𝑗 ∈ [𝑖] . 𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗

, 𝑢𝑏,𝑥 𝑗
] and ∀𝑗 ∈ [𝑖] . 𝛿𝑎,𝑏𝑥 𝑗

∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
] and 𝑥𝑎𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 ·

𝑥𝑎𝑗 , 𝑥
𝑏
𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 · 𝑥𝑏𝑗 , and 𝛿

𝑎,𝑏
𝑥𝑖+1 = (𝑥𝑎𝑖+1 −𝑥𝑏𝑖+1) then 𝑙𝑎,𝑥𝑖+1 ≤ 𝑥𝑎𝑖+1 ≤ 𝑢𝑎,𝑥𝑖+1 , 𝑙𝑏,𝑥𝑖+1 ≤ 𝑥𝑏𝑖+1 ≤ 𝑢𝑏,𝑥𝑖+1

and Δ𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

≤ 𝛿
𝑎,𝑏
𝑥𝑖+1 ≤ Δ𝑎,𝑏,𝑥𝑖+1

𝑢𝑏
.

Theorem F.6. (Soundness of DiffPoly Affine Transformer) For all abstract element 𝑎 ∈ A2𝑖

𝑇𝐴 (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯

𝐴
(𝑎)).

Proof. For any (𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎) we denote 𝑥𝑎𝑖+1 = 𝑣 +∑𝑖
𝑗=1

𝑤 𝑗 ·𝑥𝑎𝑗 , 𝑥𝑏𝑖+1 = 𝑣 +∑𝑖
𝑗=1

𝑤 𝑗 ·𝑥𝑏𝑗 where
𝑊 ∈ R𝑖

is the weight vector, 𝑣 ∈ R is the bias vector and 𝛿
𝑎,𝑏
𝑥𝑖+1 = (𝑥𝑎𝑖+1 − 𝑦𝑏𝑖+1). For any element

𝑎 ∈ A2𝑖 , 𝑎
′ = 𝑇

♯

𝐴
(𝑎) where 𝑎′ = [𝑎1, . . . , 𝑎𝑖 , 𝑎

′
𝑖+1] and 𝑎′𝑖+1 =< 𝐶′𝑖+1𝑠𝑦𝑚,𝐶

′𝑖+1
𝑐𝑜𝑛 > constructed as described

in Section 4.4. 𝐶′𝑖+1𝑠𝑦𝑚 and 𝐶′𝑖+1𝑐𝑜𝑛 given by

𝐶′𝑖+1𝑠𝑦𝑚 =< 𝑥
𝑎,≤
𝑖+1 , 𝑥

𝑏,≤
𝑖+1 , 𝛿

𝑎,𝑏,≤
𝑥𝑖+1 , 𝑥

𝑎,≥
𝑖+1 , 𝑥

𝑏,≥
𝑖+1 , 𝛿

𝑎,𝑏,≥
𝑥𝑖+1 > 𝐶′𝑖𝑐𝑜𝑛 =< 𝑙𝑎,𝑥𝑖+1 , 𝑙𝑏,𝑥𝑖+1 ,Δ

𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

, 𝑢𝑎,𝑥𝑖+1 , 𝑢𝑏,𝑥𝑖+1 ,Δ
𝑎,𝑏,𝑥𝑖+1
𝑢𝑏

>

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑥𝑎𝑖+1 = 𝑣 +
𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑎𝑗 ) ∧ (𝑥𝑏𝑖+1 = 𝑣 +
𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑏𝑗 )

=⇒ ∀𝑖 ∈ [𝑖] . (𝑥𝑎𝑗 ∈ [𝑙𝑎,𝑥 𝑗
, 𝑢𝑎,𝑥 𝑗

]) ∧ (𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥 𝑗
])

=⇒ (𝑥𝑎,≤
𝑖+1 ≤ 𝑥𝑎𝑖+1) ∧ (𝑥𝑎𝑖+1 ≤ 𝑥

𝑎,≥
𝑖+1 ) ∧ (𝑥

𝑏,≤
𝑖+1 ≤ 𝑥𝑏𝑖+1) ∧ (𝑥𝑏𝑖+1 ≤ 𝑥

𝑏,≥
𝑖+1 ) From Lemma F.4 (26)

=⇒ (𝑥𝑎𝑖+1 ∈ [𝑙𝑎,𝑥𝑖+1 , 𝑢𝑎,𝑥𝑖+1 ]) ∧ (𝑥𝑏𝑖+1 ∈ [𝑙𝑏,𝑥𝑖+1 , 𝑢𝑏,𝑥𝑖+1 ]) From Lemma F.5 (27)

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑥𝑎𝑖+1 = 𝑣 +
𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑎𝑗 ) ∧ (𝑥𝑏𝑖+1 = 𝑣 +
𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑏𝑗 )

=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎𝑗 ∈ [𝑙𝑎,𝑥 𝑗
, 𝑢𝑎,𝑥 𝑗

]) ∧ (𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗
, 𝑢𝑏,𝑥 𝑗

]) ∧ (𝛿𝑎,𝑏𝑥 𝑗
∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
])

=⇒ (𝛿𝑎,𝑏,≤𝑥𝑖+1 ≤ 𝛿𝑎,𝑏𝑥𝑖+1 ) ∧ (𝛿
𝑎,𝑏
𝑥𝑖+1 ≤ 𝛿𝑎,𝑏,≥𝑥𝑖+1 ) ∧ (𝛿

𝑎,𝑏
𝑥𝑖+1 ∈ [Δ

𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖+1
𝑢𝑏

]) From Lemma F.4 and F.5

(28)

From 26, 27 and 28 we show that

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑥𝑎𝑖+1 = 𝑣 +
𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑎𝑗 ) ∧ (𝑥𝑏𝑖+1 = 𝑣 +
𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑏𝑗 ) (29)

=⇒ ([𝑥𝑎
1
, . . . , 𝑥𝑎𝑖 , 𝑥

𝑎
𝑖+1]𝑇 , [𝑥𝑏1 , . . . , 𝑥𝑏𝑖 , 𝑥𝑏𝑖+1)]𝑇 ) ∈ 𝛾2𝑛 (𝑎′) (30)

Eq. 30 shows that 𝑇𝐴 (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯

𝐴
(𝑎′)) □
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F.4 Soundness Proof of Product DNN analysis
Theorem 4.5. (Soundness of Product DNN analysis) ∀(𝑋1, . . . , 𝑋𝑘 ) ∈ R𝑛0×𝑘 .Φ((𝑋1, . . . , 𝑋𝑘 )) =⇒
(N𝑘 ((𝑋1, . . . , 𝑋𝑘 )) ∈ P).

Proof. P =
>𝑘

𝑖=1
P𝑖 implies (𝑌1, . . . , 𝑌𝑘 ) ∈ P ⇐⇒ ∧𝑘𝑖=1

(𝑌𝑖 ∈ P𝑖 ) where ∀𝑖 ∈ [𝑘] .(𝑌𝑖 ∈ R𝑛𝑙 ).

∀𝑋1, . . . , 𝑋𝑘 ∈ R𝑛0 .Φ((𝑋1, . . . , 𝑋𝑘 )) =⇒ ∧𝑘𝑖=1
𝜙𝑖
𝑖𝑛 (𝑋𝑖 ) =⇒ ∧𝑘𝑖=1

(𝑁 (𝑋𝑖 ) ∈ P𝑖 )
=⇒ [𝑁 (𝑋1) . . . , 𝑁 (𝑋𝑘 )]𝑇 ∈ P =⇒ N𝑘 ((𝑋1, . . . , 𝑋𝑘 )) ∈ P

□

F.5 Soundness of RaVeN LP Formulation
Theorem 4.6. (Soundness of Linear constraints) Φ𝑡 ⊆ L0

𝑡 and∀𝑖 ∈ [𝑙] .∀𝑋1, . . . 𝑋𝑘 ∈ R𝑛0 .Φ(𝑋1, . . . , 𝑋𝑘 )
=⇒ (𝑁 𝑖 (𝑋1), . . . , 𝑁 𝑖 (𝑋𝑘 )) ∈ L𝑖

𝑡 where 𝑁
𝑖

: R𝑛0 → R𝑛𝑖 is the composition of first 𝑖 layers of the
network 𝑁 , 𝑁 𝑖 = 𝑁1 ◦ · · · ◦ 𝑁𝑖 .

Proof. The input specification Φ is defined as a set of linear constraints over the input variables

and exactly encoded as a set of linear constraints. Hence, L0

𝑡 is same as Φ𝑡 , L0

𝑡 = Φ𝑡 . ∀𝑖 ∈ [𝑙] L𝑖
is

defined from the constraints in Eq 9. We show that all concrete bounds 𝑙
𝑎,𝑙
𝑗
, 𝑢

𝑎,𝑙
𝑗
,Δ

𝑎,𝑏,𝑙,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑙,𝑥 𝑗

𝑢𝑏
and

all symbolic bounds 𝑥
𝑎,𝑙,≤
𝑗

, 𝑥
𝑎,𝑙,≥
𝑗

, 𝛿
𝑎,𝑏,𝑙,≤
𝑗

, 𝛿
𝑎,𝑏,≥
𝑗

shown in 9. From Lemma 4.3, F.2 and,F.5 all concrete

bounds satisfy Eq 9. From Lemma , F.1, 4.2, and, F.4 all symbolic bounds satisfy Eq 9. □

F.6 Correctness of encoding of Ψ

The output specificationΨ : R𝑛𝑙×𝑘 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} is defined asΨ(𝑌1, . . . , 𝑌𝑘 ) =
∧𝑚

𝑖=1

(∨𝑛
𝑗=1

𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘 )
)
,

𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘 ) =
(∑𝑘

𝑖′=1
𝐶𝑇
𝑖,𝑗,𝑖′𝑌𝑖′ ≥ 0

)
and 𝐶𝑖, 𝑗,𝑖′ ∈ R𝑛𝑙

. We show that the following objective com-

putes the minimum number of clauses that remain satisfied for all (𝑌1, . . . , 𝑌𝑘 ).

min

(𝑌1,...,𝑌𝑘 )

𝑚∑︁
𝑖=1

𝑧𝑖 s.t. 𝑥𝑖, 𝑗 = 𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘 ) =
(

𝑘∑︁
𝑖′=1

𝐶𝑇
𝑖,𝑗,𝑖′𝑌𝑖′ ≥ 0

)
; 𝑧𝑖 =

(
𝑛∑︁
𝑗=1

𝑥𝑖, 𝑗 ≥ 0

)
(31)

For any (𝑌1, . . . , 𝑌𝑘 ) for all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] (𝑥𝑖, 𝑗 = 1) ⇐⇒
(∑𝑘

𝑖′=1
𝐶𝑇
𝑖,𝑗,𝑖′𝑌𝑖′ ≥ 0

)
. Then(∑𝑛

𝑗=1
𝑥𝑖, 𝑗 ≥ 0

)
⇐⇒ ∨𝑛

𝑗=1
𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘 ). Hence, (𝑧𝑖 = 1) ⇐⇒ ∨𝑛

𝑗=1
𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘 ). So

∑𝑚
𝑖=1

𝑧𝑖

is the number of clauses satisfied for any (𝑌1, . . . , 𝑌𝑘 ) and the optimal solution of the optimization

problem gives the minimum number of clauses that remain satisfied for all (𝑌1, . . . , 𝑌𝑘 ).

G PROOFS OF LEMMAS
G.1 Proof of lemmas for DiffPoly ReLU transformer
Lemma G.1. (Case a in Fig. 4) If ˆ𝛿 = 𝑥 − 𝑦 where 𝑥,𝑦 ∈ R, ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏] and Δ̂𝑙𝑏 ≥ 0 then

𝛿 = 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) then (0 ≤ 𝛿) and (𝛿 ≤ ˆ𝛿) .

Proof. Δ̂𝑙𝑏 ≥ 0 =⇒ ˆ𝛿 ≥ 0 =⇒ 𝑥 ≥ 𝑦. Now we consider all 3 possible cases below.

Case 1 (𝑥 ≥ 0) ∧ (𝑦 ≥ 0) =⇒ 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) = (𝑥 − 𝑦) =⇒ (𝛿 = ˆ𝛿) =⇒ (𝛿 ≥ 0)
Case 2 (𝑥 ≥ 0) ∧ (𝑦 < 0) =⇒ 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) = 𝑥 =⇒ (𝛿 ≤ (𝑥 − 𝑦) = ˆ𝛿) ∧ (𝛿 ≥ 0)
Case 3 (𝑥 < 0) ∧ (𝑦 < 0) =⇒ 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) = 0 =⇒ (𝛿 = 0 ≤ ˆ𝛿)
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□

Lemma G.2. (Case b in Fig. 4) If ˆ𝛿 = 𝑥 − 𝑦 where 𝑥,𝑦 ∈ R, ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏] and Δ̂𝑢𝑏 ≤ 0 then
𝛿 = 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) then ( ˆ𝛿 ≤ 𝛿) and (𝛿 ≤ 0).

Proof. Δ̂𝑢𝑏 ≤ 0 =⇒ ˆ𝛿 ≤ 0 =⇒ 𝑥 ≤ 𝑦. Now we consider all 3 possible cases below.

Case 1 (𝑥 ≥ 0) ∧ (𝑦 ≥ 0) =⇒ 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) = (𝑥 − 𝑦) =⇒ (𝛿 = ˆ𝛿) =⇒ (𝛿 ≤ 0)
Case 2 (𝑥 < 0) ∧ (𝑦 ≥ 0) =⇒ 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) = −𝑦 =⇒ (𝛿 ≥ (𝑥 − 𝑦) = ˆ𝛿) ∧ (𝛿 ≤ 0)
Case 3 (𝑥 < 0) ∧ (𝑦 < 0) =⇒ 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) = 0 =⇒ (𝛿 = 0 ≥ ˆ𝛿)

□

Lemma G.3. (Case c in Fig. 4) If ˆ𝛿 = 𝑥 −𝑦 where 𝑥,𝑦 ∈ R, ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏] and (Δ̂𝑙𝑏 < 0) ∧ (Δ̂𝑢𝑏 > 0)
then 𝛿 = 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) satisfies (𝜆𝛿

𝑙𝑏
· ˆ𝛿 + 𝜇𝛿

𝑙𝑏
≤ 𝛿) ∧ (𝛿 ≤ 𝜆𝛿

𝑢𝑏
· ˆ𝛿 + 𝜇𝛿

𝑢𝑏
) where 𝜆𝛿

𝑢𝑏
=

Δ̂𝑢𝑏

Δ̂𝑢𝑏−Δ̂𝑙𝑏

,

𝜆𝛿
𝑙𝑏

= − Δ̂𝑙𝑏

Δ̂𝑢𝑏−Δ̂𝑙𝑏

, −𝜇𝛿
𝑢𝑏

= 𝜇𝛿
𝑙𝑏
=

Δ̂𝑙𝑏×Δ̂𝑢𝑏

Δ̂𝑢𝑏−Δ̂𝑙𝑏

.

Proof. Lemma G.1 and lemma G.2 implies max(0, ˆ𝛿) ≥ 𝛿 . Next, we show 𝜆𝛿
𝑢𝑏
· ˆ𝛿+𝜇𝛿

𝑢𝑏
≥ max(0, ˆ𝛿).

(𝜆𝛿
𝑢𝑏

> 0) =⇒ (∀ ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏]) . (𝜆𝛿𝑢𝑏 · ˆ𝛿 + 𝜇𝛿
𝑢𝑏
≥ Δ̂𝑙𝑏 × Δ̂𝑢𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

+ 𝜇𝛿
𝑢𝑏

= 0)

(𝜆𝛿
𝑢𝑏
− 1 < 0) =⇒ (∀ ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏]). (𝜆𝛿𝑢𝑏 · ˆ𝛿 + 𝜇𝛿

𝑢𝑏
− ˆ𝛿 ≥ Δ̂𝑙𝑏 × Δ̂𝑢𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

+ 𝜇𝛿
𝑢𝑏

= 0)

(∀ ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏]). (𝜆𝛿𝑢𝑏 · ˆ𝛿 + 𝜇𝛿
𝑢𝑏
≥ max(0, ˆ𝛿)

Lemma G.1 and lemma G.2 implies 𝛿 ≥ min(0, ˆ𝛿). Next, we show min(0, ˆ𝛿) ≥ 𝜆𝛿
𝑙𝑏
· ˆ𝛿 + 𝜇𝛿

𝑙𝑏
.

(𝜆𝛿
𝑙𝑏

> 0) =⇒ (∀ ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏]) . (𝜆𝛿𝑙𝑏 · ˆ𝛿 + 𝜇𝛿
𝑙𝑏
≤ − Δ̂𝑙𝑏 × Δ̂𝑢𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

+ 𝜇𝛿
𝑙𝑏

= 0)

(𝜆𝛿
𝑙𝑏
− 1 < 0) =⇒ (∀ ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏]). (𝜆𝛿𝑙𝑏 · ˆ𝛿 + 𝜇𝛿

𝑙𝑏
− ˆ𝛿 ≤ Δ̂𝑙𝑏 × Δ̂𝑢𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

+ 𝜇𝛿
𝑙𝑏

= 0)

(∀ ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏]). (𝜆𝛿𝑙𝑏 · ˆ𝛿 + 𝜇𝛿
𝑙𝑏
≥ min(0, ˆ𝛿)

□

For the cases defined in Table 1, we compute the symbolic bounds 𝑦
𝑎,≤
𝑖

and 𝑦
𝑎,≥
𝑖

.

𝑥𝑎,𝑖− =⇒ (𝑦𝑎,≤
𝑖

= 𝑦
𝑎,≥
𝑖

= 0) 𝑥
𝑎,𝑖
+ =⇒ (𝑦𝑎,≤

𝑖
= 𝑦

𝑎,≥
𝑖

= 𝑥𝑎𝑖 ) (𝑥𝑎,𝑖± ) ∧ (𝑢𝑎,𝑥𝑖 ≥ −𝑙𝑎,𝑥𝑖 ) =⇒ (𝑦𝑎,≤
𝑖

= 𝑥𝑎𝑖 )

(𝑥𝑎,𝑖± ) ∧ (𝑢𝑎,𝑥𝑖 < −𝑙𝑎,𝑥𝑖 ) =⇒ (𝑦𝑎,≥
𝑖

= 0) (𝑥𝑎,𝑖± ) =⇒ (𝑦𝑎,≥
𝑖

=
𝑢𝑎,𝑥𝑖

𝑢𝑎,𝑥𝑖 − 𝑙𝑎,𝑥𝑖
· 𝑥𝑎𝑖 −

𝑢𝑎,𝑥𝑖 × 𝑙𝑎,𝑥𝑖
𝑢𝑎,𝑥𝑖 − 𝑙𝑎,𝑥𝑖

) (32)

Lemma G.4. (Correctness of symbolic bounds in Eq. 32) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖 ] then 𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 )
then 𝑦𝑎,≤

𝑖
≤ 𝑦𝑎𝑖 ≤ 𝑦

𝑎,≥
𝑖

where 𝑦𝑎,≤
𝑖

and 𝑦𝑎,≥
𝑖

defined in Eq. 32.

Proof. Refer to proof of Theorem 4.2 of [69]. □

Lemma 4.2. (Correctness of symbolic bounds in Table 2 and 3) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖 ], 𝑥𝑏𝑖 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖 ]
and 𝛿𝑎,𝑏𝑥𝑖 = (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ) ∈ [Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏
] and 𝛿𝑎,𝑏𝑦𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ) −𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) then 𝛿

𝑎,𝑏,≤
𝑦𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑦𝑖

where 𝛿𝑎,𝑏,≤𝑦𝑖 and 𝛿𝑎,𝑏,≥𝑦𝑖 defined in Table 2 and 3.
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Proof. We show in all 12 cases shown in Table 2 and Table 3 𝛿
𝑎,𝑏,≤
𝑦𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑦𝑖 holds.

• Case 1: 𝑥𝑎,𝑖− ∧ 𝑥𝑏,𝑖− =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 = 0) ∧ (𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 = 0)) =⇒ 𝛿
𝑎,𝑏
𝑦𝑖 = 0

• Case 2: 𝑥
𝑎,𝑖
+ ∧ 𝑥𝑏,𝑖+ =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ) = 𝑥𝑎𝑖 ) ∧ (𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) = 𝑥𝑏𝑖 ) =⇒ 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑥𝑎𝑖 − 𝑥𝑏𝑖 = 𝛿

𝑎,𝑏
𝑥𝑖 .

• Case 3: 𝑥
𝑎,𝑖
+ ∧ 𝑥𝑏,𝑖− =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ) = 𝑥𝑎𝑖 ) ∧ (𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) = 0) =⇒ 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑥𝑎𝑖 .

• Case 4: 𝑥𝑎,𝑖− ∧ 𝑥𝑏,𝑖+ =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ) = 0) ∧ (𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) = 𝑥𝑏𝑖 ) =⇒ 𝛿
𝑎,𝑏
𝑦𝑖 = −𝑥𝑏𝑖 .

• Case 5: 𝑥
𝑎,𝑖
± ∧ 𝑥𝑏,𝑖− =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) = 0) =⇒ 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑦𝑎𝑖 =⇒ 𝑦

𝑎,≤
𝑖
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝑦

𝑎,≥
𝑖

.

• Case 6: 𝑥𝑎,𝑖− ∧ 𝑥𝑏,𝑖± =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ) = 0) =⇒ 𝛿
𝑎,𝑏
𝑦𝑖 = −𝑦𝑏𝑖 =⇒ −𝑦𝑏,≥

𝑖
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ −𝑦

𝑏,≤
𝑖

.

• Case 7: 𝑥
𝑎,𝑖
± ∧ 𝑥𝑏,𝑖+ =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ) = 𝑥𝑏𝑖 ) =⇒ 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑦𝑎𝑖 − 𝑥𝑏𝑖 =⇒ 𝑦

𝑎,≤
𝑖
− 𝑥𝑏𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝑦

𝑎,≥
𝑖
− 𝑥𝑏𝑖 .

• Case 8: 𝑥
𝑎,𝑖
+ ∧ 𝑥𝑏,𝑖± =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ) = 𝑥𝑎𝑖 ) =⇒ 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑥𝑎𝑖 −𝑦𝑏𝑖 =⇒ 𝑥𝑎𝑖 −𝑦

𝑏,≥
𝑖
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝑥𝑎𝑖 −𝑦

𝑏,≤
𝑖

.

• Case 9: 𝑥
𝑎,𝑖
± ∧ 𝑥𝑏,𝑖± =⇒ 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑦𝑎𝑖 − 𝑦𝑏𝑖 =⇒ 𝑦

𝑎,≤
𝑖
− 𝑦𝑏,≥

𝑖
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝑦

𝑎,≥
𝑖
− 𝑦𝑏,≤

𝑖
.

• Case 10: 𝛿+ =⇒ 0 ≤ 𝛿
𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏
𝑥𝑖 from Lemma G.1.

• Case 11: 𝛿− =⇒ 𝛿
𝑎,𝑏
𝑥𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 0 from Lemma G.2.

• Case 12: 𝛿± =⇒ 𝜆𝛿
𝑙𝑏
𝛿
𝑎,𝑏
𝑥𝑖 + 𝜇𝛿𝑙𝑏 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝜆𝛿

𝑢𝑏
𝛿
𝑎,𝑏
𝑥𝑖 + 𝜇𝛿𝑢𝑏 from Lemma G.3.

□

Lemma 4.3. (Correctness of concrete bounds computed by the ReLU transformer) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖 ],
𝑥𝑏𝑖 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖 ] and 𝛿

𝑎,𝑏
𝑥𝑖 = (𝑥𝑎𝑖 − 𝑥𝑏𝑖 ) ∈ [Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏
], 𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 ), 𝑦𝑏𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 ), 𝛿

𝑎,𝑏
𝑦𝑖 =

𝑦𝑎𝑖 − 𝑦𝑏𝑖 then 𝑙𝑎,𝑦𝑖 ≤ 𝑦𝑎𝑖 ≤ 𝑢𝑎,𝑦𝑖 , 𝑙𝑏,𝑦𝑖 ≤ 𝑦𝑏𝑖 ≤ 𝑢𝑏,𝑦𝑖 , and Δ
𝑎,𝑏,𝑦𝑖

𝑙𝑏
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
where Δ𝑎,𝑏,𝑦𝑖

𝑙𝑏
and

Δ
𝑎,𝑏,𝑦𝑖

𝑢𝑏
computed by applying back-substitution on 𝛿𝑎,𝑏,≤𝑦𝑖 and 𝛿𝑎,𝑏,≥𝑦𝑖 respectively.

Proof. The concrete bounds 𝑙𝑎,𝑦𝑖 , 𝑙𝑏,𝑦𝑖 ,𝑢𝑎,𝑦𝑖 ,𝑢𝑏,𝑦𝑖 are obtained from the analysis of product DNN

with existing DNN abstract interpreter. The existing DNN abstract interpreter ensures the concrete

lower and upper bounds always satisfy the following - 𝑙𝑎,𝑦𝑖 ≤ 𝑦𝑎𝑖 ≤ 𝑢𝑎,𝑦𝑖 , 𝑙𝑏,𝑦𝑖 ≤ 𝑦𝑏𝑖 ≤ 𝑢𝑏,𝑦𝑖 . Now,

the concrete bounds Δ
𝑎,𝑏,𝑦𝑖

𝑙𝑏
and Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
are obtained with back-substitution starting with symbolic

bounds 𝛿
𝑎,𝑏,≤
𝑦𝑖 and 𝛿

𝑎,𝑏,≥
𝑦𝑖 respectively. From Lemma 4.2 we show that (𝛿𝑎,𝑏,≤𝑦𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ) ∧ (𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑦𝑖 )

holds. Since, (𝛿𝑎,𝑏,≤𝑦𝑖 ≤ 𝛿
𝑎,𝑏
𝑦𝑖 ) ∧ (𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑦𝑖 ) using Lemma E.1 we show that Δ

𝑎,𝑏,𝑦𝑖

𝑙𝑏
≤ 𝛿

𝑎,𝑏
𝑦𝑖 and

𝛿
𝑎,𝑏
𝑦𝑖 ≤ Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
. □

G.2 Proof of lemmas for DiffPoly Sigmoid and Tanh transformer
For the rest of this section, we assume the function 𝑔 : R→ R is differentiable everywhere. We use

𝑙𝑔′ and 𝑢𝑔′ to denote minimum and maximum value of 𝑔′ (derivative of 𝑔) for the range [𝑙, 𝑢] where
𝑙 = min(𝑙𝑎,𝑥𝑖 , 𝑙𝑏,𝑥𝑖 ) and 𝑢 = max(𝑢𝑎,𝑥𝑖 , 𝑢𝑏,𝑥𝑖 ). Here, 𝑙𝑔′ = min

𝑥∈[𝑙,𝑢 ]
𝑔′ (𝑥) and 𝑢𝑔′ = max

𝑥∈[𝑙,𝑢 ]
𝑔′ (𝑥)

Lemma G.5. If ˆ𝛿 = 𝑥 − 𝑦 where 𝑥,𝑦 ∈ R, ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏], 𝑥 ∈ [𝑙, 𝑢], 𝑦 ∈ [𝑙, 𝑢] and Δ̂𝑙𝑏 ≥ 0 then
𝛿 = 𝑔(𝑥) − 𝑔(𝑦) then (𝑙𝑔′ · ˆ𝛿 ≤ 𝛿) and (𝛿 ≤ 𝑢𝑔′ · ˆ𝛿) .

Proof. Since 𝑔 is differentiable everywhere by using the Mean Value Theorem

𝑔(𝑥) − 𝑔(𝑦)
𝑥 − 𝑦 = 𝑓 ′ (𝑐) where 𝑐 ∈ [𝑙, 𝑢]

𝑙𝑔′ ≤
𝑔(𝑥) − 𝑔(𝑦)

𝑥 − 𝑦 ≤ 𝑢𝑔′ (33)
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Now Δ̂𝑙𝑏 ≥ 0 =⇒ ˆ𝛿 ≥ 0 =⇒ (𝑥 − 𝑦) ≥ 0.

(𝑥 − 𝑦) ≥ 0 =⇒ (𝑙𝑔′ · (𝑥 − 𝑦) ≤ (𝑔(𝑥) − 𝑔(𝑦)) using Eq. 33

(𝑥 − 𝑦) ≥ 0 =⇒ ((𝑔(𝑥) − 𝑔(𝑦) ≤ 𝑢𝑔′ · (𝑥 − 𝑦)) using Eq. 33

□

Lemma G.6. If ˆ𝛿 = 𝑥 − 𝑦 where 𝑥,𝑦 ∈ R, ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏], 𝑥 ∈ [𝑙, 𝑢], 𝑦 ∈ [𝑙, 𝑢] and Δ̂𝑢𝑏 ≤ 0 then
𝛿 = 𝑔(𝑥) − 𝑔(𝑦) then (𝑢𝑔′ · ˆ𝛿 ≤ 𝛿) and (𝛿 ≤ 𝑙𝑔′ · ˆ𝛿) .

Proof. Now Δ̂𝑢𝑏 ≤ 0 =⇒ ˆ𝛿 ≤ 0 =⇒ (𝑥 − 𝑦) ≤ 0.

(𝑥 − 𝑦) ≤ 0 =⇒ (𝑢𝑔′ · (𝑥 − 𝑦) ≤ (𝑔(𝑥) − 𝑔(𝑦)) using Eq. 33

(𝑥 − 𝑦) ≤ 0 =⇒ ((𝑔(𝑥) − 𝑔(𝑦) ≤ 𝑙𝑔′ · (𝑥 − 𝑦)) using Eq. 33

□

Lemma G.7. If ˆ𝛿 = 𝑥 − 𝑦 where 𝑥,𝑦 ∈ R, ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏] and (Δ̂𝑙𝑏 < 0) and (Δ̂𝑢𝑏 > 0) then
𝛿 = 𝑔(𝑥) − 𝑔(𝑦) satisfies (𝜆𝛿

𝑙𝑏
· ˆ𝛿 + 𝜇𝛿

𝑙𝑏
≤ 𝛿) and (𝛿 ≤ 𝜆𝛿

𝑢𝑏
· ˆ𝛿 + 𝜇𝛿

𝑢𝑏
) where 𝜆𝛿

𝑢𝑏
=

𝑢𝑔′×Δ̂𝑢𝑏−𝑙𝑔′×Δ̂𝑙𝑏

Δ̂𝑢𝑏−Δ̂𝑙𝑏

,

𝜆𝛿
𝑙𝑏

=
𝑙𝑔′×Δ̂𝑢𝑏−𝑢𝑔′×Δ̂𝑙𝑏

Δ̂𝑢𝑏−Δ̂𝑙𝑏

, −𝜇𝛿
𝑢𝑏

= 𝜇𝛿
𝑙𝑏
=
(𝑢𝑔′−𝑙𝑔′ )×Δ̂𝑙𝑏×Δ̂𝑢𝑏

Δ̂𝑢𝑏−Δ̂𝑙𝑏

.

Proof. Lemma G.5 and lemma G.6 implies max(𝑙𝑔′ · ˆ𝛿,𝑢𝑔′ · ˆ𝛿) ≥ 𝛿 . Next, we show 𝜆𝛿
𝑢𝑏
· ˆ𝛿 + 𝜇𝛿

𝑢𝑏
≥

max(𝑙𝑔′ · ˆ𝛿,𝑢𝑔′ · ˆ𝛿).

(𝜆𝛿
𝑢𝑏
− 𝑙𝑔′ ) · ˆ𝛿 =

(𝑢𝑔′ − 𝑙𝑔′ ) × Δ̂𝑢𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

· ˆ𝛿 ≥
(𝑢𝑔′ − 𝑙𝑔′ ) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

=⇒ (𝜆𝛿
𝑢𝑏
− 𝑙𝑔′ ) · ˆ𝛿 + 𝜇𝛿

𝑢𝑏
≥
(𝑢𝑔′ − 𝑙𝑔′ ) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

+ 𝜇𝛿
𝑢𝑏

= 0

=⇒ 𝜆𝛿
𝑢𝑏
· ˆ𝛿 + +𝜇𝛿

𝑢𝑏
≥ 𝑙𝑔′ · ˆ𝛿 (34)

(𝜆𝛿
𝑢𝑏
− 𝑢𝑔′ ) · ˆ𝛿 =

(𝑢𝑔′ − 𝑙𝑔′ ) × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

· ˆ𝛿 ≥
(𝑢𝑔′ − 𝑙𝑔′ ) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

=⇒ (𝜆𝛿
𝑢𝑏
− 𝑢𝑔′ ) · ˆ𝛿 + 𝜇𝛿

𝑢𝑏
≥
(𝑢𝑔′ − 𝑙𝑔′ ) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

+ 𝜇𝛿
𝑢𝑏

= 0

=⇒ 𝜆𝛿
𝑢𝑏
· ˆ𝛿 + +𝜇𝛿

𝑢𝑏
≥ 𝑢𝑔′ · ˆ𝛿 (35)

Combining results from Eq. 34 and Eq. 35 we show that 𝜆𝛿
𝑢𝑏
· ˆ𝛿 + 𝜇𝛿

𝑢𝑏
≥ max(𝑙𝑔′ · ˆ𝛿,𝑢𝑔′ · ˆ𝛿) ≥ 𝛿 .

Lemma G.5 and lemma G.6 implies 𝛿 ≥ min(𝑙𝑔′ · ˆ𝛿,𝑢𝑔′ · ˆ𝛿).
Next, we show min(𝑙𝑔′ · ˆ𝛿,𝑢𝑔′ · ˆ𝛿) ≥ 𝜆𝛿

𝑙𝑏
· ˆ𝛿 + 𝜇𝛿

𝑙𝑏
.

(𝑙𝑔′ − 𝜆𝛿𝑢𝑏) · ˆ𝛿 =
(𝑢𝑔′ − 𝑙𝑔′ ) × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

· ˆ𝛿 ≥
(𝑢𝑔′ − 𝑙𝑔′ ) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

=⇒ (𝑙𝑔′ − 𝜆𝛿𝑢𝑏) · ˆ𝛿 − 𝜇𝛿
𝑙𝑏
≥
(𝑢𝑔′ − 𝑙𝑔′ ) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

− 𝜇𝛿
𝑙𝑏

= 0

=⇒ 𝑙𝑔′ · ˆ𝛿 ≥ 𝜆𝛿
𝑙𝑏
· ˆ𝛿 + +𝜇𝛿

𝑙𝑏
(36)
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(𝑢𝑔′ − 𝜆𝛿𝑢𝑏) · ˆ𝛿 =
(𝑢𝑔′ − 𝑙𝑔′ ) × Δ̂𝑢𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

· ˆ𝛿 ≥
(𝑢𝑔′ − 𝑙𝑔′ ) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

=⇒ (𝑢𝑔′ − 𝜆𝛿𝑢𝑏) · ˆ𝛿 − 𝜇𝛿
𝑙𝑏
≥
(𝑢𝑔′ − 𝑙𝑔′ ) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

− 𝜇𝛿
𝑙𝑏

= 0

=⇒ 𝑢𝑔′ · ˆ𝛿 ≥ 𝜆𝛿
𝑙𝑏
· ˆ𝛿 + +𝜇𝛿

𝑙𝑏
(37)

Combining results from Eq. 36 and Eq. 37 we show that 𝜆𝛿
𝑙𝑏
· ˆ𝛿 + 𝜇𝛿

𝑙𝑏
≤ min(𝑙𝑔′ · ˆ𝛿,𝑢𝑔′ · ˆ𝛿) ≤ 𝛿 . □

G.3 Proof of soundness for DiffPoly Affine transformer
Lemma G.8. For 𝑦 ← 𝑣 +∑𝑛

𝑖=1
𝑤𝑖 · 𝑥𝑖 and ∀𝑖 ∈ [𝑛] .(𝑥≤𝑖 ≤ 𝑥𝑖 ) ∧ (𝑥𝑖 ≤ 𝑥≥

𝑖
) then 𝑦 ≤ 𝑣 +∑𝑛

𝑖=1
𝑤+𝑖 ·

𝑥≥
𝑖
+∑𝑛

𝑖=1
𝑤−𝑖 · 𝑥≤𝑖 where 𝑣,𝑤1, . . .𝑤𝑛 ∈ R and𝑤−𝑖 = min(𝑤𝑖 , 0) and𝑤+𝑖 = max(𝑤𝑖 , 0).

Proof. 𝑤−𝑖 ≤ 0 =⇒ 𝑤−𝑖 · 𝑥𝑖 ≤ 𝑤−𝑖 · 𝑥≤𝑖 and 𝑤+𝑖 ≥ 0 =⇒ 𝑤+𝑖 · 𝑥𝑖 ≤ 𝑤+𝑖 · 𝑥≥𝑖 . Since
(∀𝑖 ∈ [𝑛]).(𝑤−𝑖 · 𝑥𝑖 +𝑤+𝑖 · 𝑥𝑖 = 𝑤𝑖 · 𝑥𝑖 ) then

𝑦 = 𝑣 +
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥𝑖 = 𝑣 +
𝑛∑︁
𝑖=1

𝑤−𝑖 · 𝑥𝑖 +𝑤+𝑖 · 𝑥𝑖 ≤ 𝑣 +
𝑛∑︁
𝑖=1

𝑤+𝑖 · 𝑥≥𝑖 +
𝑛∑︁
𝑖=1

𝑤−𝑖 · 𝑥≤𝑖

□

Lemma G.9. For 𝑦 ← 𝑣 +∑𝑛
𝑖=1

𝑤𝑖 · 𝑥𝑖 and ∀𝑖 ∈ [𝑛] .(𝑥≤𝑖 ≤ 𝑥𝑖 ) ∧ (𝑥𝑖 ≤ 𝑥≥
𝑖
) then 𝑦 ≥ 𝑣 +∑𝑛

𝑖=1
𝑤+𝑖 ·

𝑥≤
𝑖
+∑𝑛

𝑖=1
𝑤−𝑖 · 𝑥≥𝑖 where 𝑣,𝑤1, . . .𝑤𝑛 ∈ R and𝑤−𝑖 = min(𝑤𝑖 , 0) and𝑤+𝑖 = max(𝑤𝑖 , 0).

Proof. 𝑤−𝑖 ≤ 0 =⇒ 𝑤−𝑖 · 𝑥𝑖 ≥ 𝑤−𝑖 · 𝑥≥𝑖 and 𝑤+𝑖 ≥ 0 =⇒ 𝑤+𝑖 · 𝑥𝑖 ≥ 𝑤+𝑖 · 𝑥≤𝑖 . Since
(∀𝑖 ∈ [𝑛]).(𝑤−𝑖 · 𝑥𝑖 +𝑤+𝑖 · 𝑥𝑖 = 𝑤𝑖 · 𝑥𝑖 ) then

𝑦 = 𝑣 +
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥𝑖 = 𝑣 +
𝑛∑︁
𝑖=1

𝑤−𝑖 · 𝑥𝑖 +𝑤+𝑖 · 𝑥𝑖 ≥ 𝑣 +
𝑛∑︁
𝑖=1

𝑤−𝑖 · 𝑥≥𝑖 +
𝑛∑︁
𝑖=1

𝑤+𝑖 · 𝑥≤𝑖

□

Lemma F.4. (Correctness of symbolic bounds computed by the affine transformer) If ∀𝑗 ∈ [𝑖] . 𝑥𝑎𝑗 ∈
[𝑙𝑎,𝑥 𝑗

, 𝑢𝑎,𝑥 𝑗
], ∀𝑗 ∈ [𝑖] . 𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗

, 𝑢𝑏,𝑥 𝑗
] and ∀𝑗 ∈ [𝑖] . 𝛿𝑎,𝑏𝑥 𝑗

∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
] and 𝑥𝑎𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 ·

𝑥𝑎𝑗 , 𝑥
𝑏
𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 · 𝑥𝑏𝑗 , and 𝛿

𝑎,𝑏
𝑥𝑖+1 = (𝑥𝑎𝑖+1 − 𝑥𝑏𝑖+1) then 𝑥

𝑎,≤
𝑖+1 ≤ 𝑥𝑎𝑖+1 ≤ 𝑥

𝑎,≥
𝑖+1 , 𝑥

𝑏,≤
𝑖+1 ≤ 𝑥𝑏𝑖+1 ≤ 𝑥

𝑏,≥
𝑖+1 and

𝛿
𝑎,𝑏,≤
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖+1 where 𝑥𝑎,≤

𝑖+1 , 𝑥
𝑎,≥
𝑖+1 , 𝑥

𝑏,≤
𝑖+1 , 𝑥

𝑏,≥
𝑖+1 , 𝛿

𝑎,𝑏,≤
𝑥𝑖+1 and 𝛿𝑎,𝑏,≥𝑥𝑖+1 defined in Eq. 8.

Proof. We use the results of Lemma G.8 and Lemma G.8 to show the correctness of the symbolic

bounds.

(𝑥𝑎𝑖+1 ≤ 𝑥
𝑎,≥
𝑖+1 ) ∧ (𝑥

𝑏
𝑖+1 ≤ 𝑥

𝑏,≥
𝑖+1 ) ∧ (𝛿

𝑎,𝑏
𝑥𝑖+1 ≤ 𝛿𝑎,𝑏,≥𝑥𝑖+1 ) From lemma G.8

(𝑥𝑎𝑖+1 ≥ 𝑥
𝑎,≤
𝑖+1 ) ∧ (𝑥

𝑏
𝑖+1 ≥ 𝑥

𝑏,≤
𝑖+1 ) ∧ (𝛿

𝑎,𝑏
𝑥𝑖+1 ≥ 𝛿𝑎,𝑏,≤𝑥𝑖+1 ) From lemma G.9

□

Lemma F.5. (Correctness of concrete bounds computed by the affine transformer) If ∀𝑗 ∈ [𝑖] . 𝑥𝑎𝑗 ∈
[𝑙𝑎,𝑥 𝑗

, 𝑢𝑎,𝑥 𝑗
], ∀𝑗 ∈ [𝑖] . 𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗

, 𝑢𝑏,𝑥 𝑗
] and ∀𝑗 ∈ [𝑖] . 𝛿𝑎,𝑏𝑥 𝑗

∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
] and 𝑥𝑎𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 ·

𝑥𝑎𝑗 , 𝑥
𝑏
𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 · 𝑥𝑏𝑗 , and 𝛿

𝑎,𝑏
𝑥𝑖+1 = (𝑥𝑎𝑖+1 −𝑥𝑏𝑖+1) then 𝑙𝑎,𝑥𝑖+1 ≤ 𝑥𝑎𝑖+1 ≤ 𝑢𝑎,𝑥𝑖+1 , 𝑙𝑏,𝑥𝑖+1 ≤ 𝑥𝑏𝑖+1 ≤ 𝑢𝑏,𝑥𝑖+1

and Δ𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

≤ 𝛿
𝑎,𝑏
𝑥𝑖+1 ≤ Δ𝑎,𝑏,𝑥𝑖+1

𝑢𝑏
.
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Proof. The concrete bounds 𝑙𝑎,𝑥𝑖+1 , 𝑙𝑏,𝑥𝑖+1 , 𝑢𝑎,𝑥𝑖+1 , 𝑢𝑏,𝑥𝑖+1 are obtained from the analysis of product

DNN with existing DNN abstract interpreter. The existing DNN abstract interpreter ensures the

concrete lower and upper bounds always satisfy the following - 𝑙𝑎,𝑥𝑖+1 ≤ 𝑥𝑎𝑖+1 ≤ 𝑢𝑎,𝑥𝑖+1 , 𝑙𝑏,𝑥𝑖+1 ≤
𝑥𝑏𝑖+1 ≤ 𝑢𝑏,𝑥𝑖+1 . Now, the concrete bounds Δ

𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

and Δ𝑎,𝑏,𝑥𝑖+1
𝑢𝑏

are obtained with back-substitution

starting with symbolic bounds 𝛿
𝑎,𝑏,≤
𝑥𝑖+1 and 𝛿

𝑎,𝑏,≥
𝑥𝑖+1 respectively. From Lemma F.4 we show that (𝛿𝑎,𝑏,≤𝑥𝑖+1 ≤

𝛿
𝑎,𝑏
𝑥𝑖+1 ) ∧ (𝛿

𝑎,𝑏
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖+1 ) holds. Since, (𝛿

𝑎,𝑏,≤
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏
𝑥𝑖+1 ) ∧ (𝛿

𝑎,𝑏
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖+1 ) using Lemma E.1 we show

that Δ𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

≤ 𝛿
𝑎,𝑏
𝑥𝑖+1 and 𝛿

𝑎,𝑏
𝑥𝑖+1 ≤ Δ𝑎,𝑏,𝑥𝑖+1

𝑢𝑏
. □

G.4 Specific MILP encoding UAP, hamming distance and targeted UAP
UAP MILP objective encoding

min

(𝑌1,...,𝑌𝑘 )

𝑘∑︁
𝑖=1

𝑧𝑖 s.t.

𝑥𝑖, 𝑗 = 𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘 ) =
(
𝐶𝑇
𝑖,𝑗𝑌𝑖 ≥ 0

)
𝑗 ∈ [𝑛𝑙 ] and 𝐶𝑖, 𝑗 from Eq. 12

𝑧𝑖 =

(
𝑛𝑙∑︁
𝑗=1

𝑥𝑖, 𝑗 ≥ 𝑛𝑙

)
𝑖 ∈ [𝑘]

Hamming distance MILP objective encoding

max

(𝑌1,...,𝑌𝑘 )
𝑘 −

𝑘∑︁
𝑖=1

𝑧𝑖 s.t.

𝑥𝑖, 𝑗 = 𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘 ) =
(
𝐶𝑇
𝑖,𝑗𝑌𝑖 ≥ 0

)
𝑗 ∈ [𝑛𝑙 ] and 𝐶𝑖, 𝑗 from Eq. 12

𝑧𝑖 =

(
𝑛𝑙∑︁
𝑗=1

𝑥𝑖, 𝑗 ≥ 𝑛𝑙

)
𝑖 ∈ [𝑘]

Targeted UAP MILP objective encoding

min

(𝑌1,...,𝑌𝑘 )

𝑘∑︁
𝑖=1

𝑧𝑖 s.t.

𝑥𝑖, 𝑗 = 𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘 ) =
(
𝐶𝑇
𝑖,𝑗𝑌𝑖 ≥ 0

)
𝑗 ∈ [𝑛𝑙 ] and 𝐶𝑖, 𝑗 from Eq. 13

𝑧𝑖 =

(
𝑛𝑙∑︁
𝑗=1

𝑥𝑖, 𝑗 ≥ 0

)
𝑖 ∈ [𝑘]

G.5 Generalization of DiffPoly
In this section, we discuss how DiffPoly can be generalized for computing bounds on any general

linear combination specified by of the layerwise outputs of any 𝑘 DNN executions. This will enable

us to handle relational properties where the cross-execution input constraint bounds a general linear

combination of inputs used in different executions rather than bounding pairwise input differences.

However, to the best of our knowledge, for most of the common DNN relational properties, the

cross-execution input constraints are limited to bounding differences. For 𝑘 executions, the general
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form of cross-execution input constraint is as follows where 𝑋1, . . . , 𝑋𝑘 ∈ R𝑛0
are inputs to 𝑘

executions and 𝑎1, · · · , 𝑎𝑘 ∈ R are constant real numbers and 𝐿 ∈ R𝑛0
and𝑈 are constant vectors:

𝐿 ≤
𝑘∑︁
𝑖=1

𝑎𝑖 · 𝑋𝑖 ≤ 𝑈 (38)

We consider 𝑘 copies of the same variable < 𝑥1

𝑖 , . . . , 𝑥
𝑘
𝑖 > one from from each of 𝑘 executions and

use 𝛿𝑥𝑖 to denote linear combination of all 𝑥
𝑗

𝑖
where 𝑗 ∈ [𝑘] i.e. 𝛿𝑥𝑖 =

∑𝑘
𝑗=1

𝑎 𝑗 · 𝑥 𝑗

𝑖
. Now, similar

to DiffPoly, we discuss how we handle affine and activation assignments involving the variables

< 𝑥1

1
, . . . , 𝑥𝑘

1
> . . .< 𝑥1

𝑛, . . . , 𝑥
𝑘
𝑛 > and compute symbolic and concrete bounds on 𝛿𝑥𝑖 =

∑𝑘
𝑗=1

𝑎 𝑗 · 𝑥 𝑗

𝑖

for each variable in 𝑁 where 𝑎 𝑗 s are fixed reals. The symbolic bounds follow the same format as de

Affine assignments:We consider the following 𝑘 affine assignments.

𝑥1

𝑛+1 ←
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥1

𝑖 + 𝑏 𝑥2

𝑛+1 ←
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥2

𝑖 + 𝑏

. . . . . .

𝑥𝑘−1

𝑛+1 ←
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥𝑘−1

𝑖 + 𝑏 𝑥𝑘𝑛+1 ←
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥𝑘𝑖 + 𝑏

Then if 𝛿𝑥𝑛+1 =
∑𝑘

𝑗=1
𝑎 𝑗 · 𝑥 𝑗

𝑛+1 then 𝛿𝑥𝑛+1 =
∑𝑛

𝑖=1
𝑤𝑖 · 𝛿𝑥𝑖 + 𝑏 ·

∑𝑘
𝑖=1

𝑎𝑖 . Given, 𝛿
𝑥
𝑛+1 is already a linear

function of 𝛿𝑥𝑗 where 𝑗 ∈ 𝑛, the symbolic bounds 𝛿𝑥𝑛+1 can directly computed as shown below

𝛿
𝑥,≤
𝑛+1 = 𝛿

𝑥,≥
𝑛+1 =

𝑛∑︁
𝑖=1

𝑤𝑖 · 𝛿𝑥𝑖 + 𝑏 ·
𝑘∑︁
𝑖=1

𝑎𝑖

The concrete bounds of 𝛿𝑥𝑛+1 in this case are obtained by back substitution.

Non-linear activation assignments: We consider the following 𝑘 assignments involving a non-

linear activation 𝜎 : R→ R like ReLU, Sigmoid, Tanh, etc.

𝑦1

𝑛 ← 𝜎 (𝑥1

𝑛) 𝑦2

𝑛 ← 𝜎 (𝑥2

𝑛)
. . . . . .

𝑦𝑘−1

𝑛 ← 𝜎 (𝑥𝑘−1

𝑛 ) 𝑦𝑘𝑛 ← 𝜎 (𝑥𝑘𝑛 )

Let, 𝑙 = min𝑖∈[𝑘 ] 𝑙
𝑖
𝑛 and 𝑢 = max𝑖∈[𝑘 ] 𝑢

𝑖
𝑛 where for all 𝑖 ∈ [𝑘] 𝑙𝑖𝑛 ≤ 𝑥𝑖𝑛 ≤ 𝑢𝑖𝑛 . Next, we use the linear

overapproximation of popular activation functions including ReLU, Sigmoid and Tanh used in

DeepZ [68] utilizing the bounds 𝑙, 𝑢. Given, 𝑙 and 𝑢 DeepZ computes linear bounds specified by

𝜆𝜎 , 𝜇 such that 𝜇 ≥ 0for all 𝑥 ∈ [𝑙, 𝑢] following inequalities holds:
𝜆𝜎 · 𝑥 − 𝜇 ≤ 𝜎 (𝑥) ≤ 𝜆𝜎 · 𝑥 + 𝜇

Now we will compute the symbolic bounds for 𝛿
𝑦
𝑛 =

∑𝑘
𝑖=1

𝑎𝑖 · 𝑦𝑖𝑛 . For all 𝑥 ∈ [𝑙, 𝑢] and real number

𝑎 ∈ R following inequality holds

𝑎 · 𝜆𝜎 · 𝑥 − |𝑎 | · 𝜇 ≤ 𝑎 · 𝜎 (𝑥) ≤ 𝑎 · 𝜆𝜎 · 𝑥 + |𝑎 | · 𝜇

Given for all 𝑖 ∈ [𝑘] 𝑙 ≤ 𝑥𝑖𝑛 ≤ 𝑢, then

𝑎𝑖 · 𝜆𝜎 · 𝑥𝑖 − |𝑎𝑖 | · 𝜇 ≤ 𝑎𝑖 · 𝜎 (𝑥𝑛𝑖 ) ≤ 𝑎𝑖 · 𝜆𝜎 · 𝑥 + |𝑎𝑖 | · 𝜇 ∀𝑖 ∈ [𝑘]
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Symbolic bounds of 𝛿
𝑦
𝑛 are as follows:(

𝑘∑︁
𝑖=1

𝑎𝑖 · 𝜆𝜎 · 𝑥𝑖𝑛 − |𝑎𝑖 |
)
· 𝜇) ≤

𝑘∑︁
𝑖=1

𝑎𝑖 · 𝜎 (𝑥𝑛𝑖 ) ≤
(

𝑘∑︁
𝑖=1

𝑎𝑖 · 𝜆𝜎 · 𝑥 + |𝑎𝑖 | · 𝜇
)

𝜆𝜎𝛿
𝑥𝑛 − 𝜇 ·

𝑘∑︁
𝑖=1

|𝑎𝑖 | ≤ 𝛿
𝑦
𝑛 ≤ 𝜆𝜎𝛿

𝑥𝑛 + 𝜇 ·
𝑘∑︁
𝑖=1

|𝑎𝑖 |

The concrete bounds of 𝛿𝑥𝑛+1 in this case are obtained by back substitution.
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H ADDITIONAL EXPERIMENTS

H.1 Targeted UAP Verification
In this section, we show results for the targeted UAP verification problem. We see that RaVeN

outperforms both baselines significantly. Figure 15 shows RaVeN and baseline approaches perfor-

mance on each class with a standardly trained ConvSmall network on CIFAR10 with 𝜖 = 4/255. For

example, when targeting the 8th label we see that RaVeN achieves an average worst-case accuracy

of 70% compared to 33% achieved by the two baselines.

Fig. 15. Average Worst case targeted UAP accuracy over all classes for ConvSmall on CIFAR10 with 𝜖 = 4/255

H.2 Ablation on using different Individual Verifiers
In this section, we show results using DeepPoly [69] instead of DeepZ [68]. Similarly to when using

DeepZ we see that RaVeN obtains better performance when compared the the baselines for all

networks and 𝜖s.

(a) IBP-Small (MNIST) (b) ConvSmall (MNIST) (c) IBP (MNIST) (d) ConvBig (MNIST)

Fig. 16. RaVeN results with DeepPoly as the baseline verifier.

H.3 RaVeN Layerwise Formulation Runtimes
In Table 7, we show the runtime comparision of RaVeN Layerwise (LW) formulation and RaVeN

with difference constraints on networks shown in Figure 11. We note that the primary increase in

computation time we observe comes from running DiffPoly. For networks which incur additional

cost in MILP time with difference constraints (RaVeN MILP Time vs Layerwise MILP Time) we

believe that the increase in performance justifies this cost. For example, for hamming distance

verification, RaVeN Layerwise does not improve over the two baseline approaches. Only by adding

the difference constraints do we see a performance jump over the baselines.
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Table 7. Runtime Comparison of RaVeN Layerwise formulation and RaVeN with difference constraints

Dataset Model Ind. Veri. I/O Form. RaVeN RaVeN LW RaVeN MILP Time LW MILP Time

MNIST IBP-Small 0.04 0.12 1.98 1.01 1.06 0.96

MNIST ConvSmall 0.30 0.38 7.40 4.98 4.06 4.66

CIFAR10 IBP-Small 0.29 0.47 8.39 3.94 5.03 3.63

MNIST Hamming (Sigmoid) 0.03 0.13 1.41 0.46 1.34 0.45
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