
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Input-Relational Verification of Deep Neural Networks
DEBANGSHU BANERJEE, University of Illinois Urbana-Champaign, USA

CHANGMING XU, University of Illinois Urbana-Champaign, USA

GAGANDEEP SINGH, University of Illinois Urbana-Champaign and VMware Research, USA

We consider the verification of input-relational properties defined over deep neural networks (DNNs) such

as robustness against universal adversarial perturbations, monotonicity, etc. Precise verification of these

properties requires reasoning about multiple executions of the same DNN. We introduce a novel concept of

difference tracking to compute the difference between the outputs of two executions of the same DNN at

all layers. We design a new abstract domain, DiffPoly for efficient difference tracking that can scale large

DNNs. DiffPoly is equipped with custom abstract transformers for common activation functions (ReLU, Tanh,

Sigmoid, etc.) and affine layers and can create precise linear cross-execution constraints. We implement an

input-relational verifier for DNNs called RaVeN which uses DiffPoly and linear program formulations to

handle a wide range of input-relational properties. Our experimental results on challenging benchmarks

show that by leveraging precise linear constraints defined over multiple executions of the DNN, RaVeN gains

substantial precision over baselines on a wide range of datasets, networks, and input-relational properties.

CCS Concepts: • Theory of computation→ Program verification; Abstraction; • Computing method-
ologies→ Neural networks.

Additional Key Words and Phrases: Abstract Interpretation, Deep Learning, Relational Verification

1 INTRODUCTION
Deep neural networks (DNNs) have become more powerful and widespread over the past few years

and have now penetrated almost all fields and application areas including safety-critical domains

such as autonomous driving [10] or medical diagnosis [2], etc. Especially in these domains, the

decisions generated from these DNNs are important and mistakes can have grave consequences.

However, it can be hard to reason about DNNs as they are constructed in a black-box manner and

have highly nonlinear behavior. As such, although the machine learning community has made

great strides towards discovering and defending against DNN vulnerabilities [33, 50, 54, 60, 72, 84],

these methods cannot guarantee safety. As a result, there has been a lot of work on verifying the

safety properties of DNNs [3, 4, 6, 13, 14, 22, 32, 38, 39, 43, 56–58, 67, 68, 70, 75, 76, 82, 83, 86, 87, 89].

Despite this progress, existing DNN verification techniques can be imprecise for input-relational

properties that arise in many practical scenarios. For example, most existing works mentioned

above focus on verifying the absence of an adversarial attack (imperceptible perturbations added

to an input) around a local neighborhood of test inputs. Recent work [46] has shown that attacks

against individual inputs can be unrealistic as they rely on the attacker having perfect knowledge

of the inputs processed by the DNN and being able to create perturbations specialized for that

input. Indeed, many practical attack scenarios [46, 47, 49] involve constructing universal adversarial

perturbations (UAPs) [54] that can work against a set of inputs. Other interesting input-relational

properties that have become popular in recent years include monotonicity [74], and fairness

[40]. Efficient verification of input-relational properties requires reasoning about the relationship

between multiple executions of the same DNN. Existing verifiers lack these capabilities and as a

result, are not precise. For the remainder of this paper, relational will refer to input-relational.

This Work. In this work, we propose a framework for verifying the relational properties of DNNs

- RaVeN (Relational Verifier of Neural Networks). To the best of our knowledge, RaVeN is the first

framework to verify a broad range of relational properties defined over multiple executions of the

Authors’ addresses: Debangshu Banerjee, University of Illinois Urbana-Champaign, USA; Changming Xu, University of

Illinois Urbana-Champaign, USA; Gagandeep Singh, University of Illinois Urbana-Champaign and VMware Research, USA.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

same DNN. Next, we detail the key technical contributions that allow RaVeN to verify relational

properties that state-of-the-art verifiers [68, 69, 88] cannot.

Main Contributions. Our main contributions are:

• A new abstract domain, DiffPoly with custom abstract transforms for affine and activation (ReLU,

Sigmoid, Tanh, etc.) layers allowing us to efficiently compute precise lower and upper bounds of

the difference between the outputs of a pair of DNN executions at each layer.

• A verification framework, RaVeN, which leverages the DiffPoly analysis to compute precise

layerwise linear constraints over outputs from different executions of the DNN. These cross-

execution linear constraints allow us to capture linear dependencies between the outputs of

different DNN executions at each layer, making RaVeN more precise than existing state-of-the-

art verifiers [68, 69, 88] which do not track linear dependencies at all layers. We use the linear

constraints from DiffPoly analysis to formulate a mixed-integer linear program (MILP) (Section 4).

We formally prove the soundness of RaVeN in Section 4.7.

• A complete implementation of RaVeN, including DiffPoly and MILP formulations capable of

handling diverse relational properties defined over the same DNNs with the popular feedforward

architectures and common activation functions like ReLU, Sigmoid, Tanh, etc.

• An extensive evaluation of RaVeN on a range of popular datasets, challenging fully-connected

and convolutional networks, and diverse relational properties (e.g., UAP verification, mono-

tonicity). Our results demonstrate that RaVeN achieves notably higher precision compared to

prior approaches and can verify relational properties that are beyond the capabilities of current

state-of-the-art verifiers (Section 5).

Our research can serve as a foundation for advancing relational verification in DNNs. Notably, our

results indicate that DNNs exhibit improved provable robustness against universal attacks (UAPs),

which are more realistic, compared to individual attacks. Recent studies [49, 85] demonstrate

that defending against UAPs enhances accuracy and empirical robustness more effectively than

defending against individual attacks [50]. In the future, integrating RaVeN into the training loop

[52, 55, 90] can lead to DNNs with superior accuracy and provable robustness against UAPs. The

supplementary materials
1
and code

2
are publicly available.

2 BACKGROUND
In this section, we present the essential background and notation used in this paper. Throughout

the subsequent sections, lowercase letters (𝑎, 𝑏, etc.) denote scalars, while uppercase letters (𝐴, 𝐵,

etc.) and the over barred lowercase letters (𝑎, ¯𝑏, etc.) represent vectors and matrices.

Neural Networks: We primarily focus on feed-forward neural networks. However, since we

use linear bound propagation techniques, similar to [86], our method can be extended to other

architectures that can be expressed as DAGs (directed acyclic graphs). We use "DNN" to refer

specifically to feed-forward neural networks. These DNNs, denoted as𝑁 : R𝑛0 → R𝑛𝑙
, are composed

of 𝑙 sequential layers 𝑁1, . . . , 𝑁𝑙 , where each 𝑁𝑖 : R𝑛𝑖−1 → R𝑛𝑖
is a function. Each layer 𝑁𝑖 applies

either an affine function (convolution or linear function) or a non-linear activation function, such

as ReLU, Sigmoid, or Tanh. Affine layers, represented as 𝑁𝑖 : R𝑛𝑖−1 −→ R𝑛𝑖
, are defined by

𝑁𝑖 (𝑥) = 𝐴𝑖 · 𝑋 + 𝐵𝑖 , where 𝐴𝑖 is the weight matrix, and 𝐵𝑖 is the bias vector.

2.1 Relational Verification of DNN
For a network 𝑁 : 𝑅𝑛0 → 𝑅𝑛𝑙 and a relational property defined over DNN inferences on 𝑘 inputs,

the input specification Φ : R𝑛0×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} is a boolean predicate. It encodes the input region

1
The latest version of the paper with appendix can be found at https://focallab.org/files/raven.pdf

2
The code for RaVeN can be found at https://github.com/uiuc-focal-lab/RaVeN.

https://focallab.org/files/raven.pdf
https://github.com/uiuc-focal-lab/RaVeN

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Input-Relational Verification of Deep Neural Networks 3

Φ𝑡 ⊆ R𝑛0×𝑘
encompassing all potential inputs corresponding to each of the 𝑘 DNN inferences. For

any 𝑋 ∈ R𝑛0×𝑘
satisfying Φ, 𝑋 = (𝑋1, . . . , 𝑋𝑘) is a tuple of 𝑘 points where ∀𝑖 ∈ [𝑘] .𝑋𝑖 ∈ 𝑅𝑛0

and 𝑋𝑖

is the input of the 𝑖-th DNN inference. Common DNN relational properties e.g. UAP verification

[88], monotonicity [74], etc. can be encoded as the conjunction of 𝑘 individual input specifications

𝜙𝑖
𝑖𝑛 : R𝑛0 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} and cross-execution input specification Φ𝛿

: R𝑛0×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}.
Each 𝜙𝑖

𝑖𝑛 : R𝑛0 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} defines the input region 𝜙𝑖
𝑡 ⊆ R𝑛0

for 𝑖-th execution. Meanwhile,

Φ𝛿
captures relationships between inputs used in distinct executions. Commonly Φ𝛿

bounds the

difference between any pair of inputs 𝑋𝑖 , 𝑋 𝑗 ∈ R𝑛0
used in different executions such as 𝐿𝑖, 𝑗 ≤

𝑋𝑖 − 𝑋 𝑗 ≤ 𝑈𝑖, 𝑗 where 𝐿𝑖, 𝑗 ,𝑈𝑖, 𝑗 ∈ R𝑛0
are constant real vectors. Individual input regions 𝜙𝑖

𝑡 are in

general 𝐿∞ regions [16] i.e. all𝑋𝑖 ∈ R𝑛0
such that ∥𝑋𝑖 −𝑋 ∗𝑖 ∥∞ ≤ 𝜖 around a concrete point𝑋 ∗𝑖 ∈ R𝑛0

with 𝜖 ∈ R+. For any pair of inputs 𝑋𝑖 , 𝑋 𝑗 ∈ R𝑛0
, the cross-execution input specification between

them 𝜙𝛿
𝑖,𝑗

are given by - 𝜙𝛿
𝑖,𝑗
(𝑋𝑖 , 𝑋 𝑗) = (𝐿𝑖, 𝑗 ≤ 𝑋𝑖 − 𝑋 𝑗) ∧ (𝑋𝑖 − 𝑋 𝑗 ≤ 𝑈𝑖, 𝑗). The output specification

for relational properties is a boolean predicate Ψ : R𝑛𝑙×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} defined over the outputs

of all 𝑘 DNN inferences. In this work, we consider output specifications Ψ that can be expressed as

a logical formula in CNF (conjunctive normal form) with𝑚 clauses where each clause𝜓𝑖 is of the

form below 𝐶𝑖, 𝑗,𝑖′ ∈ R𝑛𝑙
:

𝜓𝑖 (𝑌1, . . . , 𝑌𝑘) =
𝑛∨
𝑗=1

𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘) where𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘) =
(

𝑘∑︁
𝑖′=1

𝐶𝑇𝑖,𝑗,𝑖′𝑌𝑖′ ≥ 0

)
Definition 2.1 (DNN Relational Verification Problem). The relational verification problem for

a DNN 𝑁 : R𝑛0 → R𝑛𝑙
, an input specification Φ : R𝑛0×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} and an output spec-

ification Ψ : R𝑛𝑙×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} is to prove whether ∀𝑋1, . . . , 𝑋𝑘 ∈ R𝑛0 .Φ(𝑋1, . . . , 𝑋𝑘) =⇒
Ψ(𝑁 (𝑋1), . . . 𝑁 (𝑋𝑘)) or provide a counterexample otherwise.

2.2 Interesting Relational Properties of DNNs
UAP Verification. UAP verification problem verifies whether there exists a single perturbation that

can be added to 𝑘 DNN inputs to make it misclassify all of them. The UAP verification problem is

fundamentally different from the commonly considered local 𝐿∞ robustness verification where the

adversary can perturb each input independently. However, as shown in recent studies [46, 47, 49]

generating input-specific adversarial perturbation is unrealistic, and practical attacks require

finding adversarial perturbation that works for a set of inputs instead of a single input. These works

suggest that considering robustness against input-specific adversarial attacks is too conservative

and presents a pessimistic view of practical DNN robustness. Since the adversarial perturbation

is common across a set of inputs, the UAP verification problem requires a relational verifier that

can exploit the dependency between perturbed inputs. We provide the input specification Φ and

the output specification Ψ of the UAP verification problem in Appendix A.3. We describe another

variation of UAP: targeted UAP in Appendix A.4.

Worst-case UAP accuracy: In general, for a given 𝑁 , finding an adversarial perturbation that

works for all inputs in a set is hard. However, an adversarial perturbation affecting a significant

proportion of inputs also poses a threat to the DNN. Hence, most of the existing works compute

the worst-case accuracy [88] of the DNN on an input set in the presence of a UAP adversary. The

formal definition of worst-case UAP accuracy is as follows.

Definition 2.2 (Worst-case UAP accuracy). Given a DNN 𝑁 , a set of inputs 𝐼 = {𝑋1, . . . , 𝑋𝑘 },
target outputs 𝑂 = {𝑌1, . . . , 𝑌𝑘 } and perturbation norm bound 𝜖 ∈ R the worst case UAP of 𝑁 is

𝑎∗ = 1/𝑘 min∥𝑉 ∥∞≤𝜖
∑𝑘

𝑖=1
(𝑁 (𝑋𝑖 +𝑉) = 𝑌𝑖) where 𝑉 is the added perturbation.

Monotonicity Verification. Recent works have shown that local monotonicity of DNNs is in-

teresting and verification for monotonic properties is desirable [21, 61]. This property asserts a

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

Fig. 1. The overview of the proposed sound and incomplete RaVeN verifier. Given a network 𝑁 and a
relational property (Φ,Ψ) relating 𝑘 DNN inferences we show the flow of RaVeN along with the key steps -
(i) constructing the product DNN by duplicating 𝑁 𝑘 times and analyzing the product DNN with an existing
DNN abstract interpreter, (ii) computing pairwise differences of outputs of all 𝑘 inferences at each layer
with DiffPoly analysis that uses concrete lower and upper bounds of each variable in the product DNN,
(iii) combining DiffPoly analysis and product DNN analysis with an existing DNN abstract interpreter to
infer layerwise linear constraints over outputs of all 𝑘 DNN executions that preserves dependencies between
different DNN executions, (iv) encoding the postcondition as a MILP objective and formulate MILP with
layerwise linear constraints computed in step (iii). Finally, we use an off-the-shelf MILP solver [35] to verify
the relational property by solving the corresponding MILP.

monotonic relationship between an input feature and the output. For instance, in predicting housing

prices, a monotonic property could stipulate that a house with more rooms is consistently more

expensive than a house with fewer rooms. We encode monotonicity as a relational property over a

pair of DNN executions in Appendix A.6.

Hamming Distance. The Hamming distance between two strings is the number of substitutions

needed to turn one string into the other [36]. Given a binary string (a list of images of binary

digits), we want to formally verify the worst-case bounds on the hamming distance between the

original binary string and classified binary string where each image of the binary digits can be

perturbed by a common perturbation (formal definition in Appendix A.5). Hamming Distance

serves as a valuable metric for tasks involving input string processing [62], like text comprehension

or CAPTCHA solving.

Further Relational Verification Problems. Other than the properties described above, another

interesting DNN property is fairness verification [40]. In fairness verification, we want to show

a change in a sensitive feature does not change the output (i.e. the model is fair and unbiased

towards that feature). We can encode the problem similarly to the monotonicity verification problem

presented in the paper and verify it using RaVeN.

3 OVERVIEW
Fig. 1 illustrates the high-level idea behind the workings of RaVeN. It takes, as input, the DNN 𝑁

and a relational property (Φ,Ψ) defined over 𝑘 inferences of 𝑁 . RaVeN computes a product DNN

with 𝑘 copies (one for each inference) of network 𝑁 and runs existing DNN abstract interpreters

[68, 69, 87] on each copy of 𝑁 to obtain concrete lower and upper bounds of each variable in the

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Input-Relational Verification of Deep Neural Networks 5

product DNN. However, the existing abstract interpreters analyze each DNN execution in isolation

and as a result, fail to preserve the dependencies between outputs of different DNN executions. One

of our key contributions is the design of a new abstract domain DiffPoly that can efficiently compute

precise lower and upper bounds on differences between the outputs of a neuron corresponding to

two DNN executions. While DiffPoly can be extended to track bounds on any linear combination of

the layerwise outputs of any 𝑘 DNN executions (Appendix G.5), we specifically focus on a pair of

executions and track differences, not alternatives (e.g., sum), between them. This choice is motivated

by the fact that for existing DNN relational properties (UAP verification, monotonicity, etc.), the

difference between inputs used in multiple executions is bounded. Therefore, we naturally opt

to track differences between the DNN’s outputs across multiple executions at subsequent hidden

layers and the output layer. RaVeN combines the analysis of existing abstract interpreters on the

product DNN and DiffPoly analysis on all

(
𝑘
2

)
pair of executions to infer linear constraints over the

outputs of all 𝑘 executions at each layer. The linear constraints computed by RaVeN capture the

dependencies between different DNN executions at each layer making RaVeN more precise than

the state-of-the-art relational verifier [88] that only tracks dependencies at the input layer but not

at the hidden layers and loses precision as a result. At the final layer of 𝑁 , we encode the output

specification Ψ as a set of mixed-integer linear programming (MILP) constraints over the outputs

of all 𝑘 executions. Note that we use integer variables only to encode the output specification Ψ to

limit the number of integer variables in the MILP formulation and subsequently avoid exponential

blowup in MILP optimization time. Next, we elaborate on the workings of RaVeNwith an illustrative

example.

3.1 Illustrative Example
3.1.1 Network: For this example, we consider the network, 𝑁𝑒𝑥 , with three layers: two affine

layers and one ReLU layer with two neurons each (Fig. 2). The weights on the edges represent

the coefficients of the weight matrix used by the affine transformations applied at each layer and

the learned bias for each neuron is shown above or below it. 𝑁𝑒𝑥 can be viewed as a loop-free

straight-line program composed of a sequence of assignment statements - ReLU assignments 𝑥𝑖 ←
𝑚𝑎𝑥 (0, 𝑥 𝑗) and affine assignments 𝑥𝑖 ← 𝑣 +∑𝑛

𝑗=1
𝑤 𝑗 · 𝑥 𝑗 where 𝑣 ∈ R and𝑊 = [𝑤1, . . . ,𝑤𝑛]𝑇 ∈ R𝑛

.

In the example, 𝑁𝑒𝑥 is a program with 12 variables: 2 input variables - {𝑖1, 𝑖2}, two output variables -
{𝑜1, 𝑜2}, 8 intermediate variables {𝑥1, . . . , 𝑥8} and a sequence assignment statements shown below:

𝑥1 ← 𝑖1 𝑥3 ← 𝑥1 − 𝑥2 𝑥5 ← max(0, 𝑥3) 𝑥7 ← 𝑥5 − 𝑥6 𝑜1 ← 𝑥7

𝑥2 ← 𝑖2 𝑥4 ← −2 · 𝑥1 + 𝑥2 𝑥6 ← max(0, 𝑥4) 𝑥8 ← −𝑥5 + 𝑥6 𝑜2 ← 𝑥8

(1)

3.1.2 Relational property: We verify the UAP verification problem described in Section 2.2 on

𝑁𝑒𝑥 where the relational property is defined over 2 separate executions of 𝑁𝑒𝑥 . Here the input

specification ∀𝑋1, 𝑋2 ∈ R2.Φ(𝑋1, 𝑋2) is defined as follows where 𝑋 ∗
1
= [14, 11]𝑇 , 𝑋 ∗

2
= [11, 14]𝑇 ,

and 𝜖 = 6.

Φ(𝑋1, 𝑋2) = (∥𝑋1 − 𝑋 ∗1 ∥∞ ≤ 𝜖) ∧ (∥𝑋2 − 𝑋 ∗2 ∥∞ ≤ 𝜖) ∧ (𝑋1 − 𝑋2 = 𝑋 ∗
1
− 𝑋 ∗

2
) (2)

In UAP verification, an adversary can select to attack the DNN with any perturbation 𝛿 such that

∥𝛿 ∥∞ ≤ 𝜖 but the same perturbation 𝛿 must be applied to both inputs - 𝑋 ∗
1
, 𝑋 ∗

2
. Therefore the two

executions are related and tracking this relationship improves precision. In contrast, in the common

local robustness problem, an adversary can choose different perturbations for the two inputs and

therefore the two executions are unrelated and can be verified independently. Any input 𝑋1 ∈ R2

inside the 𝐿∞ ball defined by ∥𝑋1−𝑋 ∗1 ∥∞ ≤ 𝜖 is not misclassified if (𝑁𝑒𝑥 (𝑋1) = [𝑜1, 𝑜2]𝑇)∧(𝑜1−𝑜2 ≥
0) holds. Conversely, any input𝑋2 ∈ R2

lying inside the 𝐿∞ ball - ∥𝑋2−𝑋 ∗2 ∥∞ ≤ 𝜖 is not misclassified

if (𝑁𝑒𝑥 (𝑋2) = [𝑜1, 𝑜2]𝑇) ∧ (𝑜2 − 𝑜1 ≥ 0) holds. We want to formally verify that there does not

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

exist an adversarial perturbation 𝛿 ∈ R2
with ∥𝛿 ∥∞ ≤ 𝜖 such that both the inferences on inputs

𝑋1 = 𝑋 ∗
1
+ 𝛿 and 𝑋2 = 𝑋 ∗

2
+ 𝛿 produces incorrect classification results. In this case, the output

specification Ψ can be encoded such that ∀𝛿 ∈ R2
and ∥𝛿 ∥∞ ≤ 𝜖 the network 𝑁𝑒𝑥 correctly classifies

at least one of the two perturbed inputs 𝑋1 = 𝑋 ∗
1
+ 𝛿 and 𝑋2 = 𝑋 ∗

2
+ 𝛿 .

Ψ(𝑁𝑒𝑥 (𝑋1), 𝑁𝑒𝑥 (𝑋2)) = (𝐶𝑇
1
𝑁𝑒𝑥 (𝑋1) ≥ 0)∨(𝐶𝑇

2
𝑁𝑒𝑥 (𝑋2) ≥ 0) where 𝐶1 = [1,−1]𝑇 ∧𝐶2 = [−1, 1]𝑇

Fig. 2. Representation of 𝑁𝑒𝑥 used in the illustrative example

3.1.3 Product DNN construction & analysis: The input specification Φ (Eq. 2) relates two DNN

executions on inputs from two input regions 𝜙1

𝑡 , 𝜙
2

𝑡 (not necessarily disjoint) defined by ∀𝑋1 ∈
R2 .∥𝑋1 − 𝑋 ∗1 ∥∞ ≤ 𝜖 and ∀𝑋2 ∈ R2 .∥𝑋2 − 𝑋 ∗2 ∥∞ ≤ 𝜖 respectively. So we construct the product DNN

with two separate copies of the DNN - 𝑁 1

𝑒𝑥 and 𝑁 2

𝑒𝑥 where 𝑁 1

𝑒𝑥 and 𝑁 2

𝑒𝑥 track execution of 𝑁𝑒𝑥

on inputs from 𝜙1

𝑡 and 𝜙
2

𝑡 respectively. The product DNN construction involves maintaining two

separate copies of all 12 variables and all 10 assignment statements used in 𝑁𝑒𝑥 . In the product DNN,

for each network 𝑁
𝑗
𝑒𝑥 where 𝑗 ∈ {1, 2}, we rename input variables as {𝑖 𝑗

1
, 𝑖

𝑗

2
}, output variables as

{𝑜 𝑗
1
, 𝑜

𝑗

2
} and intermediate variables as {𝑥 𝑗

1
, . . . , 𝑥

𝑗

8
}. 𝑁 1

𝑒𝑥 and 𝑁 2

𝑒𝑥 can be analyzed with any existing

complete [24, 39] or incomplete DNN verifiers [69, 87]. However, for scalability, we use sound but

incomplete abstract interpretation-based DNN verification techniques. We use the existing DeepZ

[68] abstract interpreter to compute an overapproximated range of the possible values of each

variable in 𝑁 1

𝑒𝑥 and 𝑁 2

𝑒𝑥 w.r.t. input regions 𝜙1

𝑡 and 𝜙
2

𝑡 respectively. Fig. 12 in the appendix shows

the range of values for each variable in the product DNN obtained by DeepZ analysis. The detailed

execution of DeepZ for this example is in Appendix A.7.

3.1.4 Capturing dependencies betweenDNN executions: DeepZ (or, any other existing non-relational

DNN verifier) analyze 𝑁 1

𝑒𝑥 , 𝑁
2

𝑒𝑥 in isolation and do not track the relation captured in the cross-

execution input constraint such as in Eq. 2 ∀𝑋1, 𝑋2 .(𝑋1 −𝑋2 = 𝑋 ∗
1
−𝑋 ∗

2
) that bounds the difference

between the inputs used in different executions of the network. In contrast, the proposed DiffPoly

can efficiently compute the bounds on the difference between two copies of the same variable

corresponding to two different executions and as a result, can capture the dependencies between

multiple executions. For example, given any variable 𝑥𝑖 in 𝑁𝑒𝑥 DiffPoly computes lower and upper

bound of (𝑥1

𝑖 −𝑥2

𝑖) that holds for all possible inputs satisfying Φ. Overall, for any relational property
defined over 𝑘 DNN executions, we run

(
𝑘
2

)
DiffPoly for each pair of DNN executions. Note that

since for any variable 𝑥𝑖 , (𝑥𝑎𝑖 − 𝑥𝑏𝑖) = −(𝑥𝑏𝑖 − 𝑥𝑎𝑖), for any pair of execution over inputs from 𝜙𝑎
𝑡 ,

and 𝜙𝑏
𝑡 , we only run DiffPoly analysis if 𝑎 < 𝑏 to avoid redundant computations. For the rest of the

paper, given a pair of variables < 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 > we use 𝛿

𝑎,𝑏
𝑥𝑖 to denote their difference (𝑥𝑎𝑖 − 𝑥𝑏𝑖).

3.1.5 DiffPoly domain: For two copies of the same variable from two separate executions e.g. 𝑥𝑎𝑖 ,

𝑥𝑏𝑖 , the DiffPoly domain (formally described in Section 4.1), associates six linear constraints with

< 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 >: three upper linear constraints (symbolic upper bounds) 𝛿

𝑎,𝑏,≥
𝑥𝑖 , 𝑥

𝑎,≥
𝑖

, 𝑥
𝑏,≥
𝑖

and three lower

linear constraints (symbolic lower bounds) 𝛿
𝑎,𝑏,≤
𝑥𝑖 , 𝑥

𝑎,≤
𝑖

, 𝑥
𝑏,≤
𝑖

. The 𝛿-constraints are the symbolic

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Input-Relational Verification of Deep Neural Networks 7

Fig. 3. Concrete bounds of difference as computed by DiffPoly analysis on the example network.

lower and upper bound on the difference (𝑥𝑎𝑖 − 𝑥𝑏𝑖) satisfying 𝛿
𝑎,𝑏,≤
𝑥𝑖 ≤ (𝑥𝑎𝑖 − 𝑥𝑏𝑖) ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖 while the

other four constraints represent symbolic bounds on the variables 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 respectively. Additionally,

the domain tracks concrete bounds - concrete lower bounds for each variable (𝑥𝑎𝑖 − 𝑥𝑏𝑖), 𝑥𝑎𝑖 , and 𝑥𝑏𝑖
i.e. Δ𝑎,𝑏,𝑥𝑖

𝑙𝑏
, 𝑙𝑎,𝑥𝑖 , and 𝑙𝑏,𝑥𝑖 and concrete upper bounds Δ𝑎,𝑏,𝑥𝑖

𝑢𝑏
, 𝑢𝑎,𝑥𝑖 , and 𝑢𝑏,𝑥𝑖 . Note that as depicted

in Fig 1, the concrete bounds - 𝑙𝑎,𝑥𝑖 , and 𝑙𝑏,𝑥𝑖 𝑢𝑎,𝑥𝑖 , and 𝑢𝑏,𝑥𝑖 are obtained from the analysis of the

product DNN. At a high level, DiffPoly combines the ideas from the Zone domain [51], used for

classical program analysis, that tracks concrete lower and upper bound on the difference of a pair

of variables e.g. 𝑙𝑥𝑦 ≤ (𝑥 − 𝑦) ≤ 𝑢𝑥𝑦 and the DeepPoly domain [69] that tracks symbolic lower

and upper bound on variables of the DNN. However, DiffPoly is more precise than both the Zone

domain which does not track symbolic bounds on the difference, and the DeepPoly domain which

does not explicitly track any difference constraints making DiffPoly well suited for computing

difference bounds across multiple DNN executions. Next, we show the format of symbolic bounds

associated with DiffPoly below where 𝛿
𝑎,𝑏
𝑥 𝑗

= (𝑥𝑎𝑗 − 𝑥𝑏𝑗).

𝛿
𝑎,𝑏,≥
𝑥𝑖 = 𝑣 +

𝑛∑︁
𝑗=1

(
𝑤𝛿
𝑗 · 𝛿

𝑎,𝑏
𝑥 𝑗
+𝑤𝑎

𝑗 · 𝑥
𝑎
𝑗 +𝑤

𝑏
𝑗 · 𝑥

𝑏
𝑗

)
𝑥
𝑎,≥
𝑖

= 𝑣𝑥𝑎 +
𝑛∑︁
𝑗=1

𝑤
𝑎,𝑥
𝑗
· 𝑥𝑎𝑗 𝑥

𝑏,≥
𝑖

= 𝑣𝑥
𝑏
+

𝑛∑︁
𝑗=1

𝑤
𝑏,𝑥
𝑗
· 𝑥𝑏𝑗 (3)

In Eq. 3, 𝑣, 𝑣𝑥𝑎 , 𝑣
𝑥
𝑏
∈ R,𝑊 𝛿 ,𝑊 𝑎,𝑊 𝑏,𝑊 𝑎,𝑥 ,𝑊 𝑏,𝑥 ∈ R𝑛

are the coefficients of the variables with

𝑤𝑖 denoting the 𝑖-th coefficient for any vector𝑊 ∈ R𝑛
, 𝑛 is the number of neurons in 𝑁𝑒𝑥 . We

restrict the format of symbolic bounds and enforce ∀𝑗 ≥ 𝑖 𝑤𝛿
𝑗
= 𝑤𝑎

𝑗 = 𝑤𝑏
𝑗 = 𝑤

𝑎,𝑥
𝑗

= 𝑤
𝑏,𝑥
𝑗

= 0 so

that symbolic bounds of any pair of variables < 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 > involve only variables that come before

𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 (having smaller index) and their difference. These restrictions ensure that there are no cyclic

dependencies between the symbolic bounds of the variables. Moreover, similar to the DeepPoly

domain, we only allow a single symbolic lower, and upper bound to reduce the computation cost

required to evaluate the concrete bounds for each variable. Otherwise, the unrestricted Polyhedra

domain [20] though more precise, does not scale to the large DNNs considered in this work.

3.1.6 DiffPoly analysis: The analysis start with computing the symbolic and concrete bounds

corresponding to < 𝑥1

1
, 𝑥2

1
> and < 𝑥1

2
, 𝑥2

2
>. All pair of inputs𝑋1, 𝑋2 satisfying input specification Φ

satisfy 𝑋1 − 𝑋2 = 𝑋 ∗
1
− 𝑋 ∗

2
= [3,−3]𝑇 . The linear constraints and concrete lower and upper bounds

defining the range of the difference are as follows.

𝛿1,2,≤
𝑥1

= 𝛿1,2,≥
𝑥1

= 3 𝛿1,2,≤
𝑥2

= 𝛿1,2,≥
𝑥2

= −3 (𝑥1

1
− 𝑥2

1
) ∈ [3, 3] (𝑥1

2
− 𝑥2

2
) ∈ [−3,−3]

At the input layer, the abstract elements also track linear constraints and concrete bounds for

variables 𝑥1

1
, 𝑥1

2
, 𝑥2

1
, and 𝑥2

2
. However, for this example, we primarily focus on constraints 𝛿

1,2,≥
𝑥𝑖

and 𝛿
1,2,≤
𝑥𝑖 and show the rest of the constraints in the Appendix A.8. Next, we apply the affine

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

(a) Δ̂𝑙𝑏 ≥ 0 (b) Δ̂𝑢𝑏 ≤ 0 (c) Δ̂𝑙𝑏 < 0 ∧ Δ̂𝑢𝑏 > 0

Fig. 4. The optimal (in terms of area) convex approximations for 𝛿 = 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) where ˆ𝛿 = (𝑥 − 𝑦),
𝛿≥ , and 𝛿≤ are symbolic upper bound and lower bound of 𝛿 respectively.

transformer (defined in Section 4.1) to calculate bounds corresponding to < 𝑥1

3
, 𝑥2

3
> and < 𝑥1

4
, 𝑥2

4
>.

We show the derivation of linear constraints 𝛿
1,2,≥
𝑥3

and 𝛿
1,2,≤
𝑥3

below where 𝛿
1,2
𝑥1

= (𝑥1

1
− 𝑥2

1
) and

𝛿
1,2
𝑥2

= (𝑥1

2
− 𝑥2

2
). The symbolic bounds 𝛿

1,2,≥
𝑥4

and 𝛿
1,2,≤
𝑥4

are obtained similarly.

𝛿1,2
𝑥3

= (𝑥1

1
− 𝑥1

2
) − (𝑥2

1
− 𝑥2

2
) =⇒ 𝛿1,2,≥

𝑥3

= 𝛿1,2,≤
𝑥3

= (𝑥1

1
− 𝑥2

1
) − (𝑥1

2
− 𝑥2

2
) = 𝛿1,2

𝑥1

− 𝛿1,2
𝑥2

(4)

To compute the concrete lower bound Δ1,2,𝑥3

𝑙𝑏
(or, upper bound) of (𝑥1

3
− 𝑥2

3
) we substitute the

concrete bounds of 𝛿
1,2
𝑥1

and 𝛿
1,2
𝑥2

in lower (upper) symbolic bounds of Eq. 4 for example:

𝛿1,2,≤
𝑥3

= 𝛿1,2
𝑥1

− 𝛿1,2
𝑥2

=⇒ Δ1,2,𝑥3

𝑙𝑏
= Δ1,2,𝑥1

𝑙𝑏
− Δ1,2,𝑥3

𝑢𝑏
= 6

Next, we compute bounds corresponding to < 𝑥1

5
, 𝑥2

5
> by using the ReLU abstract transformer

(formally introduced in Section 4.2) for the assignments 𝑥1

5
← 𝑅𝑒𝐿𝑈 (𝑥1

3
) and 𝑥2

5
← 𝑅𝑒𝐿𝑈 (𝑥2

3
).

In this case, choices for the symbolic bounds are non-unique. Fig. 4a shows one of two possible

choices for linear constraints 𝛿
1,2,≥
𝑥5

= 𝛿
1,2
𝑥3

and 𝛿
1,2,≤
𝑥5

= 0. 𝛿
1,2,≥
𝑥5

= 𝑥
1,≥
5
− 𝑥2,≤

5
and 𝛿

1,2,≤
𝑥5

= 𝑥
1,≤
5
− 𝑥2,≥

5

are alternative candidates. However, in the abstract domain, we only allow only one choice for

𝛿
1,2,≥
𝑥5

and one choice for 𝛿
1,2,≤
𝑥5

so we greedily select one of two possible candidates for both 𝛿
1,2,≥
𝑥5

and 𝛿
1,2,≤
𝑥5

. For both choices, we first evaluate the concrete bounds of (𝑥1

5
− 𝑥2

5
) by substituting all

variables in the symbolic lower (or upper) bound with their respective concrete bounds and then

pick the candidate with the more precise concrete bound. For example, the choice 𝛿
1,2,≥
𝑥5

= 𝛿
1,2
𝑥3

yields concrete bound Δ1,2,𝑥5

𝑢𝑏
= 6.0 which is more precise than Δ1,2,𝑥5

𝑢𝑏
= 20.625 calculated from

𝛿
1,2,≥
𝑥5

= 𝑥
1,≥
5
− 𝑥

2,≤
5

. Thus, we select 𝛿
1,2,≥
𝑥5

= 𝛿
1,2
𝑥3
. Finally, we obtain bounds corresponding to

< 𝑥1

7
, 𝑥2

7
> and < 𝑥1

8
, 𝑥2

8
> by applying the affine abstract transformer. We show concrete bounds

for the difference of each pair of variables (𝑥1

𝑖 − 𝑥2

𝑖) in Fig. 3 and detailed analysis in Appendix A.8.

3.1.7 Back-substitution for concrete bounds: We obtain the concrete bounds of each (𝑥1

𝑖 −𝑥2

𝑖) by the
back-substitution strategy used in most of the popular non-relational DNN verifiers e.g. CROWN

[92], DeepPoly [69], 𝛼-CROWN [86], etc. In back-substitution, we start with the symbolic bounds

𝛿
𝑎,𝑏,≥
𝑥𝑖 (or, 𝛿

𝑎,𝑏,≤
𝑥𝑖) of (𝑥1

𝑖 − 𝑥2

𝑖) and then obtain concrete bounds Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

(or, Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

) of (𝑥1

𝑖 − 𝑥2

𝑖) by
substituting concrete bounds of all the variables in 𝛿

𝑎,𝑏,≥
𝑥𝑖 (or, 𝛿

𝑎,𝑏,≤
𝑥𝑖). Commonly, back-substitution

does not stop after a single concrete substitution step rather it refines Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

(or, Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

) by a

sequence of steps with each step including a symbolic substitution, where all the variables in 𝛿
𝑎,𝑏,≥
𝑥𝑖

(or, 𝛿
𝑎,𝑏,≤
𝑥𝑖) are replaced by the corresponding symbolic bounds, followed by a concrete substitution.

Although back-substitution is computationally more expensive than a single concrete substitution

step, it obtains more precise concrete bounds Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

(or, Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

) which in turn improves the precision

of RaVeN.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Input-Relational Verification of Deep Neural Networks 9

3.2 Using Analysis Bounds to Solve the UAP Verification Problem
We will now explain how RaVeN combines DiffPoly analysis with product DNN analysis to create

the MILP formulation. Additionally, through our illustrative example, we will compare RaVeN’s

approach to state-of-the-art baseline methods like [40] and [88]. This comparison will demonstrate

that while the baseline methods fall short in confirming the absence of a UAP in our example, our

approach successfully verifies the non-existence of a UAP.

3.2.1 State-of-the-art DNN relational verifiers. [40] only analyzes the product DNN and uses

the concrete bounds obtained independently for each execution to verify UAP robustness. This

approach does not track any dependencies across executions and just leverages standard DNN

local robustness verification of individual inferences. However, DeepZ analysis on the product

DNN computes for input region 𝜙1

𝑡 the lower bound of 𝐶𝑇
1
𝑁𝑒𝑥 (𝑋1) is −13.25 and for 𝜙2

𝑡 the lower

bound of 𝐶𝑇
2
𝑁𝑒𝑥 (𝑋2) is −31.44. Since the lower bounds of both 𝐶𝑇

1
𝑁𝑒𝑥 (𝑋1) and 𝐶𝑇

2
𝑁𝑒𝑥 (𝑋2) are less

than 0 this method can not prove that UAP does not exist. Next, we focus on the state-of-the-art

approach (referred to as I/O formulation in the rest of the paper) for UAP verification introduced by

[88]. The I/O formulation initially applies non-relational DNN verifiers (e.g., DeepZ) to the product

DNN. Based on DeepZ analysis, for each execution, it extracts linear constraints connecting output

variables to input variables specific to that execution. Lastly, it translates the cross-execution input

constraints into linear constraints, represents the output specification Ψ as a MILP objective, and

employs standard MILP solvers to find the optimal solution (detailed formulation in Appendix B.1).

For our illustrative example, the I/O formulation can only prove the absence of a UAP when the

MILP solution is non-negative. However, the optimal MILP solution in this case is −5.306 < 0,

highlighting that the I/O formulation lacks the precision to verify the relational property. This

imprecision arises because the I/O formulation, while tracking dependencies at the input layers,

neglects subsequent hidden layers, leading to a loss of precision.

Fig. 5. For the variables 𝑥1

5

and 𝑥2

5
the convex region

(green) obtained with con-
straints from DiffPoly analy-
sis is more precise than the
convex region (blue) formed
without the difference con-
straints.

3.2.2 RaVeN MILP formulation. We introduce a two-step enhance-

ment to the MILP encoding in comparison to I/O formulation (same

MILP objective) using our tool, RaVeN. To begin with, we relate the

output of each layer to the output of the preceding layer by employ-

ing a set of linear constraints, commencing from the input layer. We

replace non-linear activation layers (e.g., ReLU, Sigmoid, etc.) with con-

vex overapproximations using concrete bounds obtained from DeepZ

analysis, such as triangle relaxation [70] for ReLU. RaVeN’s layerwise

approach effectively captures linear dependencies across executions

at the hidden layers, yielding an improved optimal solution of −1.564

compared to the I/O formulation (details behind this improvement in

Appendix B.2). Nonetheless, it remains insufficient for verifying the

absence of UAP. In this case, the issue lies in the isolated computation of

convex overapproximations for non-linear activation functions, which

disregards the inter-dependencies between executions. To address this

limitation, RaVeN utilizes the DiffPoly analysis and incorporates Diff-

Poly’s custom abstract transformers for non-linear activation functions

defined over pairs of executions. This approach computes convex overapproximations that consider

inter-dependencies between execution pairs. Figure 5 illustrates this enhancement, showing how

constraints derived from the DiffPoly analysis enhance the precision of the convex region at the

hidden layers. The addition of the difference constraints from the DiffPoly analysis to the layerwise

formulation of RaVeN improves the optimal value to 0 thereby proving the absence of UAP in the

illustrative example. It is important to note that RaVeN employs the same MILP encoding for Ψ

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

as utilized in the I/O formulation. The observed improvement is the result of RaVeN’s enhanced

capability in capturing the linear dependencies between outputs from multiple executions. The

detailed MILP formulation for RaVeN is in Appendix B.3.

4 RAVEN ALGORITHM
In this section, we present RaVeN’s pseudocode, discuss its key components, and assess its asymp-

totic runtime. We provide a sketch of the soundness proofs of RaVeN in Section 4.7 with detailed

proofs in Appendix F. We first formally introduce the product DNN.

Definition 4.1 (Product DNN). Given any 𝑙 layer DNN 𝑁 : R𝑛0 → R𝑛𝑙
and input specifiction Φ

defined over 𝑘 executions of 𝑁 the product DNN N𝑘
: R𝑛0×𝑘 → R𝑛𝑙×𝑘

defined as sequential com-

position of 𝑙 functions N𝑘
𝑖 : R𝑛𝑖−1×𝑘 → R𝑛𝑖×𝑘

where N𝑘
𝑖 ((𝑋 𝑖

1
, . . . , 𝑋 𝑖

𝑘
)) = [𝑁𝑖 (𝑋 𝑖

1
), . . . , 𝑁𝑖 (𝑋 𝑖

𝑘
)]𝑇 ,

for all 𝑗 ∈ [𝑘] . 𝑋 𝑖
𝑗 ∈ R𝑛𝑖−1

and 𝑁𝑖 : R𝑛𝑖−1 → R𝑛𝑖
is the 𝑖-th layer of 𝑁 .

Algorithm 1 shows the pseudocode for RaVeN. For the product DNN, an existing non-relational

verifier (e.g. DeepZ) is used to obtain the concrete bounds for the outputs of all 𝑘 executions at all

layers, say𝒜
𝑘
(line 5). We use the concrete bounds from product DNN analysis (line 7) to initialize

DiffPoly analysis for all 𝜅 =
(
𝑘
2

)
pair of executions (line 8). Next, DiffPoly computes the symbolic and

concrete bounds (denoted as 𝒜
𝑎,𝑏

𝛿
) of the outputs and their differences w.r.t each pair of executions

(line 8). Note that aside from handling differences, DiffPoly also maintains symbolic bounds on

the variables from the product DNN that are relevant to the pair of executions it is analyzing.

This allows DiffPoly to calculate the concrete bounds of these product DNN variables using back-

substitution although DiffPoly can also be run independently from product DNN analysis. However,

we decide to utilize the concrete bounds from the product DNN analysis, as they can be more precise

compared to the bounds obtained by DiffPoly. Furthermore, this approach enables DiffPoly to

benefit from any improvements made in the product DNN analysis. We produce linear constraints

for all layers by utilizing the symbolic and concrete bounds obtained from DiffPoly analysis on all

𝜅 pairs of executions. (line 10). After layerwise linear constraints computation, we encode Ψ, as a
MILP objective (line 11). Finally, we invoke a MILP solver on the MILP formulated using the linear

constraints and MILP objective function to verify the relational verification problem (line 12). Note,

Algorithm 1 shows a sequential implementation of RaVeN. However, we can parallelly run existing

DNN abstract interpreters on each of 𝑘 copies of 𝑁 and parallelly execute DiffPoly interpreter

on all

(
𝑘
2

)
difference networks. Next, we formally define the building blocks of RaVeN algorithm:

DiffPoly domain and layerwise MILP formulation.

4.1 DiffPoly Abstract Domain
Next, we formally introduce the DiffPoly domain and the corresponding abstract transformers

for the affine and activation (ReLU, Sigmoid, Tanh, etc.) assignments. For a list of 2𝑛 variables

[𝑥𝑎
1
, . . . , 𝑥𝑎𝑛], [𝑥𝑏1 , . . . , 𝑥𝑏𝑛] corresponding to a pair of execution of 𝑁 the corresponding element in

the DiffPoly domain A2𝑛 is defined as 𝑎 = [𝑎1, . . . , 𝑎𝑛]. Here each 𝑎𝑖 is associated with a pair of

variables < 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 >. 𝑎𝑖 associates (i) six symbolic bounds: symbolic lower and upper bounds for

𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 and (𝑥𝑎𝑖 − 𝑥𝑏𝑖) and (ii) six concrete bounds: concrete lower and upper bounds for 𝑥𝑎𝑖 , 𝑥

𝑏
𝑖 and

(𝑥𝑎𝑖 − 𝑥𝑏𝑖). We represent each 𝑎𝑖 as a tuple 𝑎𝑖 =< 𝐶𝑖
𝑠𝑦𝑚,𝐶

𝑖
𝑐𝑜𝑛 > with 𝐶𝑖

𝑠𝑦𝑚 and 𝐶𝑖
𝑐𝑜𝑛 denoting the

symbolic and concrete bounds respectively:

𝐶𝑖
𝑠𝑦𝑚 = {𝑥𝑎,≤

𝑖
, 𝑥

𝑏,≤
𝑖

, 𝛿
𝑎,𝑏,≤
𝑥𝑖 , 𝑥

𝑎,≥
𝑖

, 𝑥
𝑏,≥
𝑖

, 𝛿
𝑎,𝑏,≥
𝑥𝑖 } 𝐶𝑖

𝑐𝑜𝑛 = {𝑙𝑎,𝑥𝑖 , 𝑙𝑏,𝑥𝑖 ,Δ
𝑎,𝑏,𝑥𝑖
𝑙𝑏

, 𝑢𝑎,𝑥𝑖 , 𝑢𝑏,𝑥𝑖 ,Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

}

The monotonic concretization function 𝛾2𝑛 : A2𝑛 → ℘(R2𝑛) mapping each abstract element 𝑎 to

the corresponding element in the concrete domain ℘(R2𝑛) (powerset of R2𝑛
), is shown in Eq. 5

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Input-Relational Verification of Deep Neural Networks 11

Algorithm 1 RaVeN Algorithm

1: procedure RaVeN(Φ,Ψ, 𝑁)

2: Input: Φ : R𝑛0×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, Ψ : R𝑛1×𝑘 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, 𝑁 : R𝑛0 → R𝑛𝑙
.

3: Verify: ∀𝑋1, . . . , 𝑋𝑘 ∈ R𝑛0 . Φ(𝑋1, . . . , 𝑋𝑘) =⇒ Ψ(𝑁 (𝑋1), . . . , 𝑁 (𝑋𝑘)).
4: N𝑘 ← ConstructProductDNN(𝑁,Φ)
5: 𝒜

𝑘 ← ProdDNNAnalyzer(N𝑘 ,Φ,V) ⊲V is existing non-relational DNN verifier

6: for 𝑎, 𝑏 ∈ [𝑘] ∧ 𝑎 < 𝑏 do
7: L𝑎,U𝑎,L𝑏,U𝑏 ←ExtractConcreteBounds(𝒜𝑘

𝑖 , 𝑎, 𝑏)
8: 𝒜

𝑎,𝑏

𝛿
← DiffPolyExecutor(𝑁𝑎, 𝑁𝑏,Φ,L𝑎,U𝑎,L𝑏,U𝑏)

9: end for
10: M ← [LayerwiseConstraints(𝒜𝑎,𝑏

𝛿
, 𝑁 ,Φ) | 𝑎, 𝑏 ∈ [𝑘] ∧ 𝑏 < 𝑎] ⊲ Constraints

11: MΨ ←RaVeNObjectiveFunction(Ψ) ⊲ Objective Function Formulation

12: return MILPSolver(M,MΨ) ⊲ MILP Solver Invocation

13: end procedure

where for any 𝑋 ∈ R𝑛
we represent 𝑖-th coordinate of 𝑋 as 𝑥𝑖 .

𝜑𝛿
2𝑛 (𝑋

𝑎, 𝑋𝑏) = (𝑋𝑎, 𝑋𝑏 ∈ R𝑛) ∧ (∀𝑖 ∈ [𝑛] .(𝛿𝑎,𝑏,≤𝑥𝑖 ≤ (𝑥𝑎𝑖 − 𝑥
𝑏
𝑖) ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖 ∧ Δ𝑎,𝑏,𝑥𝑖

𝑙𝑏
≤ (𝑥𝑎𝑖 − 𝑥

𝑏
𝑖) ≤ Δ𝑎,𝑏,𝑥𝑖

𝑢𝑏
))

𝜑𝑛 (𝑋𝑎) = (𝑋𝑎 ∈ R𝑛) ∧ (∀𝑖 ∈ [𝑛] .(𝑥𝑎,≤
𝑖
≤ 𝑥𝑎𝑖 ≤ 𝑥

𝑎,≥
𝑖
∧ 𝑙𝑎,𝑥𝑖 ≤ 𝑥𝑎𝑖 ≤ 𝑢𝑎,𝑥𝑖))

𝛾2𝑛 (𝑎) = {(𝑋𝑎, 𝑋𝑏) | 𝑋𝑎, 𝑋𝑏 ∈ R𝑛 ∧ 𝜑𝑛 (𝑋𝑎) ∧ 𝜑𝑛 (𝑋𝑏) ∧ 𝜑𝛿
2𝑛 (𝑋

𝑎, 𝑋𝑏)} (5)

In the DiffPoly domain, for any deterministic function 𝑓 : R𝑛 → R𝑚
the abstract transformer

𝑇
♯

𝑓
: A2𝑛 → A2𝑚 is required to satisfy the following soundness condition for all abstract elements

𝑎 ∈ A2𝑛 where 𝑇𝑓 : ℘(R2𝑛) → ℘(R2𝑚) defines the corresponding concrete transformer

𝑇𝑓 (𝛾2𝑛 (𝑎)) ⊆ 𝛾2𝑚 (𝑇 ♯

𝑓
(𝑎)) where ∀X ∈ ℘(R2𝑛). 𝑇𝑓 (X) = {(𝑓 (𝑋), 𝑓 (𝑌)) | (𝑋,𝑌) ∈ X}

Next, we define abstract transformers for the DiffPoly domain.

4.2 DiffPoly ReLU Abstract Transformer

𝑅𝑒𝐿𝑈 : R → R is defined as 𝑅𝑒𝐿𝑈 (𝑥) = max(0, 𝑥). Let, 𝑇 ♯

𝑅
: A2𝑖 → A2𝑖+2 be the abstract

transformer that executes assignment statements 𝑦𝑎𝑖 ← 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖), 𝑦𝑏𝑖 ← 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖). For 𝑎 =

[𝑎1, . . . , 𝑎𝑖] ∈ A2𝑖 , let𝑎
′ = 𝑇

♯

𝑅
(𝑎) represent the output of the transformer. First, for𝑎′ = [𝑎′

1
, . . . , 𝑎′𝑖+1],

we compute the symbolic bounds𝐶
′𝑗
𝑠𝑦𝑚 for each𝑎′𝑗 where 𝑗 ∈ [𝑖+1]. In this case, for all 𝑗 ∈ [𝑖] .𝑎′𝑗 = 𝑎 𝑗

and 𝑎′𝑖+1 is associated with the variable pair < 𝑦𝑎𝑖 , 𝑦
𝑏
𝑖 >. Since 𝑅𝑒𝐿𝑈 is piecewise linear, we separately

analyze cases where 𝑅𝑒𝐿𝑈 acts as a linear function and cases where it demonstrates non-linear

behavior. Table 1 summarizes the separate cases we consider while designing the abstract trans-

former for 𝑅𝑒𝐿𝑈 . In Table 1, for any variable 𝑣 , 𝑣+ (or, 𝑣−) denotes the case when values taken by 𝑣

are always positive (or negative) and 𝑣± denotes the case when 𝑣 can be both positive and negative.

Symbolic bounds for (𝑦𝑎𝑖 − 𝑦𝑏𝑖). We first consider cases where at least one of 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖) or
𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) behaves as a linear function and separately consider the case where both of them are

non-linear. Similarly, we consider 3 scenarios based on the concrete bounds of 𝛿
𝑎,𝑏
𝑥𝑖 = 𝑥𝑎𝑖 −𝑥𝑏𝑖 (shown

in Fig. 4) where we characterize the convex region having a minimum area that captures all possible

values of (𝑦𝑎𝑖 − 𝑦𝑏𝑖). In Table 2, we show the computation of the symbolic bounds for (𝑦𝑎𝑖 − 𝑦𝑏𝑖)
based on the cases for 𝑥𝑎𝑖 and 𝑥𝑏𝑖 . The first column shows the case, the second column shows the

symbolic expression for (𝑦𝑎𝑖 −𝑦𝑏𝑖), and the last column shows its symbolic bounds. For the first four

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

Table 1. DiffPoly ReLU Cases

Cases from 𝑥𝑎𝑖 𝑥𝑎,𝑖− = (𝑢𝑎,𝑥𝑖 ≤ 0) 𝑥
𝑎,𝑖
+ = (𝑙𝑎,𝑥𝑖 ≥ 0) 𝑥

𝑎,𝑖
± = ¬𝑥𝑎,𝑖− ∧ ¬𝑥𝑎,𝑖+

Cases from 𝑥𝑏𝑖 𝑥𝑏,𝑖− = (𝑢𝑏,𝑥𝑖 ≤ 0) 𝑥
𝑏,𝑖
+ = (𝑙𝑏,𝑥𝑖 ≥ 0) 𝑥

𝑏,𝑖
± = ¬𝑥𝑏,𝑖− ∧ ¬𝑥𝑏,𝑖+

Cases from 𝛿
𝑎,𝑏
𝑥𝑖 𝛿𝑖− = (Δ𝑎,𝑏,𝑥𝑖

𝑢𝑏
≤ 0) 𝛿𝑖+ = (Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

≥ 0) 𝛿𝑖± = ¬𝛿𝑖− ∧ ¬𝛿𝑖+

Table 2. Computation of the symbolic bounds for 𝛿𝑎,𝑏𝑦𝑖 based on cases for 𝑥𝑎
𝑖
and 𝑥𝑏

𝑖
.

Case 𝛿
𝑎,𝑏
𝑦𝑖 Symbolic bounds 𝛿

𝑎,𝑏,≤
𝑦𝑖 and 𝛿

𝑎,𝑏,≥
𝑦𝑖

𝑥𝑎,𝑖− ∧ 𝑥𝑏,𝑖− 0 (𝛿𝑎,𝑏,≤𝑦𝑖 = 0) ∧ (𝛿𝑎,𝑏,≥𝑦𝑖 = 0)
𝑥
𝑎,𝑖
+ ∧ 𝑥𝑏,𝑖+ 𝑥𝑎𝑖 − 𝑥𝑏𝑖 (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝛿

𝑎,𝑏
𝑥𝑖) ∧ (𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝛿

𝑎,𝑏
𝑥𝑖)

𝑥
𝑎,𝑖
+ ∧ 𝑥𝑏,𝑖− 𝑥𝑎𝑖 (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝑥𝑎𝑖) ∧ (𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝑥𝑎𝑖)

𝑥𝑎,𝑖− ∧ 𝑥𝑏,𝑖+ −𝑥𝑏𝑖 (𝛿𝑎,𝑏,≤𝑦𝑖 = −𝑥𝑏𝑖) ∧ (𝛿
𝑎,𝑏,≥
𝑦𝑖 = −𝑥𝑏𝑖)

𝑥
𝑎,𝑖
± ∧ 𝑥𝑏,𝑖− 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖) (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝑦

𝑎,≤
𝑖
) ∧ (𝛿𝑎,𝑏,≥𝑦𝑖 = 𝑦

𝑎,≥
𝑖
)

𝑥𝑎,𝑖− ∧ 𝑥𝑏,𝑖± −𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) (𝛿𝑎,𝑏,≤𝑦𝑖 = −𝑦𝑏,≥
𝑖
) ∧ (𝛿𝑎,𝑏,≥𝑦𝑖 = −𝑦𝑏,≤

𝑖
)

𝑥
𝑎,𝑖
± ∧ 𝑥𝑏,𝑖+ 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖) − 𝑥𝑏𝑖 (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝑦

𝑎,≤
𝑖
− 𝑥𝑏𝑖) ∧ (𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝑦

𝑎,≥
𝑖
− 𝑥𝑏𝑖)

𝑥
𝑎,𝑖
+ ∧ 𝑥𝑏,𝑖± 𝑥𝑎𝑖 − 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝑥𝑎𝑖 − 𝑦

𝑏,≥
𝑖
) ∧ (𝛿𝑎,𝑏,≥𝑦𝑖 = 𝑥𝑎𝑖 − 𝑦

𝑏,≤
𝑖
)

𝑥
𝑎,𝑖
± ∧ 𝑥𝑏,𝑖± 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖) − 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) (𝛿

𝑎,𝑏,≤
𝑦𝑖 = 𝑦

𝑎,≤
𝑖
− 𝑦𝑏,≥

𝑖
) ∧ (𝛿𝑎,𝑏,≥𝑦𝑖 = 𝑦

𝑎,≥
𝑖
− 𝑦𝑏,≤

𝑖
)

Table 3. Computation of the symbolic bounds for 𝛿𝑎,𝑏𝑦𝑖 based on cases for (𝑥𝑎
𝑖
− 𝑥𝑏

𝑖
).

Case Symbolic bounds 𝛿
𝑎,𝑏,≤
𝑦𝑖 and 𝛿

𝑎,𝑏,≥
𝑦𝑖 for ReLU activation

𝛿𝑖+ (𝛿𝑎,𝑏,≤𝑦𝑖 = 0) ∧ (𝛿𝑎,𝑏,≥𝑦𝑖 = 𝛿
𝑎,𝑏
𝑥𝑖)

𝛿𝑖− (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝛿
𝑎,𝑏
𝑥𝑖) ∧ (𝛿

𝑎,𝑏,≥
𝑦𝑖 = 0)

𝛿𝑖± (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝜆𝛿
𝑙𝑏
· 𝛿𝑎,𝑏𝑥𝑖 + 𝜇𝛿𝑙𝑏) ∧ (𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝜆𝛿

𝑢𝑏
· 𝛿𝑎,𝑏𝑥𝑖 + 𝜇𝛿𝑢𝑏) with

𝜆𝛿
𝑢𝑏

=
Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

, 𝜆𝛿
𝑙𝑏

= − Δ
𝑎,𝑏,𝑥𝑖
𝑙𝑏

Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

, −𝜇𝛿
𝑢𝑏

= 𝜇𝛿
𝑙𝑏

=
Δ
𝑎,𝑏,𝑥𝑖
𝑙𝑏

×Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

cases, 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖) − 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) behaves as a linear function and therefore our symbolic bounds are

exact. For the remaining 5 cases, we compute symbolic bounds for (𝑦𝑎𝑖 − 𝑦𝑏𝑖) overapproximating

the exact values based on the symbolic bounds of 𝑦𝑎𝑖 , 𝑦
𝑏
𝑖 , 𝑥

𝑎
𝑖 and 𝑥𝑏𝑖 . We also consider 3 separate

cases depicted in Table 3 (and in Fig 4) based on concrete bounds of (𝑥𝑎𝑖 − 𝑥𝑏𝑖) where 𝛿
𝑎,𝑏,≤
𝑦𝑖 and

𝛿
𝑎,𝑏,≥
𝑦𝑖 are linear function of 𝛿

𝑎,𝑏
𝑥𝑖 = (𝑥𝑎𝑖 − 𝑥𝑏𝑖). The cases described above are not mutually exclusive,

resulting in multiple symbolic bound choices for (𝑦𝑎𝑖 − 𝑦𝑏𝑖). However, in DiffPoly, we only allow

a single symbolic upper bound and a lower bound for (𝑦𝑎𝑖 − 𝑦𝑏𝑖). To resolve this, as described in

Section 3, we greedily select the symbolic bounds that yield more precise concrete bounds based on

concrete substitution (see Eq. 7). For example, consider the case specified by (𝑥𝑎,𝑖± ∧ 𝑥𝑏,𝑖± ∧ 𝛿+) there
are two choices for 𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝑦

𝑎,≥
𝑖
− 𝑦𝑏,≤

𝑖
and 𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝛿

𝑎,𝑏
𝑥𝑖 . Let, 𝑆𝑐 (𝑦

𝑎,≥
𝑖
− 𝑦𝑏,≤

𝑖
) and 𝑆𝑐 (𝛿𝑎,𝑏𝑥𝑖) be their

respective concrete upper bounds. Then we pick 𝛿
𝑎,𝑏,≥
𝑦𝑖 = 𝑦

𝑎,≥
𝑖
− 𝑦𝑏,≤

𝑖
if 𝑆𝑐 (𝑦𝑎,≥𝑖

− 𝑦𝑏,≤
𝑖
) < 𝑆𝑐 (𝛿𝑎,𝑏𝑥𝑖)

otherwise select 𝛿
𝑎,𝑏,≥
𝑦𝑖 = 𝛿

𝑎,𝑏
𝑥𝑖 . Next, we discuss symbolic bound computation for 𝑦𝑎𝑖 and 𝑦𝑏𝑖 .

Symbolic bounds for 𝑦𝑎𝑖 and 𝑦𝑏𝑖 . For cases 𝑥
𝑎,𝑖
− and 𝑥

𝑎,𝑖
+ where the 𝑅𝑒𝐿𝑈 behaves like a linear

function, the symbolic bounds for 𝑦𝑎𝑖 can be directly expressed as a linear function of 𝑥𝑎𝑖 . However,

for the case, 𝑥
𝑎,𝑖
± the 𝑅𝑒𝐿𝑈 function is no longer linear and we apply the linear relaxation [69, 92]

to obtain the symbolic bounds of 𝑦𝑎𝑖 using the concrete bounds 𝑙𝑎,𝑥𝑖 and 𝑢𝑎,𝑥𝑖 . The details are in the

Appendix (Fig. 13). Bounds for 𝑦𝑏𝑖 are derived similarly.

Concrete bounds for 𝑦𝑎𝑖 , 𝑦𝑏𝑖 .We get concrete bounds for 𝑦𝑎𝑖 , 𝑦𝑏𝑖 from the product DNN execution.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Input-Relational Verification of Deep Neural Networks 13

Concrete bounds for (𝑦𝑎𝑖 − 𝑦𝑏𝑖). For (𝑦𝑎𝑖 − 𝑦𝑏𝑖), we find concrete bounds using back-substitution.
Each back-substitution step recursively applies symbolic substitution (Eq. 6) followed by concrete

substitution (Eq. 7) to generate a set of possible candidates for concrete bounds and picks the most

precise one. We provide a pseudo-code of the back-substitution algorithm in Appendix E. For any

variable 𝛿 , its symbolic upper bound 𝛿≥ = 𝑣0+
∑

𝑖 𝑤𝑖 ·𝑣𝑖 and symbolic lower bound 𝛿≤ = 𝑣0+
∑

𝑖 𝑤𝑖 ·𝑣𝑖 ,
the symbolic substitutions 𝑆𝑠 (𝛿≥), 𝑆𝑠 (𝛿≤) and concrete substitutions 𝑆𝑐 (𝛿≥), 𝑆𝑐 (𝛿≤) are shown
below. Here, 𝑣0, 𝑣0 ∈ R and 𝑣𝑖

≥, 𝑣𝑖
≤
, 𝑣𝑖
≥, 𝑣𝑖 ≤ are symbolic bounds of variables, 𝑣𝑖

𝑙𝑏, 𝑣𝑖
𝑢𝑏
, 𝑣𝑖

𝑙𝑏, 𝑣𝑖
𝑢𝑏

are the respective concrete bounds and 𝑤𝑖
+
= max(0,𝑤𝑖), 𝑤𝑖

−
= min(0,𝑤𝑖), 𝑤𝑖

+
= max(0,𝑤𝑖),

𝑤𝑖
− = min(0,𝑤𝑖). Note, both symbolic and concrete substitutions for upper and lower bounds

satisfy that (𝑆𝑠 (𝛿≥) ≥ 𝛿) ∧ (𝑆𝑐 (𝛿≥) ≥ 𝛿) and (𝑆𝑠 (𝛿≤) ≤ 𝛿) ∧ (𝑆𝑐 (𝛿≤) ≤ 𝛿).
𝑆𝑠 (𝛿≥) = 𝑣0 +

∑︁
𝑖

𝑤𝑖
+ · 𝑣𝑖 ≥ +

∑︁
𝑖

𝑤𝑖
− · 𝑣𝑖 ≤ 𝑆𝑠 (𝛿≤) = 𝑣0 +

∑︁
𝑖

𝑤𝑖
+
· 𝑣𝑖 ≤ +

∑︁
𝑖

𝑤𝑖
−
· 𝑣𝑖 ≥ (6)

𝑆𝑐 (𝛿≥) = 𝑣0 +
∑︁
𝑖

𝑤𝑖
+ · 𝑣𝑖𝑢𝑏 +

∑︁
𝑖

𝑤𝑖
− · 𝑣𝑖 𝑙𝑏 𝑆𝑐 (𝛿≤) = 𝑣0 +

∑︁
𝑖

𝑤𝑖
+
· 𝑣𝑖 𝑙𝑏 +

∑︁
𝑖

𝑤𝑖
−
· 𝑣𝑖𝑢𝑏 (7)

4.3 DiffPoly Abstract Transformer For Differentiable Activations

For any differentiable function 𝑔 : R→ R, we define 𝑇 ♯
𝑔 : A2𝑖 → A2𝑖+2 as the abstract transformer

for the assignments 𝑦𝑎𝑖 ← 𝑔(𝑥𝑎𝑖) and 𝑦𝑏𝑖 ← 𝑔(𝑥𝑏𝑖). Both Sigmoid and Tanh, being differentiable

everywhere, can be modeled via 𝑔. We use the lower bound and the upper bound on the derivative

of 𝑔 to compute the symbolic bounds of (𝑦𝑎𝑖 − 𝑦𝑏𝑖). The concrete bounds of 𝑦𝑎𝑖 and 𝑦𝑏𝑖 are obtained

from product DNN analysis while concrete bounds of (𝑦𝑎𝑖 −𝑦𝑏𝑖) are calculated by back-substitution.

Symbolic bounds computation: Let, 𝑙𝑔′ and 𝑢𝑔′ be the lower and upper bound of 𝑔′ (𝑥) over
the range 𝑥 ∈ [𝑙, 𝑢] where 𝑙 = min(𝑙𝑎,𝑥𝑖 , 𝑙𝑏,𝑥𝑖) and 𝑢 = max(𝑢𝑎,𝑥𝑖 , 𝑢𝑏,𝑥𝑖). We consider three cases

from the 3rd row of Table 1 and show the symbolic bounds of (𝑦𝑎𝑖 − 𝑦𝑏𝑖) for all three cases in

Table 4 (also depicted in Appendix Fig. 14). This formulation holds for any differentiable function 𝑔

provided 𝑙𝑔′ and 𝑢𝑔′ are easy to compute. For Sigmoid and Tanh, the derivative 𝑔′ (𝑥) has a closed
form, and 𝑔′ (𝑥) is maximum at 𝑥 = 0 and decreases as 𝑥 increases (or, decreases). So, 𝑙𝑔′ and 𝑢𝑔′

computation only takes constant time given values of 𝑙 and𝑢. For𝑦𝑎𝑖 and𝑦
𝑏
𝑖 , we use concrete bounds

- 𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖 , 𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖 and apply the linear relaxation from [92], which also extends to differentiable

functions with a closed form of the differential.

Table 4. Computation of the symbolic bounds for (𝑦𝑎
𝑖
− 𝑦𝑏

𝑖
) based on cases for (𝑥𝑎

𝑖
− 𝑥𝑏

𝑖
).

Case Symbolic bounds 𝛿
𝑎,𝑏,≤
𝑦𝑖 and 𝛿

𝑎,𝑏,≥
𝑦𝑖 for any differentiable activation 𝑔

𝛿𝑖+ (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝑙𝑔′ · 𝛿𝑎,𝑏𝑥𝑖) ∧ (𝛿
𝑎,𝑏,≥
𝑦𝑖 = 𝑢𝑔′ · 𝛿𝑎,𝑏𝑥𝑖)

𝛿𝑖− (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝑢𝑔′ · 𝛿𝑎,𝑏𝑥𝑖) ∧ (𝛿
𝑎,𝑏,≥
𝑦𝑖 = 𝑙𝑔′ · 𝛿𝑎,𝑏𝑥𝑖)

𝛿𝑖± (𝛿𝑎,𝑏,≤𝑦𝑖 = 𝜆𝛿
𝑙𝑏
· 𝛿𝑎,𝑏𝑥𝑖 + 𝜇𝛿𝑙𝑏) ∧ (𝛿

𝑎,𝑏,≥
𝑦𝑖 = 𝜆𝛿

𝑢𝑏
· 𝛿𝑎,𝑏𝑥𝑖 + 𝜇𝛿𝑢𝑏) with

𝑙𝑔′ = min

𝑥∈[𝑙,𝑢]
𝑔′ (𝑥) and 𝑢𝑔′ = max

𝑥∈[𝑙,𝑢]
𝑔′ (𝑥)

𝜆𝛿
𝑢𝑏

=
𝑢𝑔′×Δ

𝑎,𝑏,𝑥𝑖
𝑢𝑏

−𝑙𝑔′×Δ
𝑎,𝑏,𝑥𝑖
𝑙𝑏

Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

, 𝜆𝛿
𝑙𝑏
=

𝑙𝑔′×Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−𝑢𝑔′×Δ
𝑎,𝑏,𝑥𝑖
𝑙𝑏

Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

, −𝜇𝛿
𝑢𝑏

= 𝜇𝛿
𝑙𝑏

=
(𝑢𝑔′−𝑙𝑔′)×Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

×Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

Δ
𝑎,𝑏,𝑥𝑖
𝑢𝑏

−Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

4.4 DiffPoly Affine Abstract Transformer

We describe the affine abstract transformer 𝑇
♯

𝐴
: A2𝑖 → A2𝑖+2 corresponding to the assignment

statements 𝑥𝑎𝑖+1 ← 𝑣 +∑𝑖
𝑗=1

𝑤 𝑗 · 𝑥𝑎𝑗 and 𝑥𝑏𝑖+1 ← 𝑣 +∑𝑖
𝑗=1

𝑤 𝑗 · 𝑥𝑏𝑗 where 𝑣 and all𝑤 𝑗 are real numbers.

In this case, the difference (𝑥𝑎𝑖+1−𝑥𝑏𝑖+1) can represented as (𝑥𝑎𝑖+1−𝑥𝑏𝑖+1) =
∑𝑖

𝑗=1
𝑤 𝑗 · (𝑥𝑎𝑗 −𝑥𝑏𝑗). Since for

affine assignments, 𝑥𝑎𝑖+1 (and 𝑥
𝑏
𝑖+1) is a linear function over 𝑥

𝑎
𝑗 s (and 𝑥

𝑏
𝑗 s), we can directly compute the

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

linear constraints that represent the symbolic bounds. For 𝑎 ∈ A2𝑖 , let 𝑎
′ = [𝑎′

1
, . . . , 𝑎′𝑖+1] = 𝑇

♯

𝐴
(𝑎)

where 𝑎′ ∈ A2𝑖+2 and ∀𝑗 ∈ [𝑖] . (𝑎 𝑗 = 𝑎′𝑗). We show the symbolic bounds corresponding to 𝑎′𝑖+1 in

Eq. 8. The product DNN analysis provides the concrete bounds of 𝑥𝑎𝑖+1 and 𝑥
𝑏
𝑖+1 while Δ

𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

and

Δ𝑎,𝑏,𝑥𝑖+1
𝑢𝑏

are calculated by performing back-substitution on 𝛿
𝑎,𝑏,≤
𝑥𝑖+1 and 𝛿

𝑎,𝑏,≥
𝑥𝑖+1 respectively.

𝑥
𝑎,≤
𝑖+1 = 𝑥

𝑎,≥
𝑖+1 = 𝑣 +

𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑎𝑗 𝑥
𝑏,≤
𝑖+1 = 𝑥

𝑏,≥
𝑖+1 = 𝑣 +

𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑏𝑗 𝛿𝑎,𝑏,≤𝑥𝑖+1 = 𝛿𝑎,𝑏,≥𝑥𝑖+1 =

𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝛿𝑎,𝑏𝑥 𝑗
(8)

DiffPoly vs DeepPoly with transformer for the difference of activations: In Section 3.1.5, we

explain why the existing DeepPoly domain is not suited for difference-bound computation between

the outputs of a pair of DNN executions. It is natural to ask whether the precision improvement

in difference tracking achieved by DiffPoly can be replicated by just designing a new abstract

transformer for theDeepPoly domain handling the following assignments𝑦𝑎𝑖 ← 𝜎 (𝑥𝑎𝑖), 𝑦𝑏𝑖 ← 𝜎 (𝑥𝑏𝑖)
and (𝑦𝑎𝑖 −𝑦𝑏𝑖) ← 𝜎 (𝑥𝑎𝑖) − 𝜎 (𝑥𝑏𝑖) where 𝜎 : R→ R is the non-linear activation function. In this case,

the DeepPoly domain lacks concrete, symbolic bounds on the difference (𝑥𝑎𝑖 − 𝑥𝑏𝑖) and can only use

the concrete, symbolic bounds of the individual variables 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 . This results in imprecise concrete

bounds Δ
𝑎,𝑏,𝑦𝑖

𝑙𝑏
and Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
of (𝑦𝑎𝑖 − 𝑦𝑏𝑖) which in turn results in imprecise symbolic bounds (Table 3

and 4 uses the sign of the concrete bounds of difference for selecting the symbolic bounds). For

instance, in the illustrative example, the symbolic upper bound of (𝛿1,2
𝑥5
) with DeepPoly bounds

results in concrete upper bound Δ1,2,𝑥5

𝑢𝑏
= 20.625 while DiffPoly produces more precise concrete

upper bound Δ1,2,𝑥5

𝑢𝑏
= 6.0. Overall DiffPoly is more general and can precisely handle bivariate non-

linear functions such as 𝜎 (𝑥) −𝜎 (𝑦) with inputs 𝑥,𝑦 coming from two distinct copies of the network.

Furthermore, we demonstrate in Appendix G.5 that DiffPoly can be expanded to encompass any

linear combination of variables from 𝑘 executions. This makes DiffPoly the first domain capable of

computing precise bounds (both concrete and symbolic) of any linear combination of DNN outputs

at each layer coming from different related executions.

4.5 RaVeN’s Layerwise Constraint Formulation
In this section, we formally introduce RaVeN’s layerwise constraint formulation. Consider𝒜Δ =

[𝒜1

𝛿
, . . . ,𝒜𝜅

𝛿
]𝑇 , that stores the symbolic and concrete bounds computed by all 𝜅 DiffPoly analyses,

with𝒜
𝑗

𝛿
representing the bounds computed by the 𝑗-th analysis. RaVeN’s constraint formulation

algorithm takes as input 𝒜Δ, network 𝑁 : R𝑛0 → R𝑛𝑙
, and the input specification Φ and generates

a set of linear constraints for each layer. Let, L𝑖
represent the set of linear constraints over the

outputs of the 𝑖th layer, defining the convex region L𝑖
𝑡 ⊆ R𝑛𝑖×𝑘

. In this case, L𝑖
𝑡 contains all possible

outputs at 𝑖-th layer for all 𝑘 executions. We compute L𝑖
by adding linear constraints for all 𝑛𝑖

variables at the 𝑖-th layer for each pair of executions using the concrete and symbolic bounds from

the DiffPoly analysis for that pair. For instance, consider 𝑎 ∈ [𝑘] ∧𝑏 ∈ [𝑘] ∧ (𝑎 < 𝑏), which defines

a pair of executions. Here, [𝑥𝑎
1
, . . . , 𝑥𝑎𝑛𝑖] and [𝑥

𝑏
1
, . . . , 𝑥𝑏𝑛𝑖] represent variables at the 𝑖-th layer for

the pair of executions (𝑎, 𝑏). Then the linear constraints added for this pair of executions are as

follows where 𝑗 ∈ [𝑛𝑖] and the concrete and symbolic bounds are from the DiffPoly analysis which

in turn inherits the concrete bounds 𝑙𝑎,𝑥 𝑗
, 𝑢𝑎,𝑥 𝑗

, 𝑙𝑏,𝑥 𝑗
, 𝑢𝑏,𝑥 𝑗

from product DNN analysis:

𝑥
𝑎,≤
𝑗
≤ 𝑥𝑎𝑗 ≤ 𝑥

𝑎,≥
𝑗

𝑥
𝑏,≤
𝑗
≤ 𝑥𝑎𝑗 ≤ 𝑥

𝑏,≥
𝑗

𝛿𝑎,𝑏,≤𝑥 𝑗
≤ (𝑥𝑎𝑗 − 𝑥𝑏𝑗) ≤ 𝛿𝑎,𝑏,≥𝑥 𝑗

𝑙𝑎,𝑥 𝑗
≤ 𝑥𝑎𝑗 ≤ 𝑢𝑎,𝑥 𝑗

𝑙𝑏,𝑥 𝑗
≤ 𝑥𝑎𝑗 ≤ 𝑢𝑏,𝑥 𝑗

Δ
𝑎,𝑏,𝑥 𝑗

𝑙𝑏
≤ (𝑥𝑎𝑗 − 𝑥𝑏𝑗) ≤ Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
(9)

In Eq. 9, the third column illustrates the additional difference constraints added for a variable

pair, while the remaining constraints constitute RaVeN’s layerwise formulation, as elaborated in

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Input-Relational Verification of Deep Neural Networks 15

Section 3.2.2. Note that, as discussed earlier, in DiffPoly analysis, up to two valid symbolic lower or

upper bounds can be generated for each variable and their difference. For efficiency in concrete

bounds computation with back-substitution, DiffPoly restricts to a single symbolic lower and upper

bound. However, in the MILP formulation, all valid bounds are incorporated. The input specification

Φ, defined as a conjunction of linear constraints over the inputs, is directly encoded as a set of

linear constraints L0
at the input layer. The linear constraints for all 𝑙 layers are then generated by

aggregating layerwise constraints L𝑖
with input linear constraints L0

.

4.6 RaVeN MILP encoding
We provide the general encoding of Ψ as MILP objective for relational DNN specifications described

in Section 2.1. We add the MILP encoding of Ψ to the layerwise constraints from Section 4.5 to

formulate the MILP instance. Let 𝑌1, . . . , 𝑌𝑘 be the DNN’s output for 𝑘 executions, for all 𝑖 ∈ [𝑚]
and 𝑗 ∈ [𝑛], 𝑥𝑖, 𝑗 and 𝑧𝑖 be integer variables and for all 𝑖′ ∈ [𝑘], 𝐶𝑖, 𝑗,𝑖′ ∈ R𝑛𝑙

where𝑚 is the number

of clauses in Ψ and 𝑛 is number of literals in each clause (see Section 2.1). Then the MILP objective

is as follows

min

(𝑌1,...,𝑌𝑘)

𝑚∑︁
𝑖=1

𝑧𝑖 s.t. 𝑥𝑖, 𝑗 = 𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘) =
(

𝑘∑︁
𝑖′=1

𝐶𝑇
𝑖,𝑗,𝑖′𝑌𝑖′ ≥ 0

)
; 𝑧𝑖 =

(
𝑛∑︁
𝑗=1

𝑥𝑖, 𝑗 ≥ 0

)
(10)

The proof of the correctness of the MILP formulation is in Appendix F.6. For the common properties

(e.g. UAP, targeted-UAP, worst-case hamming distance, etc.)𝑚 = 𝑘 , 𝑛 = 𝑛𝑙 and the MILP objective

introduces only 𝑘 × (𝑛𝑙 + 1) integer variables where 𝑛𝑙 is the output dimension of the DNN

(Appendix G.4). Hence irrespective of the size of the network, the number of integer variables

only depends on the number of executions 𝑘 and 𝑛𝑙 which is in general a small constant (i.e. 10

for commonly used MNIST and CIFAR10 networks). Since the number of integer variables is the

primary bottleneck of MILP optimization, RaVeN scales to large DNNs by only introducing a small

number of integer variables (𝑛𝑙 +1) per execution. This differs from the naive MILP which introduces

an integer variable at each activation and does not scale past even small networks containing a

few hundred neurons. Besides decreasing the count of integer variables, RaVeN efficiently infers

linear constraints for the MILP encoding that are sound while improving the precision of the over-

approximated convex region (illustrated in Figure 5 of the paper). This requires - (i) recognizing

that tracking the difference between the outputs of a pair of DNN executions helps in improving

precision while maintaining scalability, and (ii) designing and leveraging DiffPoly analysis on

(
𝑘
2

)
pairs of executions while computing provably correct constraints across multiple executions.

4.7 Soundness Proof Sketch of RaVeN
In this section, we outline the soundness proof for various components of RaVeN. Detailed proofs

are in Appendix F. We start with the soundness proofs of all DiffPoly transformers.

4.7.1 Soundness of DiffPoly ReLU tansformer. We first state the lemmas required to prove the

soundness of 𝑇
♯

𝑅
. Proofs of all cases shown in Fig. 4, Lemma 4.2, and 4.3 are in Appendix G.1.

Lemma 4.2. (Correctness of symbolic bounds in Table 2 and 3) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖], 𝑥𝑏𝑖 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖]
and 𝛿𝑎,𝑏𝑥𝑖 = (𝑥𝑎𝑖 − 𝑥𝑏𝑖) ∈ [Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏
] and 𝛿𝑎,𝑏𝑦𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖) −𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) then 𝛿

𝑎,𝑏,≤
𝑦𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑦𝑖

where 𝛿𝑎,𝑏,≤𝑦𝑖 and 𝛿𝑎,𝑏,≥𝑦𝑖 defined in Table 2 and 3.

Lemma 4.3. (Correctness of concrete bounds computed by the ReLU transformer) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖],
𝑥𝑏𝑖 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖] and 𝛿

𝑎,𝑏
𝑥𝑖 = (𝑥𝑎𝑖 − 𝑥𝑏𝑖) ∈ [Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏
], 𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖), 𝑦𝑏𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖), 𝛿

𝑎,𝑏
𝑦𝑖 =

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

𝑦𝑎𝑖 − 𝑦𝑏𝑖 then 𝑙𝑎,𝑦𝑖 ≤ 𝑦𝑎𝑖 ≤ 𝑢𝑎,𝑦𝑖 , 𝑙𝑏,𝑦𝑖 ≤ 𝑦𝑏𝑖 ≤ 𝑢𝑏,𝑦𝑖 , and Δ
𝑎,𝑏,𝑦𝑖

𝑙𝑏
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
where Δ𝑎,𝑏,𝑦𝑖

𝑙𝑏
and

Δ
𝑎,𝑏,𝑦𝑖

𝑢𝑏
computed by applying back-substitution on 𝛿𝑎,𝑏,≤𝑦𝑖 and 𝛿𝑎,𝑏,≥𝑦𝑖 respectively.

The concrete transformer 𝑇𝑅 : ℘(R2𝑖) → ℘(R2𝑖+2) for the ReLU assignments 𝑦𝑎𝑖 ← 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖),
𝑦𝑏𝑖 ← 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) is defined as𝑇𝑅 (X) = {([𝑥𝑎1 , . . . , 𝑥𝑎𝑖 , 𝑦𝑎𝑖]𝑇 , [𝑥𝑏1 , . . . , 𝑥𝑏𝑖 , 𝑦𝑏𝑖]𝑇) | (𝑋𝑎, 𝑋𝑏) ∈ X}where
𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖), 𝑦𝑏𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖), X ⊆ R2𝑖

and 𝑋𝑎 = [𝑥𝑎
1
, . . . , 𝑥𝑎𝑖]𝑇 ∈ R𝑖

, 𝑋𝑏 = [𝑥𝑏
1
, . . . , 𝑥𝑏𝑖]𝑇 ∈ R𝑖

.

Theorem 4.4. (Soundness of DiffPoly Relu Transformer) For any abstract element 𝑎 ∈ A2𝑖

𝑇𝑅 (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯

𝑅
(𝑎)).

Proof. The proof is in Appendix F.1. □

4.7.2 Soundness of DiffPoly differentiable activation transformer. Proof of all the cases from Table. 4

are in Appendix G.2. Lemma F.1 proves the soundness of the symbolic bounds, while Lemma F.2

proves the soundness of concrete bounds. The comprehensive soundness proof for the DiffPoly’s

transformer for differentiable activations is in Appendix F.2.

4.7.3 Soundness of DiffPoly Affine transformer. Lemma F.4 proves the soundness of the symbolic

bounds corresponding to the DiffPoly affine transformer, while Lemma F.5 proves the soundness

of the corresponding concrete bounds. A comprehensive soundness proof for the DiffPoly affine

transformer is in Appendix F.3.

4.7.4 Soundness of product DNN analysis. We prove that the output region P ⊆ R𝑛𝑙×𝑘
obtained

by running existing DNN abstract interpreters e.g. [68] on each of 𝑘 copies of 𝑁 contains all

possible output w.r.t all 𝑘 executions on inputs satisfying Φ. Let, ∀𝑖 ∈ [𝑘] 𝜙𝑖
𝑖𝑛 : R𝑛0 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}

defines the 𝐿∞ input region 𝜙𝑖
𝑡 = ∥𝑋 − 𝑋 ∗𝑖 ∥∞ ≤ 𝜖 for each of 𝑘 executions. Existing DNN abstract

interpreters operate on these individual input regions 𝜙𝑖
𝑡 and compute the overapproximated output

region P𝑖 ⊆ R𝑛𝑙
that satisfies ∀𝑋 ∈ R𝑛0 .𝜙𝑖

𝑖𝑛 (𝑋) =⇒ (𝑁 (𝑋) ∈ P𝑖). The output region P ⊆ R𝑛𝑙×𝑘

is the cross-product of all 𝑘 output regions P =
>𝑘

𝑖=1
P𝑖 . Now, we show that P contains all possible

outputs of N𝑘 (𝑋) provided 𝑋 ∈ R𝑛0 × 𝑘 satisfies Φ.

Theorem 4.5. (Soundness of Product DNN analysis) ∀(𝑋1, . . . , 𝑋𝑘) ∈ R𝑛0×𝑘 .Φ((𝑋1, . . . , 𝑋𝑘)) =⇒
(N𝑘 ((𝑋1, . . . , 𝑋𝑘)) ∈ P).
Proof. The proof is in Appendix F.4. □

4.7.5 Soundness of RaVeN MILP formulation. We prove that for all layer 𝑖 ∈ [𝑙] the convex region
L𝑖

𝑡 ⊆ R𝑛𝑖×𝑘
defined by the linear constraints L𝑖

contain all possible outputs at 𝑖-th layer for all 𝑘

executions. For the input region, we show Φ𝑡 ⊆ L0

𝑡 .

Theorem 4.6. (Soundness of Linear constraints)Φ𝑡 ⊆ L0

𝑡 and∀𝑖 ∈ [𝑙] .∀𝑋1, . . . 𝑋𝑘 ∈ R𝑛0 .Φ(𝑋1, . . . , 𝑋𝑘)
=⇒ (𝑁 𝑖 (𝑋1), . . . , 𝑁 𝑖 (𝑋𝑘)) ∈ L𝑖

𝑡 where 𝑁
𝑖

: R𝑛0 → R𝑛𝑖 is the composition of first 𝑖 layers of the
network 𝑁 , 𝑁 𝑖 = 𝑁1 ◦ · · · ◦ 𝑁𝑖 .

Proof. The proof is in Appendix F.5. □

4.8 Asymptotic Runtime Analysis
First, we describe the runtime analysis of DiffPoly. Let the original DNN have 𝑛 neurons. Symbolic

bound computations for each variable pair < 𝑥𝑎𝑖 , 𝑥
𝑏
𝑖 > at worst take 𝑂 (𝑛) time. Overall, the worst-

case complexity for symbolic bound computation for all variable pairs is𝑂 (𝑛2). The back-substitution
algorithm used for computing concrete bounds in the worst case explores 𝑂 (𝑛) symbolic bounds

before terminating. Obtaining the concrete bounds by substituting concrete values for all variables

in each symbolic bound takes𝑂 (𝑛) time. The worst-case runtime for obtaining concrete bounds for

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Input-Relational Verification of Deep Neural Networks 17

each variable pair is 𝑂 (𝑛2) and the asymptotic runtime of a single DiffPoly analysis is 𝑂 (𝑛3). Since
we consider

(
𝑘
2

)
pairs of executions the total cost of DiffPoly analysis is 𝑂 (𝑘2 · 𝑛3). For product

DNN analysis we use an existing DNN abstract interpreter for each of 𝑘 copies of the original

network 𝑁 . We assume analyzing each copy of 𝑁 takes 𝐶𝑁 time. So analyzing the product DNN

takes 𝑘 · 𝐶𝑁 time. For the MILP formulation, we add in the worst-case 𝑂 (𝑘) of constraints per
variable and the product DNN contains 𝑂 (𝑘 · 𝑛) variables. Then the total size of the MILP in terms

of the number of linear constraints is 𝑂 (𝑘2 · 𝑛). Since we formulate the MILP using the constraints

obtained from the DiffPoly analysis, in the worst case, MILP formulation takes 𝑂 (𝑘2 · 𝑛3). Suppose
it takes 𝐶M worst case time to optimize the MILP, then worst case time complexity of RaVeN is

𝑂 (𝑘2 · 𝑛3) + 𝑘 ·𝐶𝑁 +𝐶M . Note, 𝐶M depends on the MILP encoding of Ψ which is the only source

of integer variables in RaVeN’s formulation.

5 EVALUATION
We evaluate the effectiveness of RaVeN on a wide range of relational properties and a diverse set of

neural networks and datasets. We consider the following relational properties: UAP, targeted UAP,

hamming distance, and monotonicity as formally defined in Appendix A.3. For UAP and Hamming

Distance properties, we compare our method to the existing baselines highlighted above in Section

3. The first baseline we consider is individual verification (see Section 3.2.1) which is work by

Khedr and Shoukry [40]. The second baseline is an instantiation of the work done by Zeng et al.

[88] with state-of-the-art non-relational verifiers DeepZ [68] and DeepPoly [69] which we call I/O

Formulation (see Section 3.2.1). For these properties, our experimental results indicate that RaVeN

is always more precise than existing methods and can verify significantly more properties. For

monotonicity, we compare our methods to two existing baselines Liu et al. [48] and Pasado [44].

5.1 Experimental Setup
Datasets. For UAP based experiments, we use the popular MNIST [45] and CIFAR10 [42] image

datasets. We also use MNIST for the Hamming distance experiments. For our monotonicity exper-

iments, we use the Boston Housing (BH) dataset [37] and the Adult dataset [8]. The BH dataset

contains 12 housing attributes such as age, tax, rooms, etc. and the target is housing price. The

Adult dataset contains 87 features such as age, education, marital status, etc.

Neural Networks. Table 5 shows the MNIST, CIFAR10, BH, and Adult neural network archi-

tectures used in our experiments. We use standard network architectures (Convolutional and

Fully-connected) commonly seen in other neural network verification works [68, 69]. We consider

networks trained with standard training, DiffAI [53], CROWN-IBP [90], projected gradient descent

(PGD) [50], and a monotonicity training scheme [34].

Non-relational verifier. We instantiate both RaVeN and I/O Formulation with either DeepPoly

or DeepZ. Although RaVeN works with other non-relational verifiers including SOTA "Branch

and Bound" based verifiers like 𝛼, 𝛽-CROWN [79] and MNBaB [28]. We use DeepPoly or DeepZ

because they are fast and widely used for initializing complete verifiers. For example, 𝛼, 𝛽-CROWN

uses CROWN (equivalent to DeepPoly). We also compare RaVeN’s performance with 𝛼, 𝛽-CROWN

and MNBaB in Section 5.6.

Implementation Details. We implemented our method in Python with Pytorch V1.11 and Gurobi

V10.0.3 as an off-the-shelf MILP solver. Our MNIST experiments were performed on an Intel(R)

Core(TM) i7-12800HX@ 4.80 GHz with 16 GB of memory and the remainder of our experiments on

an Intel(R) Core(TM) i9-9900KS CPU@ 4.00GHz with 64 GB of memory. Unless otherwise specified,

we use DeepZ [68] to perform bound analysis on the product DNN and use the same verifier for

the baselines. We use Gurobi with a timeout of 5 minutes to solve MILP problems.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

Table 5. Network Information and Runtime (s) averaged over 𝜖 values considered in this paper

Dataset Model Type Train # Layers # Params Ind. Veri. I/O Form. RaVeN MILP time

MNIST IBP-Small Conv IBP 7 60k 0.04 0.12 1.98 1.01

ConvSmall Conv DiffAI 7 80k 0.30 0.39 7.40 4.06

IBP Conv IBP 9 400k 0.42 0.46 19.33 7.79

ConvBig Conv DiffAI 13 1.8M 6.46 6.50 23.19 16.61

Hamming FC PGD 3 39k 0.04 0.14 2.21 2.02

CIFAR10 IBP-Small Conv IBP 7 60k 0.29 0.47 8.39 5.03

ConvSmall Conv DiffAI 7 80k 0.44 0.57 12.59 6.61

IBP Conv IBP 9 2.2M 36.44 36.56 200.16 161.66

ConvBig Conv DiffAI 13 2.5 M 16.19 16.29 185.05 161.63

Dataset Model Type Train # Layers # Params Liu et al. Pasado RaVeN DiffPoly

BH 12x1 FC Mono 3 312 0.25 × - 0.02

Adult 10 x 10 FC Standard 5 980 × 36.70 4.23 0.87

5.2 Relational Properties
The formal definitions for UAP, targeted UAP, and hamming distance given in Appendix A.3 involve

verifying that there does not exist an attack that can change all DNN predictions on a given input

set by perturbing all the inputs with a single perturbation. While RaVeN can handle this problem,

it is pessimistic and perturbations of this nature, although dangerous, rarely occur in reality.

Instead, we bound the worst-case accuracy of the neural network under a UAP attack. Formally,

we report 𝑎 the verified worst-case accuracy which is a lower bound (as RaVeN is incomplete) on

𝑎∗, the true worst-case accuracy. For network 𝑁 and inputs 𝑋1, . . . 𝑋𝑘 where ∀𝑣 ∈ R𝑛0
s.t. | |𝑣 | |𝑝 ≤

𝜖. 1

𝑘

∑𝑘
𝑖=1
(𝑁 (𝑋𝑖 + 𝑣) = 𝑌𝑖) ≥ 𝑎 and 𝑌𝑖 is the correct label of 𝑋𝑖 . Note that a result is better if it more

tightly approximates 𝑎∗ in this case since all presented methods are sound the best result is the one

with the greatest value. For hamming distance, we perform a similar relaxation upper bounding the

true worst case hamming distance. Thus, for hamming distance, smaller is better. For monotonicity,

we are given a set of monotonic features and report the percentage of those features we can verify.

For monotonicity, larger is better.

5.3 Universal Adversarial Perturbation Verification
We compare the performance of RaVeN vs the two baselines for worst-case accuracy under UAP

attack on the MNIST and CIFAR10 networks. For each experiment, we verify a batch of 5 images.

We repeat 20 times on randomly selected images, reporting the average worst-case accuracy. We

use the standard 𝜖 values used in the literature [68, 69]. We additionally analyze RaVeN vs. baselines

on the targeted UAP verification problem in Appendix H.1.

(a) IBP-Small (b) ConvSmall (c) IBP (d) ConvBig
Fig. 6. Average worst case UAP accuracy for convolutional networks trained on CIFAR10

5.3.1 Comparison on CIFAR10 networks. Figure 6 compares the worst-case accuracy (%) on the

CIFAR10 dataset with a variety of training methods (Crown-IBP, DiffAI) and network architectures

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Input-Relational Verification of Deep Neural Networks 19

(IBP-Small, ConvSmall, IBP, ConvBig).We observe that RaVeN outperforms all baselines significantly

for all networks, training methods, and 𝜖s. For example, we see that for IBP-Small trained with

Crown-IBP that RaVeN obtains at least 25% higher average worst case accuracy verified when

compared to baselines on all 𝜖s and a maximum of 38% higher accuracy at 𝜖 = 4.5. On the same

network, I/O Formulation, the SOTA UAP verification method, obtains at most 1% higher than the

Individual baseline. For the IBP-Small network, even when the baselines achieve close to 0% at

𝜖 = 8/255 RaVeN still obtains 37% accuracy. We observe similar results on the other networks.

(a) IBP-Small (b) ConvSmall (c) IBP (d) ConvBig
Fig. 7. Average Worst case UAP accuracy for convolutional networks trained on MNIST

5.3.2 Comparison on MNIST Networks. Figure 7 shows similar results to CIFAR10 with the same

diverse range of networks and training methods. Particularly, we observe that for IBP-Small RaVeN

verifies an additional 53% accuracy when compared to baselines at 𝜖 = 0.15. We observe that as 𝜖

grows RaVeN’s relative benefit is greater, this is especially clear when for IBP (Figure 7 c).

5.3.3 Runtime Analysis. Table 5 shows the average runtime in seconds for each method.We observe

that RaVeN time > I/O Formulation time > Independent Verification time. We note that even with

more time the baseline approaches would not achieve any better results as they are limited and

can not get more precise. Note that a majority of the time for RaVeN is taken by the MILP solver

as seen in Table 5. As RaVeN is the first tool to show that cross-execution information aids in

relational verification we believe runtime can be improved with future research. We also note that

our timings are comparable to the timeouts given in the SOTA competition for verification of NNs

(VNN-Comp [12]) (216 seconds per instance) even though we are verifying sets of 5 images.

(a) ReLU (b) Sigmoid (c) Tanh
Fig. 8. Average Worst Case Hamming Distance with different activation functions (smaller is better)

5.4 Hamming Distance Verification
We use MNIST as the base dataset and train a 3-layer fully connected network with 200 neurons in

the hidden layers. We use a range of activation functions (ReLU, Tanh, Sigmoid). The network is

adversarially trained with PGD to identify between classes 0 and 1. In this experiment, DeepPoly is

used to instantiate both the baselines and RaVeN. Figure 8 shows the worst case hamming distance

for strings of length 20 for different activation functions and 𝜖 values. For all 𝜖 values and string

lengths, RaVeN outperforms both baselines, e.g. at 𝜖 = 0.3 for Tanh the baselines obtain 20 and

19.85 while RaVeN obtains 15. We especially see that for Sigmoid and Tanh activations the baselines

perform identically while RaVeN significantly outperforms both of them.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

5.5 Monotonicity Verification

Fig. 9. Average % of Verified Monotonic Fea-
tures on Adult Dataset

We verify the monotonicity of networks with both

Tanh and ReLU activations trained on the Adult [8]

and BH [37] datasets respectively. We compare our

methods against the SOTA monotonicity verifier for

Tanh networks, Pasado [44] using the Adult dataset

with 5 monotonic features (same features as previous

works [44, 66]). Monotonicity can be verified directly

by DiffPoly without the need for any MILP formulation.

For incomplete verifiers such as RaVeN, imprecisions

accumulate during the analysis. By splitting the input

region and verifying each region separately we can get

a sound analysis which is sometimes more precise than

the original analysis with some additional computation cost. Input splitting is a common tool

used in other verification papers as a way to increase precision [38]. We use input splitting for

monotonicity for two reasons: 1. the monotonic input specification only has one dimension of

variation and is thus easy to split, and 2. DiffPoly/RaVeN verifies monotonicity very quickly in

comparison to SOTA methods so we can split to gain precision while still having faster runtime.

For both RaVeN and DiffPoly we split the input region 10 times before verifying. Figure 9 shows

the results of RaVeN and DiffPoly compared to Pasado and its baselines (Zonotope, Interval). For

small 𝜖 Pasado slightly outperforms RaVeN (92% vs 94%); however, as 𝜖 grows the benefit of RaVeN

becomes clear (66% vs 2% at 𝜖 = 4). We observe that DiffPoly alone can perform on par with Pasado

while running significantly faster (0.87s vs 36.7s, while RaVeN sits in the middle at 4.23s). For

ReLU networks we compare against Liu et al. [48] as Pasado is unable to handle ReLU (Liu et al.

[48] only handles ReLU). We verify a single feature on the Boston Housing dataset over the 98

test images. Liu et al. [48] can verify all 98 inputs for monotonicity for each 𝜖 = [10, 20, 30]. On
the other hand, DiffPoly is able to verify [96, 95, 95] inputs for 𝜖 = [10, 20, 30], but we note that
DiffPoly is significantly faster (0.02s vs 0.25s). We observe that DiffPoly and RaVeN are powerful

monotonicity verifiers that can handle a wider range of networks/activation functions than both

baselines achieving good results in significantly less time.

5.6 Ablation Studies
In this section, we show an ablation study comparing RaVeN to stronger individual verifiers: MNBaB

[28] and 𝛼, 𝛽-CROWN [79]. We further show an ablation study on the benefits of adding difference

constraints compared to only adding the layerwise formulation. In Appendix H.2, we show RaVeN

performs well compared to baselines when all of them use DeepPoly [69] instead of DeepZ [68].

(a) IBP-Small (CIFAR) (b) Hamming (ReLU) (c) Hamming (Sigmoid) (d) Hamming (Tanh)

Fig. 10. Comparison of RaVeN against MNBaB and 𝛼, 𝛽-CROWN

5.6.1 Comparison to MNBaB and 𝛼, 𝛽-CROWN. MNBaB [28] and 𝛼, 𝛽-CROWN [79] use branching

to obtain better precision at the cost of runtime. Although both MNBaB and 𝛼, 𝛽-CROWN are

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Input-Relational Verification of Deep Neural Networks 21

complete for non-relational properties for DNNs with piece-wise linear activations such as ReLU,

they are imprecise for relational verification as they do not take the cross-execution constraints

into account. Furthermore, both MNBaB and 𝛼, 𝛽-CROWN cannot verify monotonicity, whereas

both DiffPoly and RaVeN can handle monotonicity. We instantiate MNBaB and 𝛼, 𝛽-CROWN with

a 2-minute timeout per individual input. Note that although RaVeN is given a timeout of 5 minutes

for MILP solving, for individual verifiers to perform UAP verification they must individually verify

each input in the batch giving MNBaB and 𝛼, 𝛽-CROWN a total of 10 and 40 minutes for UAP and

hamming distance verification respectively. Figure 10 compares RaVeN to MNBaB and 𝛼, 𝛽-CROWN

on UAP verification for IBP-Small on CIFAR10 and for hamming distance verification on MNIST

with different activations. Note that MNBaB does not currently support Sigmoid or Tanh activations.

Similar to the above experiments, we instantiate RaVeN with DeepZ for IBP-Small and DeepPoly

for hamming distance networks. We observe that RaVeN consistently performs better than MNBaB

and 𝛼, 𝛽-CROWN (except for the hamming distance network with sigmoid activations for small

𝜖s). For example, for hamming distance with ReLU activations at 𝜖 = 0.25, RaVeN can verify an

average worst-case hamming distance of 10 while MNBaB and 𝛼, 𝛽-CROWN only obtain 18 and

18.5 respectively. For IBP-Small on CIFAR10 at 𝜖 = 8/255, RaVeN can verify a worst-case UAP

accuracy of 37% while MNBaB and 𝛼, 𝛽-CROWN only obtain 25% and 16% respectively.

In Table 6, we show a runtime comparison between RaVeN, MNBaB, and 𝛼, 𝛽-CROWN on

the same networks as Figure 10. We observe that RaVeN takes less time than MNBaB and 𝛼, 𝛽-

CROWN in all instances. Note that for Sigmoid and Tanh activations, 𝛼, 𝛽-CROWN is equivalent

to 𝛼-CROWN [87] which does not support branching resulting in lower runtimes. In all instances,

MNBaB and 𝛼, 𝛽-CROWN take significantly more time (> 37.7× more time for hamming distance

with ReLU activations).

Table 6. Runtime Comparison (in secs) between RaVeN, MNBaB, and 𝛼, 𝛽-CROWN

Dataset Model Activation RaVeN MNBaB 𝛼, 𝛽-CROWN

MNIST Hamming ReLU 4.92 209.38 185.91

Hamming Sigmoid 1.15 × 3.05

Hamming Tanh 2.37 × 5.77

CIFAR10 IBP-Small ReLU 8.39 23.13 39.92

Adult 10 × 10 Tanh 4.23 × ×

5.6.2 Benefits of Difference Constraints. Figure 11 shows the benefits of adding difference con-

straints. In each example, RaVeN with difference constraints outperforms RaVeN layerwise without

difference constraints. For example, for IBP-Small on CIFAR10 we see at 𝜖 = 8 adding difference

constraints increases the accuracy bound from 15% to 37%. The benefit of difference constraints is

especially highlighted in the hamming distance example (d) as only by adding difference constraints

is RaVeN able to outperform the baseline methods. A runtime comparison between RaVeN layerwise

and RaVeN with difference constraints can be found in Appendix H.3.

6 RELATEDWORK
DNN verifiers. Prior works in DNN verification [1] primarily focus on proving whether a DNN

satisfies 𝐿∞ robustness [69, 80] property. In this case, existing DNN verifiers show that all inputs

inside a given 𝐿∞ region [16] are properly classified. The DNN verifiers are broadly categorized into

three main categories - (i) sound but incomplete verifiers which may not always prove property

even if it holds [31, 63, 67–69, 86, 87], (ii) complete verifiers that can always prove the property

if it holds [5, 13, 14, 25, 28, 30, 64, 71, 78, 79, 91] and (iii) verifiers with probabilistic guarantees

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

(a) IBP-Small (MNIST) (b) ConvSmall (MNIST) (c) IBP-Small (CIFAR10) (d) Hamming (Sigmoid)

Fig. 11. Comparison of RaVeN with difference constraints with RaVeN with only layerwise formulation.

[19]. However, all of these verifiers verify properties defined over single DNN execution and are

ineffective for verifying interesting relational properties [17] such as UAP verification [88] and

monotonicity [74] defined over multiple DNN executions.

DNN relational verifiers. Existing DNN relational verifiers can be grouped into two main cat-

egories - (i) verifiers for relational properties (UAP, monotonicity, etc.) defined over multiple

executions of the same DNN, [40, 88], (ii) verifiers for relational properties (local DNN equivalence

[58]) defined over multiple executions of different DNN on the same input [58, 59]. For relational

properties defined over multiple executions of the same DNN the existing verifiers [40] reduce

the verification problem into 𝐿∞ robustness problem by constructing product DNN with multiple

copies of the same DNN. However, the relational verifier in [40] treats all 𝑘 executions of the DNN

as independent and loses precision. The state-of-the-art DNN relational verifier [88] although

tracks the relationship between inputs used in multiple executions at the input layer, does not track

the relationship between the inputs fed to the subsequent hidden layers and can only achieve a

marginal improvement over the baseline verifiers that treat all executions independently. ITNE

[81] is a verifier for global robustness based on difference tracking. Global robustness measures

the largest change to the output of a single class over the entire dataset (local robustness lifted to

the dataset) whereas the UAP property considered in this work focuses on the number of points a

single perturbation can cause to misclassify over a set of inputs which can be from different classes.

Furthermore, RaVeN is more precise (Eq. 6 in [81] is covered by Table 2, RaVeN gains precision by

also considering the constraints in Table 3) and handles more activations than ITNE.

Relational verification of programs. Compared to DNNs, significantly more work exist for

verifying different relational properties, such as information flow security, determinism, etc. on

programs [7, 9, 11, 15, 18, 26, 27, 29, 41, 65, 73, 77]. Standard programs and DNNs have different

computational structure. For example, programs have loops while DNNs have a large number of

non-linear activations. These structural differences create specific challenges for the relational

verification of DNNs not seen for programs and vice-versa.

7 CONCLUSION
In this work, we developed a new framework called RaVeN to verify the relational properties of

DNNs based on our novel approach of difference tracking with the DiffPoly abstract domain. We run

extensive experiments on multiple relational properties including UAP verification, monotonicity,

etc., and show that RaVeN outperforms the state-of-the-art relational verifier [88] on all of them.

We have primarily considered relational properties defined over multiple executions of the same

DNN, however, RaVeN can be extended to relational properties involving two or more different

DNNs - local equivalence of pair of DNNs [58], properties defined over an ensemble of DNNs, etc.

RaVeN can also be integrated inside the training loop to obtain more trustworthy and safe neural

networks. We leave this as future work. Also, the current implementation of RaVeN is sequential

but as stated above certain steps like the product DNN analysis and pairwise difference computation

with DiffPoly can be parallelized to reduce the verification cost.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Input-Relational Verification of Deep Neural Networks 23

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their insightful comments. This work was supported in

part by NSF Grants No. CCF-2238079, CCF-2316233, CNS-2148583, Google Research Scholar award,

and Qualcomm Innovation Fellowship.

ARTIFACT STATEMENT
The artifact, on which the evaluation was done, is available at: https://zenodo.org/records/10807316

with DOI 10.5281/zenodo.10807316 [23]. The artifact includes instructions to reproduce the claimed

results of the paper.

REFERENCES
[1] Aws Albarghouthi. 2021. Introduction to Neural Network Verification. Found. Trends Program. Lang. 7, 1-2 (2021),

1–157. https://doi.org/10.1561/2500000051

[2] Filippo Amato, Alberto López, Eladia María Peña-Méndez, Petr Vaňhara, Aleš Hampl, and Josef Havel. 2013. Artificial

neural networks in medical diagnosis. Journal of Applied Biomedicine 11, 2 (2013).
[3] Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri. 2019. Optimization and Abstraction: A Synergistic

Approach for Analyzing Neural Network Robustness. In Proc. Programming Language Design and Implementation
(PLDI). 731–744.

[4] Stanley Bak, Taylor Dohmen, K. Subramani, Ashutosh Trivedi, Alvaro Velasquez, and Piotr Wojciechowski. 2023. The

Octatope Abstract Domain for Verification of Neural Networks. In Formal Methods - 25th International Symposium, FM
2023, Lübeck, Germany, March 6-10, 2023, Proceedings (Lecture Notes in Computer Science, Vol. 14000), Marsha Chechik,

Joost-Pieter Katoen, and Martin Leucker (Eds.). Springer, 454–472. https://doi.org/10.1007/978-3-031-27481-7_26

[5] Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Taylor T. Johnson. 2020. Improved Geometric Path Enumeration

for Verifying ReLU Neural Networks. In Computer Aided Verification - 32nd International Conference, CAV 2020, Los
Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12224), Shuvendu K.

Lahiri and Chao Wang (Eds.). Springer, 66–96. https://doi.org/10.1007/978-3-030-53288-8_4

[6] Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, and Martin Vechev. 2019. Certifying Geometric

Robustness of Neural Networks. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.

neurips.cc/paper_files/paper/2019/file/f7fa6aca028e7ff4ef62d75ed025fe76-Paper.pdf

[7] G. Barthe, P.R. D’Argenio, and T. Rezk. 2004. Secure information flow by self-composition. In Proceedings. 17th IEEE
Computer Security Foundations Workshop, 2004. 100–114. https://doi.org/10.1109/CSFW.2004.1310735

[8] Barry Becker and Ronny Kohavi. 1996. Adult. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5XW20.

[9] Raven Beutner and Bernd Finkbeiner. 2022. Software Verification of Hyperproperties Beyond k-Safety. In Computer
Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.). Springer, 341–362.

[10] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D

Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[11] Laura Bozzelli, Adriano Peron, and César Sánchez. 2021. Asynchronous Extensions of HyperLTL. In 36th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 1–13. https:

//doi.org/10.1109/LICS52264.2021.9470583

[12] Christopher Brix, Mark Niklas Müller, Stanley Bak, Taylor T Johnson, and Changliu Liu. 2023. First three years of the

international verification of neural networks competition (VNN-COMP). International Journal on Software Tools for
Technology Transfer (2023), 1–11.

[13] Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Pushmeet Kohli, P Torr, and P Mudigonda. 2020. Branch and bound for

piecewise linear neural network verification. Journal of Machine Learning Research 21, 2020 (2020).

[14] Rudy R Bunel, Oliver Hinder, Srinadh Bhojanapalli, and Krishnamurthy Dvijotham. 2020. An efficient nonconvex

reformulation of stagewise convex optimization problems. Advances in Neural Information Processing Systems 33
(2020).

[15] Jacob Burnim and Koushik Sen. 2009. Asserting and Checking Determinism for Multithreaded Programs. In Proceedings
of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering (Amsterdam, The Netherlands) (ESEC/FSE ’09). Association for Computing

Machinery, New York, NY, USA, 3–12. https://doi.org/10.1145/1595696.1595700

https://zenodo.org/records/10807316
https://doi.org/10.5281/zenodo.10807316
https://doi.org/10.1561/2500000051
https://doi.org/10.1007/978-3-031-27481-7_26
https://doi.org/10.1007/978-3-030-53288-8_4
https://proceedings.neurips.cc/paper_files/paper/2019/file/f7fa6aca028e7ff4ef62d75ed025fe76-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f7fa6aca028e7ff4ef62d75ed025fe76-Paper.pdf
https://doi.org/10.1109/CSFW.2004.1310735
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.1145/1595696.1595700

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

[16] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In 2017 ieee
symposium on security and privacy (sp). Ieee, 39–57.

[17] Maria Christakis, Hasan Ferit Eniser, Jörg Hoffmann, Adish Singla, and Valentin Wüstholz. 2022. Specifying and

Testing 𝑘-Safety Properties for Machine-Learning Models. arXiv preprint arXiv:2206.06054 (2022).
[18] Berkeley R. Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019. Semantic program alignment for equivalence

checking. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 1027–1040.

https://doi.org/10.1145/3314221.3314596

[19] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified Adversarial Robustness via Randomized Smoothing.

In Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 1310–1320. https://proceedings.mlr.press/v97/

cohen19c.html

[20] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of Linear Restraints among Variables of a Program.

In Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (Tucson, Arizona)
(POPL ’78). Association for Computing Machinery, New York, NY, USA, 84–96. https://doi.org/10.1145/512760.512770

[21] Hennie Daniels and Marina Velikova. 2010. Monotone and partially monotone neural networks. IEEE Transactions on
Neural Networks 21, 6 (2010), 906–917.

[22] Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan Uesato, Rudy Bunel,

Shreya Shankar, Jacob Steinhardt, Ian J. Goodfellow, Percy Liang, and Pushmeet Kohli. 2020. Enabling certification of

verification-agnostic networks via memory-efficient semidefinite programming. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.).

https://proceedings.neurips.cc/paper/2020/hash/397d6b4c83c91021fe928a8c4220386b-Abstract.html

[23] D.Banerjee. 2024. RaVeN: v1.1. https://doi.org/10.5281/zenodo.10807316

[24] Hai Duong, Linhan Li, ThanhVu Nguyen, and Matthew Dwyer. 2023. A DPLL (T) Framework for Verifying Deep

Neural Networks. arXiv preprint arXiv:2307.10266 (2023).
[25] Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural networks. In International

Symposium on Automated Technology for Verification and Analysis.
[26] Marco Eilers, Peter Müller, and Samuel Hitz. 2018. Modular Product Programs. In Programming Languages and Systems

- 27th European Symposium on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 10801), Amal Ahmed (Ed.). Springer, 502–529. https://doi.org/10.1007/978-3-319-89884-1_18

[27] Azadeh Farzan and Anthony Vandikas. 2019. Automated Hypersafety Verification. In Computer Aided Verification -
31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.). Springer, 200–218. https://doi.org/10.1007/978-3-

030-25540-4_11

[28] Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. 2022. Complete Verification via Multi-

Neuron Relaxation Guided Branch-and-Bound. In International Conference on Learning Representations. https:

//openreview.net/forum?id=l_amHf1oaK

[29] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. 2015. Algorithms for Model Checking HyperLTL and HyperCTL

ˆ*. In Computer Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9206), Daniel Kroening and Corina S. Pasareanu (Eds.).

Springer, 30–48. https://doi.org/10.1007/978-3-319-21690-4_3

[30] Aymeric Fromherz, Klas Leino, Matt Fredrikson, Bryan Parno, and Corina Pasareanu. 2021. Fast Geometric Projections

for Local Robustness Certification. In International Conference on Learning Representations. https://openreview.net/

forum?id=zWy1uxjDdZJ

[31] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. 2018.

Ai2: Safety and robustness certification of neural networks with abstract interpretation. In 2018 IEEE Symposium on
Security and Privacy (SP).

[32] Chuqin Geng, Nham Le, Xiaojie Xu, Zhaoyue Wang, Arie Gurfinkel, and Xujie Si. 2023. Towards reliable neural

specifications. In International Conference on Machine Learning. PMLR, 11196–11212.

[33] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples.

arXiv preprint arXiv:1412.6572 (2014).
[34] Akhil Gupta, Naman Shukla, Lavanya Marla, Arinbjörn Kolbeinsson, and Kartik Yellepeddi. 2019. How to incorporate

monotonicity in deep networks while preserving flexibility? arXiv preprint arXiv:1909.10662 (2019).
[35] Gurobi Optimization, LLC. 2018. Gurobi Optimizer Reference Manual.

https://doi.org/10.1145/3314221.3314596
https://proceedings.mlr.press/v97/cohen19c.html
https://proceedings.mlr.press/v97/cohen19c.html
https://doi.org/10.1145/512760.512770
https://proceedings.neurips.cc/paper/2020/hash/397d6b4c83c91021fe928a8c4220386b-Abstract.html
https://doi.org/10.5281/zenodo.10807316
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-030-25540-4_11
https://doi.org/10.1007/978-3-030-25540-4_11
https://openreview.net/forum?id=l_amHf1oaK
https://openreview.net/forum?id=l_amHf1oaK
https://doi.org/10.1007/978-3-319-21690-4_3
https://openreview.net/forum?id=zWy1uxjDdZJ
https://openreview.net/forum?id=zWy1uxjDdZJ

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Input-Relational Verification of Deep Neural Networks 25

[36] Richard W Hamming. 1950. Error detecting and error correcting codes. The Bell system technical journal 29, 2 (1950),
147–160.

[37] David Harrison Jr and Daniel L Rubinfeld. 1978. Hedonic housing prices and the demand for clean air. Journal of
environmental economics and management 5, 1 (1978), 81–102.

[38] Anan Kabaha and Dana Drachsler-Cohen. 2022. Boosting Robustness Verification of Semantic Feature Neighborhoods.

In Static Analysis - 29th International Symposium, SAS 2022, Auckland, New Zealand, December 5-7, 2022, Proceedings
(Lecture Notes in Computer Science, Vol. 13790), Gagandeep Singh and Caterina Urban (Eds.). Springer, 299–324.

https://doi.org/10.1007/978-3-031-22308-2_14

[39] Guy Katz, Derek Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor,

Haoze Wu, Aleksandar Zeljić, David Dill, Mykel Kochenderfer, and Clark Barrett. 2019. The Marabou Framework for
Verification and Analysis of Deep Neural Networks. 443–452.

[40] Haitham Khedr and Yasser Shoukry. 2023. CertiFair: A Framework for Certified Global Fairness of Neural Networks.

Proceedings of the AAAI Conference on Artificial Intelligence 37, 7 (Jun. 2023), 8237–8245.
[41] Máté Kovács, Helmut Seidl, and Bernd Finkbeiner. 2013. Relational abstract interpretation for the verification

of 2-hypersafety properties. In 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM, 211–222.

https://doi.org/10.1145/2508859.2516721

[42] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. (2009).

[43] Jianglin Lan, Yang Zheng, and Alessio Lomuscio. 2022. Tight Neural Network Verification via Semidefinite Relaxations

and Linear Reformulations. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022. AAAI Press, 7272–7280.
https://ojs.aaai.org/index.php/AAAI/article/view/20689

[44] Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, and Sasa Misailovic. 2023. Synthesizing precise static analyzers

for automatic differentiation. Proceedings of the ACM on Programming Languages 7, OOPSLA2 (2023), 1964–1992.
[45] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne E. Hubbard, and

Lawrence D. Jackel. 1989. Handwritten Digit Recognition with a Back-Propagation Network. In NIPS. 396–404.
[46] Juncheng Li, Shuhui Qu, Xinjian Li, Joseph Szurley, J. Zico Kolter, and Florian Metze. 2019. Adversarial Music: Real

world Audio Adversary against Wake-word Detection System. In Proc. Neural Information Processing Systems (NeurIPS).
11908–11918.

[47] Juncheng Li, Frank R. Schmidt, and J. Zico Kolter. 2019. Adversarial camera stickers: A physical camera-based attack

on deep learning systems. In Proc. International Conference on Machine Learning, ICML, Vol. 97. 3896–3904.
[48] Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu. 2020. Certified monotonic neural networks. Advances in Neural

Information Processing Systems 33 (2020), 15427–15438.
[49] Zikun Liu, Changming Xu, Emerson Sie, Gagandeep Singh, and Deepak Vasisht. 2023. Exploring Practical Vulnera-

bilities of Machine Learning-based Wireless Systems. In 20th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2023, Boston, MA, April 17-19, 2023. USENIX Association, 1801–1817.

[50] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018. Towards

Deep Learning Models Resistant to Adversarial Attacks. In International Conference on Learning Representations.
https://openreview.net/forum?id=rJzIBfZAb

[51] Antoine Miné. 2001. A new numerical abstract domain based on difference-bound matrices. In Programs as Data
Objects: Second Symposium, PADO2001 Aarhus, Denmark, May 21–23, 2001 Proceedings. Springer, 155–172.

[52] Matthew Mirman, Timon Gehr, and Martin Vechev. 2018. Differentiable abstract interpretation for provably robust

neural networks. In Proc. International Conference on Machine Learning (ICML). 3578–3586.
[53] Matthew Mirman, Timon Gehr, and Martin Vechev. 2018. Differentiable Abstract Interpretation for Provably Robust

Neural Networks. In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 3578–3586. https://proceedings.mlr.press/

v80/mirman18b.html

[54] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. 2017. Universal adversarial

perturbations. In Proceedings of the IEEE conference on computer vision and pattern recognition. 1765–1773.
[55] Mark Niklas Müller, Franziska Eckert, Marc Fischer, and Martin T. Vechev. 2023. Certified Training: Small Boxes are

All You Need. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net. https://openreview.net/pdf?id=7oFuxtJtUMH

[56] Satoshi Munakata, Caterina Urban, Haruki Yokoyama, Koji Yamamoto, and Kazuki Munakata. 2023. Verifying Attention

Robustness of Deep Neural Networks Against Semantic Perturbations. In NASA Formal Methods - 15th International
Symposium, NFM 2023, Houston, TX, USA, May 16-18, 2023, Proceedings (Lecture Notes in Computer Science, Vol. 13903),
Kristin Yvonne Rozier and Swarat Chaudhuri (Eds.). Springer, 37–61. https://doi.org/10.1007/978-3-031-33170-1_3

https://doi.org/10.1007/978-3-031-22308-2_14
https://doi.org/10.1145/2508859.2516721
https://ojs.aaai.org/index.php/AAAI/article/view/20689
https://openreview.net/forum?id=rJzIBfZAb
https://proceedings.mlr.press/v80/mirman18b.html
https://proceedings.mlr.press/v80/mirman18b.html
https://openreview.net/pdf?id=7oFuxtJtUMH
https://doi.org/10.1007/978-3-031-33170-1_3

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

[57] Alessandro De Palma, Harkirat S. Behl, Rudy Bunel, Philip H. S. Torr, and M. Pawan Kumar. 2021. Scaling the Convex

Barrier with Active Sets. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net. https://openreview.net/forum?id=uQfOy7LrlTR

[58] Brandon Paulsen, Jingbo Wang, and Chao Wang. 2020. ReluDiff: Differential Verification of Deep Neural Networks. In

Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE ’20).
Association for Computing Machinery, New York, NY, USA, 714–726. https://doi.org/10.1145/3377811.3380337

[59] Brandon Paulsen, Jingbo Wang, Jiawei Wang, and Chao Wang. 2021. NeuroDiff: Scalable Differential Verification of

Neural Networks Using Fine-Grained Approximation. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering (Virtual Event, Australia) (ASE ’20). Association for Computing Machinery, New

York, NY, USA, 784–796. https://doi.org/10.1145/3324884.3416560

[60] Yannik Potdevin, Dirk Nowotka, and Vijay Ganesh. 2019. An empirical investigation of randomized defenses against

adversarial attacks. arXiv preprint arXiv:1909.05580 (2019).
[61] Rob Potharst and Adrianus Johannes Feelders. 2002. Classification trees for problems with monotonicity constraints.

ACM SIGKDD Explorations Newsletter 4, 1 (2002), 1–10.
[62] Chongli Qin, Krishnamurthy (Dj) Dvijotham, Brendan O’Donoghue, Rudy Bunel, Robert Stanforth, Sven Gowal,

Jonathan Uesato, Grzegorz Swirszcz, and Pushmeet Kohli. 2019. Verification of Non-Linear Specifications for Neural

Networks. In International Conference on Learning Representations. https://openreview.net/forum?id=HyeFAsRctQ

[63] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. 2019. A Convex Relaxation Barrier to

Tight Robustness Verification of Neural Networks. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada.

[64] Joseph Scott, Guanting Pan, Elias B. Khalil, and Vijay Ganesh. 2022. Goose: A Meta-Solver for Deep Neural Network

Verification. In Proceedings of the 20th Internal Workshop on Satisfiability Modulo Theories co-located with the 11th
International Joint Conference on Automated Reasoning (IJCAR 2022) part of the 8th Federated Logic Conference (FLoC
2022), Haifa, Israel, August 11-12, 2022 (CEURWorkshop Proceedings, Vol. 3185), David Déharbe and Antti E. J. Hyvärinen
(Eds.). CEUR-WS.org, 99–113. https://ceur-ws.org/Vol-3185/extended678.pdf

[65] Ron Shemer, Arie Gurfinkel, Sharon Shoham, and Yakir Vizel. 2019. Property Directed Self Composition. In Computer
Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I (Lecture Notes in Computer Science, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.). Springer, 161–179. https:

//doi.org/10.1007/978-3-030-25540-4_9

[66] Zhouxing Shi, Yihan Wang, Huan Zhang, J Zico Kolter, and Cho-Jui Hsieh. 2022. Efficiently computing local lipschitz

constants of neural networks via bound propagation. Advances in Neural Information Processing Systems 35 (2022),
2350–2364.

[67] Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin Vechev. 2019. Beyond the single neuron convex

barrier for neural network certification. In Advances in Neural Information Processing Systems.
[68] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. 2018. Fast and effective

robustness certification. Advances in Neural Information Processing Systems 31 (2018).
[69] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An abstract domain for certifying neural

networks. Proceedings of the ACM on Programming Languages 3, POPL (2019).

[70] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. Robustness Certification with Refinement.

In International Conference on Learning Representations. https://openreview.net/forum?id=HJgeEh09KQ

[71] Matthew Sotoudeh, Zhe Tao, and Aditya V Thakur. 2023. SyReNN: a tool for analyzing deep neural networks.

International Journal on Software Tools for Technology Transfer 25, 2 (2023), 145–165.
[72] Matthew Sotoudeh and Aditya V Thakur. 2020. Abstract neural networks. In Static Analysis: 27th International

Symposium, SAS 2020, Virtual Event, November 18–20, 2020, Proceedings 27. Springer, 65–88.
[73] Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proceedings of the 37th

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA,
June 13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, 57–69. https://doi.org/10.1145/2908080.2908092

[74] Cheng Tan, Yibo Zhu, and Chuanxiong Guo. 2021. Building Verified Neural Networks with Specifications for Systems.

In Proceedings of the 12th ACM SIGOPS Asia-Pacific Workshop on Systems (Hong Kong, China) (APSys ’21). 42–47.
[75] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang, and

Taylor T. Johnson. 2019. Star-Based Reachability Analysis of Deep Neural Networks. In Formal Methods – The Next 30
Years, Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira (Eds.). Springer International Publishing, Cham,

670–686.

[76] Shubham Ugare, Gagandeep Singh, and Sasa Misailovic. 2022. Proof transfer for fast certification of multiple approxi-

mate neural networks. Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1–29. https://doi.org/10.1145/3527319

[77] Hiroshi Unno, Tachio Terauchi, and Eric Koskinen. 2021. Constraint-Based Relational Verification. In Computer
Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I (Lecture

https://openreview.net/forum?id=uQfOy7LrlTR
https://doi.org/10.1145/3377811.3380337
https://doi.org/10.1145/3324884.3416560
https://openreview.net/forum?id=HyeFAsRctQ
https://ceur-ws.org/Vol-3185/extended678.pdf
https://doi.org/10.1007/978-3-030-25540-4_9
https://doi.org/10.1007/978-3-030-25540-4_9
https://openreview.net/forum?id=HJgeEh09KQ
https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1145/3527319

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Input-Relational Verification of Deep Neural Networks 27

Notes in Computer Science, Vol. 12759), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, 742–766. https:

//doi.org/10.1007/978-3-030-81685-8_35

[78] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018. Efficient formal safety analysis of

neural networks. In Advances in Neural Information Processing Systems.
[79] ShiqiWang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2021. Beta-CROWN: Efficient

Bound Propagation with Per-neuron Split Constraints for Complete and Incomplete Neural Network Verification.

arXiv preprint arXiv:2103.06624 (2021).
[80] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2021. Beta-CROWN:

Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification. In

Advances in Neural Information Processing Systems, A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan

(Eds.). https://openreview.net/forum?id=ahYIlRBeCFw

[81] ZhiluWang, Chao Huang, and Qi Zhu. 2022. Efficient global robustness certification of neural networks via interleaving

twin-network encoding. In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1087–1092.
[82] Eric Wong and J. Zico Kolter. 2018. Provable Defenses against Adversarial Examples via the Convex Outer Adversarial

Polytope. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018 (Proceedings of Machine Learning Research, Vol. 80), Jennifer G. Dy and Andreas

Krause (Eds.). PMLR, 5283–5292. http://proceedings.mlr.press/v80/wong18a.html

[83] Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh. 2022. Scalable Verification

of GNN-Based Job Schedulers. Proc. ACM Program. Lang. 6, OOPSLA2, Article 162 (oct 2022), 30 pages. https:

//doi.org/10.1145/3563325

[84] Haoze Wu, Teruhiro Tagomori, Alexander Robey, Fengjun Yang, Nikolai Matni, George Pappas, Hamed Hassani,

Corina Pasareanu, and Clark Barrett. 2023. Toward certified robustness against real-world distribution shifts. In 2023
IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). IEEE, 537–553.

[85] Changming Xu and Gagandeep Singh. 2022. Robust Universal Adversarial Perturbations. CoRR abs/2206.10858 (2022).

https://doi.org/10.48550/arXiv.2206.10858 arXiv:2206.10858

[86] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin, and

Cho-Jui Hsieh. 2020. Automatic Perturbation Analysis for Scalable Certified Robustness and Beyond. (2020).

[87] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. 2021. Fast and Complete:

Enabling Complete Neural Network Verification with Rapid andMassively Parallel Incomplete Verifiers. In International
Conference on Learning Representations. https://openreview.net/forum?id=nVZtXBI6LNn

[88] Yi Zeng, Zhouxing Shi, Ming Jin, Feiyang Kang, Lingjuan Lyu, Cho-Jui Hsieh, and Ruoxi Jia. 2023. Towards Robustness

Certification Against Universal Perturbations. In The Eleventh International Conference on Learning Representations.
https://openreview.net/forum?id=7GEvPKxjtt

[89] Mustafa Zeqiri, Mark Niklas Müller, Marc Fischer, and Martin T. Vechev. 2023. Efficient Certified Training and

Robustness Verification of Neural ODEs. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net. https://openreview.net/pdf?id=KyoVpYvWWnK

[90] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane Boning, and Cho-Jui Hsieh.

2020. Towards stable and efficient training of verifiably robust neural networks. In Proc. International Conference on
Learning Representations (ICLR).

[91] Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2022. General

Cutting Planes for Bound-Propagation-Based Neural Network Verification. InAdvances in Neural Information Processing
Systems, Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (Eds.). https://openreview.net/forum?

id=5haAJAcofjc

[92] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. 2018. Efficient neural network robustness

certification with general activation functions. Advances in neural information processing systems 31 (2018).

https://doi.org/10.1007/978-3-030-81685-8_35
https://doi.org/10.1007/978-3-030-81685-8_35
https://openreview.net/forum?id=ahYIlRBeCFw
http://proceedings.mlr.press/v80/wong18a.html
https://doi.org/10.1145/3563325
https://doi.org/10.1145/3563325
https://doi.org/10.48550/arXiv.2206.10858
https://arxiv.org/abs/2206.10858
https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=7GEvPKxjtt
https://openreview.net/pdf?id=KyoVpYvWWnK
https://openreview.net/forum?id=5haAJAcofjc
https://openreview.net/forum?id=5haAJAcofjc

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

A ADDITIONAL BACKGROUND
A.1 Adversarial Perturbations
An adversarial perturbation, 𝑣 , added to an input, 𝑥 , it is attacking is an adversarial example, 𝑥 ′ = 𝑥+𝑣 .
Additionally, 𝑥 ′ is only adversarial if it causes the target model to misclassify, in other words, if

𝑓 (𝑥) = 𝑦 then 𝑓 (𝑥 ′) ≠ 𝑦. It is typically assumed that these perturbations are small so as they do

not effect the semantic context of the image (a human would still correctly classify the adversarial

example). The most common bound is an 𝐿𝑝 bound, i.e ∥𝑋 ∥𝑝 ≤ 𝜖 .

In the case where standard adversarial perturbations are not feasible, verification against universal

adversarial perturbations (UAPs) is desirable. A UAP consists of a single perturbation 𝑢 which is

adversarial for many inputs. We will start by formally defining strong UAPs.

A.2 Universal Adversarial Perturbations
An universal adversarial perturbation (UAP), 𝑢, added to an input, 𝑥 , causes the target model

to misclassify on a set of inputs 𝑋1, . . . 𝑋𝑘 , in other words, if ∀𝑖 ∈ [𝑘] .𝑓 (𝑋𝑖) = 𝑦𝑖 then ∀𝑖 ∈
[𝑘] .𝑓 (𝑋𝑖 + 𝑢) ≠ 𝑦𝑖 . Formally,

Definition A.1. A universal adversarial perturbation is a vector u ∈ R𝑑
which, when added to all

datapoints in 𝜇 causes the classifier 𝑓 to misclassify. Formally, given 𝛾 , a bound on universal ASR,

and 𝑙𝑝 -norm with corresponding bound 𝜖 , u is a UAP iff ∀𝑥,𝑦 ∈ 𝜇𝑓 (𝑥) ≠ 𝑦 and | |u| |𝑝 < 𝜖 .

A.3 UAP verification
Definition A.2 (UAP Verification Problem). Given points 𝑋 ∗ = 𝑋 ∗

1
, ..., 𝑋 ∗

𝑘
∈ R𝑛0

and 𝜖 ∈ R we can

first define individual input constraints ∀𝑖 ∈ [𝑘] .𝜙𝑖
𝑖𝑛 = ∥𝑋 ∗𝑖 − 𝑋𝑖 ∥∞ ≤ 𝜖 . We define Φ𝛿

as follows:

Φ𝛿 (𝑋1, . . . , 𝑋𝑘) =
∧

(𝑖, 𝑗∈[𝑘])∧(𝑖< 𝑗)
(𝑋𝑖 − 𝑋 𝑗 = 𝑋 ∗𝑖 − 𝑋 ∗𝑗) (11)

Then, we have Φ =
∧𝑘

𝑖=1
𝜙𝑖
𝑖𝑛 ∧ Φ𝛿

. Next, we define Ψ as conjunction of 𝑘 × 𝑛𝑙 clauses where
∀𝑎 ∈ [𝑘],∀𝑏 ∈ [𝑛𝑙] the clause𝜓𝑎,𝑏 is defined as𝜓𝑎,𝑏 = (𝐶𝑇

𝑎,𝑏
𝑌𝑎 ≥ 0) and 𝐶𝑎,𝑏 ∈ R𝑛𝑙

is given below

∀𝑖 ∈ [𝑛𝑙] .𝑐𝑎,𝑏,𝑖 =


1 if 𝑖 ≠ 𝑏 and 𝑖 is the correct label for 𝑌𝑎

−1 if 𝑖 = 𝑏 and 𝑖 is not the correct label for 𝑌𝑎

0 otherwise

(12)

A.4 Targeted UAP verification
Unlike the unrestricted UAP attack above, in targeted UAP, the attacker tries to make the DNN

misclassify inputs to a given class. Here we check whether all inputs can be classified as a target

class 𝑡 by adding the same perturbation to each input. The formal definition of the targeted UAP

verification problem is in .

Definition A.3 (Targeted UAP Verification Problem). Given points 𝑋 ∗ = 𝑋 ∗
1
, . . . , 𝑋 ∗

𝑘
∈ R𝑛0

, 𝜖 ∈ R,
and target label 𝑡 , the targeted UAP verification problem has the same input specification as the

UAP verification problem, seen in Definition A.2. Next, we define Ψ as conjunction of 𝑘 ×𝑛𝑙 clauses
where ∀𝑎 ∈ [𝑘],∀𝑏 ∈ [𝑛𝑙] the clause𝜓𝑎,𝑏 is defined as𝜓𝑎,𝑏 = (𝐶𝑇

𝑎,𝑏
𝑌𝑎 ≥ 0) and 𝐶𝑎,𝑏 ∈ R𝑛𝑙

is:

∀𝑖 ∈ [𝑛𝑙] .𝑐𝑎,𝑏,𝑖 =


1 if 𝑖 ≠ 𝑏 and 𝑖 = 𝑡

−1 if 𝑖 = 𝑏 and 𝑖 ≠ 𝑡

0 otherwise

(13)

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Input-Relational Verification of Deep Neural Networks 29

A.5 Worst case Hamming distance verification
Definition A.4. Given points 𝑋 ∗ = 𝑋 ∗

1
, ..., 𝑋 ∗

𝑘
∈ R𝑛0

, 𝜖 ∈ R, and a binary digit classifier neural

network 𝑁2 : R𝑛0 → R2
we can define a binary digit string 𝑠 ∈ {0, 1}𝑘 as the conjunction of the

output of 𝑁2 on each input ∀𝑖 ∈ [𝑘] .𝑋𝑖 where each𝑋𝑖 is an image of a binary digit. We are interested

in bounding the worst-case hamming distance between 𝑠∗, the binary digit string classified by 𝑁2,

and 𝑠 the actual binary digit string corresponding to list of perturbed images ∀𝑖 ∈ [𝑘] .𝑋𝑖 +𝑉 s.t.

𝑉 ∈ R𝑛0
and |𝑉 |∞ ≤ 𝜖 . Given these definitions, we can use the Φ and Ψ defined in Definition A.2.

A.6 Monotonicity verification
Definition A.5 (Monotonic Verification Problem). Given a point 𝑋 ∗ ∈ R𝑛0

, 𝜖 ∈ R, network 𝑁𝑚 :

R𝑛0 → R, monotonic input dimension𝑚 ∈ [𝑛0], monotonic direction 𝑑 ∈ {−1, 1}, let 𝐶 𝑗 ∈ R𝑛0
be

the one-hot vector defined as all 0’s except for a 1 in the 𝑗 th dimension and 𝑗 ∈ [𝑛0]. We can define

∀𝑖 ∈ [2] .𝜙𝑖
𝑖𝑛 = (∥𝐶𝑇

𝑚𝑋
∗ −𝐶𝑇

𝑚𝑋𝑖 ∥∞ ≤ 𝜖) ∧𝜑𝑖 where 𝜑𝑖 = ∧𝑗∈[𝑛0]∧(𝑗≠𝑚) (∥𝐶𝑇
𝑗 𝑋
∗ −𝐶𝑇

𝑗 𝑋𝑖 ∥∞ = 0). Now,
we can define 𝜙𝛿 = 𝐶𝑇

𝑚𝑋1 −𝐶𝑇
𝑚𝑋2 > 0 and Φ = 𝜙1

𝑖𝑛 ∧ 𝜙2

𝑖𝑛 ∧ 𝜙𝛿
. Finally, our output specification can

be defined as Ψ(𝑁𝑚 (𝑋1), 𝑁𝑚 (𝑋2)) = 𝑑 · (𝑁𝑚 (𝑋1) − 𝑁𝑚 (𝑋2)) ≥ 0.

A.7 Detailed execution of DeepZ abstract transformer on the example Product DNN

Fig. 12. Product DNN analysis on input regions 𝜙1

𝑡 and 𝜙2

𝑡 using DeepZ

First, we compute the zonotope expression, concrete lower bound, and concrete upper bound of

the input variables of both 𝑁
𝑋1

𝑒𝑥 and 𝑁
𝑋2

𝑒𝑥 . Note, the concrete lower bound, and concrete upper bound

of any variable are obtained by calculating the minimum and maximum value of the zonotope

expression associated with that variable.

𝛼 (𝑖1
1
) = 14 + 6 · 𝜂1

1
𝛼 (𝑖1

2
) = 11 + 6 · 𝜂1

2
𝛼 (𝑥1

1
) = 14 + 6 · 𝜂1

1
𝛼 (𝑥1

2
) = 11 + 6 · 𝜂1

2

𝛼 (𝑖2
1
) = 11 + 6 · 𝜂2

1
𝛼 (𝑖2

2
) = 14 + 6 · 𝜂2

2
𝛼 (𝑥2

1
) = 11 + 6 · 𝜂2

1
𝛼 (𝑥2

2
) = 14 + 6 · 𝜂2

2

𝑥1

1
∈ [8, 20] 𝑥1

2
∈ [5, 17] 𝑥2

1
∈ [5, 17] 𝑥2

2
∈ [8, 20]

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

Next, the affine transform at the first layer computes the zonotope expressions for variables 𝑥1

3
, 𝑥1

4
,

𝑥2

3
, and 𝑥2

4
as shown below.

𝛼 (𝑥1

3
) = (14 + 6 · 𝜂1

1
) − (11 + 6 · 𝜂1

2
) = 3 + 6 · 𝜂1

1
− 6 · 𝜂1

2
𝛼 (𝑥1

4
) = −17 − 12 · 𝜂1

1
+ 6 · 𝜂1

2

𝛼 (𝑥2

3
) = (11 + 6𝜂2

1
) − (14 + 6 · 𝜂2

2
) = −3 + 6 · 𝜂2

1
− 6 · 𝜂2

2
𝛼 (𝑥2

4
) = −8 − 12 · 𝜂2

1
+ 6 · 𝜂2

2

Next, we use the ReLU transformer proposed in [68] to compute the zonotope expression

associate with the variables 𝑥1

5
, 𝑥1

6
, 𝑥2

5
, and 𝑥2

6
from the zonotope expression of 𝑥1

3
, 𝑥1

4
, 𝑥2

3
, and

𝑥2

4
. First, we describe the ReLU transformer (𝑅𝑒𝐿𝑈 ♯

) below where for any zonotope expression

𝛼 (𝑥) = 𝑣 + ∑𝑛
𝑖=1

𝑤𝑖 · 𝜂𝑖 (𝑣 ∈ R and 𝑤 ∈ R𝑛
) for any real 𝜆 ∈ R, 𝜇 ∈ R the zonotope expression

𝜆 ·𝛼 (𝑥) + 𝜇 denotes 𝜆 ·𝛼 (𝑥) + 𝜇 = 𝜆 · 𝑣 +∑𝑛
𝑖=1
(𝜆 ·𝑤𝑖) ·𝜂𝑖 , 𝑙𝑥 and 𝑢𝑥 denotes the concrete lower bound

and concrete upper bound of the variable 𝑥 respectively and 𝜂𝑛𝑒𝑤 denotes a new noise variable.

𝑅𝑒𝐿𝑈 ♯ (𝛼 (𝑥)) =

𝛼 (𝑥) if 𝑙𝑥 ≥ 0

0 if 𝑢𝑥 ≤ 0

𝜆 · 𝛼 (𝑥) + 𝜇 + 𝜇 · 𝜂𝑛𝑒𝑤 if (𝑙𝑥 < 0) ∧ (𝑢𝑥 > 0) where 𝜆 =
𝑢𝑥

𝑢𝑥−𝑙𝑥 and 𝜇 = − 𝑢𝑥 ·𝑙𝑥
2· (𝑢𝑥−𝑙𝑥)

For soundness proof of 𝑅𝑒𝐿𝑈 ♯
refer to Theorem 3.1 of [68]. Using the the 𝑅𝑒𝐿𝑈 transformer 𝑅𝑒𝐿𝑈 ♯

we can compute the zonotope expression associated with 𝑥1

5
, 𝑥1

6
, 𝑥2

5
, and 𝑥2

6
. For example, we show

the computation of the zonotope expression 𝛼 (𝑥1

5
) below.

𝛼 (𝑥1

5
) = 𝜆 · 𝛼 (𝑥1

3
) + 𝜇 + 𝜇 · 𝜂1

5
where 𝜆 =

𝑢𝑥1

3

𝑢𝑥1

3

− 𝑙𝑥1

3

and 𝜇 = −
𝑢𝑥1

3

· 𝑙𝑥1

3

2 · (𝑢𝑥1

3

− 𝑙𝑥1

3

)

For the variables in the final layer 𝑥1

7
, 𝑥1

8
, 𝑥2

7
, and 𝑥2

8
and subsequently for the output variables 𝑜1

1
, 𝑜1

2
,

𝑜2

1
, and 𝑜2

2
we compute the zonotope expressions by applying the affine transform on the zonotope

expressions associated with the variables 𝑥1

5
, 𝑥1

6
, 𝑥2

5
, and 𝑥2

6
. For example, we show the computation

of the zonotope expression 𝛼 (𝑥1

7
) below.

𝛼 (𝑜1

1
) = 𝛼 (𝑥1

7
) = 𝛼 (𝑥1

5
) − 𝛼 (𝑥1

5
) = 9.347 + 8.167𝜂1

1
− 7.833𝜂1

2
+ 5.625𝜂1

3
− 0.972𝜂1

4

A.8 Detailed DiffPoly constraints on 𝑥1

𝑖 & 𝑥2

𝑖 for the illustrative example

𝑥
1,≤
1

= 8 𝑥
1,≥
1

= 20 𝑙1,𝑥1
= 8 𝑢1,𝑥1

= 20

𝑥
1,≤
2

= 5 𝑥
1,≥
2

= 17 𝑙1,𝑥2
= 5 𝑢1,𝑥2

= 17

𝑥
1,≤
3

= 𝑥1

1
− 𝑥1

2
𝑥

1,≥
3

= 𝑥1

1
− 𝑥1

2
𝑙1,𝑥3

= −9 𝑢1,𝑥3
= 15

𝑥
1,≤
4

= −2 · 𝑥1

1
+ 𝑥1

2
𝑥

1,≥
4

= −2 · 𝑥1

1
+ 𝑥1

2
𝑙1,𝑥4

= −35 𝑢1,𝑥4
= 1

𝑥
1,≤
5

= 𝑥1

3
𝑥

1,≥
5

=
5

24

· 𝑥1

3
+ 45

8

𝑙1,𝑥5
= −5

5

8

𝑢1,𝑥5
= 15

𝑥
1,≤
6

= 0 𝑥
1,≥
6

=
1

36

· 𝑥1

4
+ 35

36

𝑙1,𝑥6
= −35

36

𝑢1,𝑥6
= 1

𝑥
1,≤
7

= 𝑥1

5
− 𝑥1

6
𝑥

1,≥
7

= 𝑥1

5
− 𝑥1

6
𝑙1,𝑥7

= −6

5

8

𝑢1,𝑥7
= 15

35

36

𝑥
1,≤
8

= −𝑥1

5
+ 𝑥1

6
𝑥

1,≥
8

= −𝑥1

5
+ 𝑥1

6
𝑙1,𝑥8

= −15

35

36

𝑢1,𝑥8
= 16

2

9

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Input-Relational Verification of Deep Neural Networks 31

𝑥
2,≤
1

= 5 𝑥
2,≥
1

= 17 𝑙2,𝑥1
= 5 𝑢2,𝑥1

= 17

𝑥
2,≤
2

= 8 𝑥
2,≥
2

= 20 𝑙2,𝑥2
= 8 𝑢2,𝑥2

= 20

𝑥
2,≤
3

= 𝑥2

1
− 𝑥2

2
𝑥

2,≥
3

= 𝑥2

1
− 𝑥2

2
𝑙2,𝑥3

= −15 𝑢2,𝑥3
= 9

𝑥
2,≤
4

= −2 · 𝑥2

1
+ 𝑥2

2
𝑥

2,≥
4

= −2 · 𝑥2

1
+ 𝑥2

2
𝑙2,𝑥4

= −26 𝑢2,𝑥4
= 10

𝑥
2,≤
5

= 0 𝑥
2,≥
5

=
3

8

· 𝑥2

3
+ 45

8

𝑙2,𝑥5
= −5

5

8

𝑢2,𝑥5
= 9

𝑥
2,≤
6

= 0 𝑥
2,≥
6

=
5

18

· 𝑥2

4
+ 65

9

𝑙2,𝑥6
= −7

2

9

𝑢2,𝑥6
= 10

𝑥
2,≤
7

= 𝑥2

5
− 𝑥2

6
𝑥

2,≥
7

= 𝑥2

5
− 𝑥2

6
𝑙2,𝑥7

= −15

5

8

𝑢2,𝑥7
= 16

2

9

𝑥
2,≤
8

= −𝑥2

5
+ 𝑥2

6
𝑥

2,≥
8

= −𝑥2

5
+ 𝑥2

6
𝑙2,𝑥8

= −16

2

9

𝑢2,𝑥8
= 15

5

8

B MILPS FOR THE ILLUSTRATIVE EXAMPLE
B.1 MILP formulation from state-of-the-art baseline [88]
The state-of-the-art baseline relates output variables as linear constraints over the input variables

based on the analysis of an existing non-relational verifier (in this case DeepZ) on the product DNN.

The cross-execution constraints (shown in blue) are only tracked at the input layer. The optimal

value of 𝑡 and the verification result for this formulation is shown below.

min 𝑡

subject to

𝑚𝑖𝑛(𝐹1) = 𝑧1, 𝑧1 ≤ 𝑡,𝑚𝑖𝑛(𝐹2) = 𝑧2, 𝑧2 ≤ 𝑡 [MILP encoding of Ψ]

𝐹1 = 𝑜1

1
− 𝑜1

2
, 𝐹2 = −𝑜2

1
+ 𝑜2

2

𝑥1

1
= 14 + 6 ∗ 𝜂1

1
, 𝑥1

2
= 11 + 6 ∗ 𝜂1

2

𝑥2

1
= 11 + 6 ∗ 𝜂2

1
, 𝑥2

2
= 14 + 6 ∗ 𝜂2

2

(𝑥1

1
− 𝑥2

1
) = 3, (𝑥1

2
− 𝑥2

2
) = −3 [cross-execution constraints at input layer]

𝑜1

1
= 9.347 + 8.167𝜂1

1
− 7.833𝜂1

2
+ 5.625𝜂1

3
− 0.972𝜂1

4

𝑜1

2
= −9.347 − 8.167𝜂1

1
+ 7.833𝜂1

2
− 5.625𝜂1

3
+ 0.972𝜂1

4

𝑜2

1
= −0.597 − 11.167𝜂2

1
+ 7.833𝜂2

2
− 5.625𝜂2

3
+ 7.222𝜂2

4

𝑜2

2
= 0.597 + 11.167𝜂2

1
− 7.833𝜂2

2
+ 5.625𝜂2

3
− 7.222𝜂2

4

− 1 ≤ 𝜂
𝑗

𝑖
≤ 1 ∀𝑖 ∈ {1, 2, 3, 4} ∀𝑗 ∈ {1, 2}

(14)

The optimal value of t: −5.306

Verification result: Inconclusive

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

B.2 MILP formulation with RaVeN layerwise constraints on the illustrative example
We show the layerwise formulation of RaVeN with the concrete bounds from the DeepZ analysis.

We use the optimal neuron-level convex relaxation (triangle relaxation) for the ReLU activation.

For example, the linear constraints for ReLU assignment 𝑥1

5
← 𝑅𝑒𝐿𝑈 (𝑥1

3
) are shown below.

0 ≤ 𝑥1

5
, 𝑥1

3
≤ 𝑥1

5
, 𝑥1

5
≤ 5

8

· 𝑥1

3
+ 45

8

, 𝑥1

5
≤ 15

Similar to the approach in [88], the cross-execution constraints (highlighted in blue) are only

applied at the input layer. However, the RaVeN layerwise approach more effectively preserves

linear relationships across multiple executions. For instance, using constraints like (𝑥1

1
− 𝑥2

1
) = 3,

(𝑥1

2
−𝑥2

2
) = −3, and 𝑥1

3
= 𝑥1

1
−𝑥1

2
, 𝑥2

3
= 𝑥2

1
−𝑥2

2
, the layerwise formulation can deduce that (𝑥1

3
−𝑥2

3
) = 6.

Nevertheless, the layerwise approach loses precision in tracking dependencies beyond activation

layers (e.g., ReLU, Sigmoid) due to convex overapproximation. This is why we require a DiffPoly

analysis with custom abstract transformers explicitly designed for difference tracking. The optimal

value of 𝑡 and the verification result for this formulation is shown below.

min 𝑡

subject to

𝑚𝑖𝑛(𝐹1) = 𝑧1, 𝑧1 ≤ 𝑡,𝑚𝑖𝑛(𝐹2) = 𝑧2, 𝑧2 ≤ 𝑡 [MILP encoding of Ψ]

𝐹1 = 𝑥1

7
− 𝑥1

8
, 𝐹2 = −𝑥2

7
+ 𝑥2

8

𝑥1

8
= −𝑥1

5
+ 𝑥1

6
,−15

35

36

≤ 𝑥2

8
≤ 6

5

8

, 𝑥2

8
= −𝑥2

5
+ 𝑥2

6
,−16

2

9

≤ 𝑥2

8
≤ 15

5

8

𝑥1

7
= 𝑥1

5
− 𝑥1

6
,−6

5

8

≤ 𝑥1

7
≤ 15

35

36

, 𝑥2

7
= 𝑥2

5
− 𝑥2

6
,−15

5

8

≤ 𝑥2

7
≤ 16

2

9

𝑥1

4
≤ 𝑥1

6
≤ 1

36

· 𝑥1

4
+ 35

36

, 0 ≤ 𝑥1

6
≤ 1, 𝑥2

4
≤ 𝑥2

6
≤ 5

18

· 𝑥2

4
+ 65

9

, 0 ≤ 𝑥2

6
≤ 10

𝑥1

3
≤ 𝑥1

5
≤ 5

8

· 𝑥1

3
+ 45

8

, 0 ≤ 𝑥1

5
≤ 15, 𝑥2

3
≤ 𝑥2

5
≤ 3

8

· 𝑥2

3
+ 45

8

, 0 ≤ 𝑥2

5
≤ 9

𝑥1

4
= −2 · 𝑥1

1
+ 𝑥1

2
,−35 ≤ 𝑥1

4
≤ 1, 𝑥2

4
= −2 · 𝑥2

1
+ 𝑥2

2
,−26 ≤ 𝑥2

4
≤ 10

𝑥1

3
= 𝑥1

1
− 𝑥1

2
,−9 ≤ 𝑥1

3
≤ 15, 𝑥2

3
= 𝑥2

1
− 𝑥2

2
,−15 ≤ 𝑥2

3
≤ 9

(𝑥1

1
− 𝑥2

1
) = 3, (𝑥1

2
− 𝑥2

2
) = −3 [cross-execution constraints at input layer]

8 ≤ 𝑥1

1
≤ 20, 5 ≤ 𝑥1

2
≤ 17, 5 ≤ 𝑥2

1
≤ 17, 8 ≤ 𝑥2

2
≤ 20

(15)

The optimal value of t: −1.564

Verification result: Inconclusive

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Input-Relational Verification of Deep Neural Networks 33

B.3 MILP Formulation of RaVeN with difference tracking for Illustrative Example
We show the MILP formulation obtained by adding the difference constraints (shown in blue)

obtained from DiffPoly analysis to the layerwise formulation (Eq. 15). The optimal value of 𝑡 and

the verification result for this formulation is shown below.

min 𝑡

subject to

𝑚𝑖𝑛(𝐹1) = 𝑧1, 𝑧1 ≤ 𝑡,𝑚𝑖𝑛(𝐹2) = 𝑧2, 𝑧2 ≤ 𝑡 [MILP encoding of Ψ]

𝐹1 = 𝑥1

7
− 𝑥1

8
, 𝐹2 = −𝑥2

7
+ 𝑥2

8

𝑥1

8
= −𝑥1

5
+ 𝑥1

6
,−15

35

36

≤ 𝑥2

8
≤ 6

5

8

, 𝑥2

8
= −𝑥2

5
+ 𝑥2

6
,−16

2

9

≤ 𝑥2

8
≤ 15

5

8

𝑥1

7
= 𝑥1

5
− 𝑥1

6
,−6

5

8

≤ 𝑥1

7
≤ 15

35

36

, 𝑥2

7
= 𝑥2

5
− 𝑥2

6
,−15

5

8

≤ 𝑥2

7
≤ 16

2

9

𝑥1

4
≤ 𝑥1

6
≤ 1

36

· 𝑥1

4
+ 35

36

, 0 ≤ 𝑥1

6
≤ 1, 𝑥2

4
≤ 𝑥2

6
≤ 5

18

· 𝑥2

4
+ 65

9

, 0 ≤ 𝑥2

6
≤ 10

𝑥1

3
≤ 𝑥1

5
≤ 5

8

· 𝑥1

3
+ 45

8

, 0 ≤ 𝑥1

5
≤ 15, 𝑥2

3
≤ 𝑥2

5
≤ 3

8

· 𝑥2

3
+ 45

8

, 0 ≤ 𝑥2

5
≤ 9

𝑥1

4
= −2 · 𝑥1

1
+ 𝑥1

2
,−35 ≤ 𝑥1

4
≤ 1, 𝑥2

4
= −2 · 𝑥2

1
+ 𝑥2

2
,−26 ≤ 𝑥2

4
≤ 10

𝑥1

3
= 𝑥1

1
− 𝑥1

2
,−9 ≤ 𝑥1

3
≤ 15, 𝑥2

3
= 𝑥2

1
− 𝑥2

2
,−15 ≤ 𝑥2

3
≤ 9

8 ≤ 𝑥1

1
≤ 20, 5 ≤ 𝑥1

2
≤ 17, 5 ≤ 𝑥2

1
≤ 17, 8 ≤ 𝑥2

2
≤ 20

𝛿
1,2
1

= 𝑥1

1
− 𝑥2

1
, 3 ≤ 𝛿

1,2
1
≤ 3

𝛿
1,2
2

= 𝑥1

2
− 𝑥2

2
,−3 ≤ 𝛿

1,2
2
≤ −3

𝛿
1,2
1
− 𝛿1,2

2
≤ 𝛿

1,2
3
≤ 𝛿

1,2
1
− 𝛿1,2

2

𝛿
1,2
3

= 𝑥1

3
− 𝑥2

3
, 6 ≤ 𝛿

1,2
3
≤ 6

−2 · 𝛿1,2
1
+ 𝛿1,2

2
≤ 𝛿

1,2
4
≤ −2 · 𝛿1,2

1
+ 𝛿1,2

2

𝛿
1,2
4

= 𝑥1

4
− 𝑥2

4
,−9 ≤ 𝛿

1,2
4
≤ −9

𝛿
1,2
5

= 𝑥1

5
− 𝑥2

5
, 0 ≤ 𝛿

1,2
5
≤ 𝛿

1,2
3
, 0 ≤ 𝛿

1,2
5
≤ 6

𝛿
1,2
6

= 𝑥1

6
− 𝑥2

6
, 𝛿

1,2
4
≤ 𝛿

1,2
6
≤ 0,−9 ≤ 𝛿

1,2
6
≤ 0

𝛿
1,2
7

= 𝑥1

7
− 𝑥2

7
, 0 ≤ 𝛿

1,2
7
≤ 15

𝛿
1,2
8

= 𝑥1

8
− 𝑥2

8
,−15 ≤ 𝛿

1,2
8
≤ 0

(16)

The optimal value of t: 0.0

Verification result: UAP does not exist

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

C CONVEX RELAXATION OF RELU

(a) 𝑢𝑥𝑖 < −𝑙𝑥𝑖 (b) 𝑢𝑥𝑖 ≥ −𝑙𝑥𝑖 (c) optimal

Fig. 13. The convex approximations for 𝑥 𝑗 = 𝑅𝑒𝐿𝑈 (𝑥𝑖) where 𝑥𝑖 ∈ [𝑙𝑥𝑖 , 𝑢𝑥𝑖] and (𝑙𝑥𝑖 < 0) ∧ (𝑢𝑥𝑖 > 0). The

D DIFFPOLY TRANSFORMER FOR DIFFERENTIABLE ACTIVATIONS

(a) Δ̂𝑙𝑏 ≥ 0 (b) Δ̂𝑢𝑏 ≤ 0 (c) Δ̂𝑙𝑏 < 0 ∧ Δ̂𝑢𝑏 > 0

Fig. 14. The optimal (in terms of area) convex approximations for 𝛿 = 𝑔(𝑥) − 𝑔(𝑦) where ˆ𝛿 = (𝑥 − 𝑦), 𝛿≥ ,
𝛿≤ are symbolic upper bound and lower bound of 𝛿 respectively and where 𝑔 is a differentiable activation
function.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Input-Relational Verification of Deep Neural Networks 35

E PSEUDOCODE FOR BACK-SUBSTITUTION ALGORITHM

Algorithm 2 Back-substitution Algorithm

1: procedure Back-substitution(𝛿𝑎,𝑏,≤𝑥𝑖 , 𝛿
𝑎,𝑏,≥
𝑥𝑖 , a ∈ A2𝑖)

2: Input: 𝛿𝑎,𝑏,≤𝑥𝑖 , 𝛿
𝑎,𝑏,≥
𝑥𝑖 , a ∈ A2𝑖

3: Output: Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

4: Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

← −∞; Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

←∞
5: while 𝑇𝑟𝑢𝑒 do
6: 𝑡Δ𝑙𝑏

← 𝑆𝑐 (𝛿𝑎,𝑏,≤𝑥𝑖 , a) ⊲ the concrete bounds required for concrete substitution are in a
7: 𝑡Δ𝑢𝑏

← 𝑆𝑐 (𝛿𝑎,𝑏,≥𝑥𝑖 , a) ⊲ the concrete bounds required for concrete substitution are in a
8: Δ𝑎,𝑏,𝑥𝑖

𝑙𝑏
← max(Δ𝑎,𝑏,𝑥𝑖

𝑙𝑏
, 𝑡Δ𝑙𝑏
); Δ𝑎,𝑏,𝑥𝑖

𝑢𝑏
← min(Δ𝑎,𝑏,𝑥𝑖

𝑢𝑏
, 𝑡Δ𝑢𝑏
)

9: if 𝛿𝑎,𝑏,≤𝑥𝑖 and 𝛿
𝑎,𝑏,≥
𝑥𝑖 have only input variables then

10: break;

11: end if
12: 𝛿

𝑎,𝑏,≤
𝑥𝑖 ← 𝑆𝑠 (𝛿𝑎,𝑏,≤𝑥𝑖 , a) ⊲ the symbolic bounds required for symbolic substitution are in a

13: 𝛿
𝑎,𝑏,≥
𝑥𝑖 ← 𝑆𝑐 (𝛿𝑎,𝑏,≥𝑥𝑖 , a) ⊲ the symbolic bounds required for symbolic substitution are in a

14: end while
15: end procedure
16: return Δ𝑎,𝑏,𝑥𝑖

𝑙𝑏
,Δ𝑎,𝑏,𝑥𝑖

𝑢𝑏
;

Lemma E.1. If (𝛿𝑎,𝑏,≤𝑥𝑖 ≤ 𝛿
𝑎,𝑏
𝑥𝑖) ∧ (𝛿

𝑎,𝑏
𝑥𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖) then the concrete lower Δ𝑎,𝑏,𝑥𝑖

𝑙𝑏
and concrete upper

bound Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

obtained with Back-Substitution on symbolic bounds 𝛿𝑎,𝑏,≤𝑥𝑖 and 𝛿𝑎,𝑏,≥𝑥𝑖 then Δ𝑎,𝑏,𝑥𝑖
𝑙𝑏

≤ 𝛿
𝑎,𝑏
𝑥𝑖

and 𝛿𝑎,𝑏𝑥𝑖 ≤ Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏

holds.

Proof. For the proof refer to Theorem 4.9 of [69]. □

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

F SOUNDNESS OF RAVEN
In this section, we formally prove the soundness of RaVeN. We first show the soundness of the

abstract transformers of DiffPoly.

F.1 Soundness Proof of the DiffPoly ReLU transformer
Theorem 4.4. (Soundness of DiffPoly Relu Transformer) For any abstract element 𝑎 ∈ A2𝑖

𝑇𝑅 (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯

𝑅
(𝑎)).

Proof. For any (𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎) we denote 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖) = 𝑦𝑎𝑖 and 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) = 𝑦𝑏𝑖 where 𝑋𝑎 =

[𝑥𝑎
1
, . . . , 𝑥𝑎𝑖]𝑇 ∈ R𝑖

, 𝑋𝑏 = [𝑥𝑏
1
, . . . , 𝑥𝑏𝑖]𝑇 ∈ R𝑖

. We use 𝛿
𝑎,𝑏
𝑦𝑖 to denote the difference 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑦𝑎𝑖 −𝑦𝑏𝑖 . For

any element 𝑎 ∈ A2𝑖 , 𝑎
′ = 𝑇

♯

𝑅
(𝑎) where 𝑎′ = [𝑎1, . . . , 𝑎𝑖 , 𝑎

′
𝑖+1] and 𝑎′𝑖 =< 𝐶′𝑖+1𝑠𝑦𝑚,𝐶

′𝑖+1
𝑐𝑜𝑛 > constructed

as described in Section 4.2. 𝐶′𝑖+1𝑠𝑦𝑚 and 𝐶′𝑖+1𝑐𝑜𝑛 given by

𝐶′𝑖+1𝑠𝑦𝑚 =< 𝑦
𝑎,≤
𝑖

, 𝑦
𝑏,≤
𝑖

, 𝛿𝑎,𝑏,≤𝑦𝑖
, 𝑦

𝑎,≥
𝑖

, 𝑦
𝑏,≥
𝑖

, 𝛿𝑎,𝑏,≥𝑦𝑖
> 𝐶′𝑖+1𝑐𝑜𝑛 =< 𝑙𝑎,𝑦𝑖 , 𝑙𝑏,𝑦𝑖 ,Δ

𝑎,𝑏,𝑦𝑖

𝑙𝑏
, 𝑢𝑎,𝑦𝑖 , 𝑢𝑏,𝑦𝑖 ,Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
>

We use symbolic bounds of 𝑦
𝑎,≤
𝑖

, 𝑦
𝑎,≥
𝑖

and 𝑦
𝑏,≤
𝑖

, 𝑦
𝑏,≥
𝑖

of 𝑦𝑎𝑖 , 𝑦
𝑏
𝑖 described in existing work [69, 92].

For the correctness of symbolic bounds, 𝑦
𝑎,≤
𝑖

, 𝑦
𝑎,≥
𝑖

and 𝑦
𝑏,≤
𝑖

, 𝑦
𝑏,≥
𝑖

we only the state the results and

refer the readers to [69, 92] for details.

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖)) ∧ (𝑦𝑏𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖))
=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎𝑗 ∈ [𝑙𝑎,𝑥 𝑗

, 𝑢𝑎,𝑥 𝑗
]) ∧ (𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗

, 𝑢𝑏,𝑥 𝑗
])

=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎,≤
𝑗
≤ 𝑥𝑎𝑗) ∧ (𝑥𝑎𝑗 ≤ 𝑥

𝑎,≥
𝑗
) ∧ (𝑥𝑏,≤

𝑗
≤ 𝑥𝑏𝑗) ∧ (𝑥𝑏𝑗 ≤ 𝑥

𝑏,≥
𝑗
)

=⇒ (𝑦𝑎,≤
𝑖
≤ 𝑦𝑎𝑖) ∧ (𝑦𝑎𝑖 ≤ 𝑦

𝑎,≥
𝑖
) ∧ (𝑦𝑏,≤

𝑖
≤ 𝑦𝑏𝑖) ∧ (𝑦𝑏𝑖 ≤ 𝑦

𝑏,≥
𝑖
) (17)

From Theorem 3.2 in [92] and Theorem 4.2 in [69]

=⇒ (𝑦𝑎𝑖 ∈ [𝑙𝑎,𝑦𝑖 , 𝑢𝑎,𝑦𝑖]) ∧ (𝑦𝑏𝑖 ∈ [𝑙𝑏,𝑦𝑖 , 𝑢𝑏,𝑦𝑖]) From Lemma 4.3 (18)

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖)) ∧ (𝑦𝑏𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖))

=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎𝑗 ∈ [𝑙𝑎,𝑥 𝑗
, 𝑢𝑎,𝑥 𝑗

]) ∧ (𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗
, 𝑢𝑏,𝑥 𝑗

]) ∧ (𝛿𝑎,𝑏𝑥 𝑗
∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
])

=⇒ (𝛿𝑎,𝑏,≤𝑦𝑖
≤ 𝛿𝑎,𝑏𝑦𝑖) ∧ (𝛿

𝑎,𝑏
𝑦𝑖
≤ 𝛿𝑎,𝑏,≥𝑦𝑖

) ∧ (𝛿𝑎,𝑏𝑥𝑖
∈ [Δ𝑎,𝑏,𝑦𝑖

𝑙𝑏
,Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
]) From Lemma 4.2 and 4.3 (19)

From 17, 18 and 19 we show that

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖)) ∧ (𝑦𝑏𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖))
=⇒ ([𝑥𝑎

1
, . . . , 𝑥𝑎𝑖 , 𝑦

𝑎
𝑖]𝑇 , [𝑥𝑏1 , . . . , 𝑥𝑏𝑖 , 𝑦𝑏𝑖)]𝑇) ∈ 𝛾2𝑖+2 (𝑎′) (20)

□

Eq. 20 proves that 𝑇𝑅 (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯

𝑅
(𝑎))

F.2 Soundness Proof of the DiffPoly transformer for differentiable activations

We first state the lemmas required to prove the soundness of 𝑇
♯
𝑔 where 𝑔 represents differentiable

activation functions such as Sigmoid and Tanh. Proofs of the lemmas F.1, F.2 are in Appendix G.2.

Lemma F.1. (Correctness of symbolic bounds in Table 4) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖], 𝑥𝑏𝑖 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖] and
𝛿
𝑎,𝑏
𝑥𝑖 = (𝑥𝑎𝑖 − 𝑥𝑏𝑖) ∈ [Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏
] and 𝛿𝑎,𝑏𝑦𝑖 = 𝑔(𝑥𝑎𝑖) − 𝑔(𝑥𝑏𝑖) then 𝛿

𝑎,𝑏,≤
𝑦𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑦𝑖 where 𝛿𝑎,𝑏,≤𝑦𝑖

and 𝛿𝑎,𝑏,≥𝑦𝑖 defined in Table 4.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Input-Relational Verification of Deep Neural Networks 37

Lemma F.2. (Correctness of concrete bounds computed by 𝑇 ♯
𝑔) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖], 𝑥𝑏𝑖 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖]

and 𝛿𝑎,𝑏𝑥𝑖 = (𝑥𝑎𝑖 −𝑥𝑏𝑖) ∈ [Δ
𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏
],𝑦𝑎𝑖 = 𝑔(𝑥𝑎𝑖),𝑦𝑏𝑖 = 𝑔(𝑥𝑏𝑖), 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑦𝑎𝑖 −𝑦𝑏𝑖 then 𝑙𝑎,𝑦𝑖 ≤ 𝑦𝑎𝑖 ≤ 𝑢𝑎,𝑦𝑖 ,

𝑙𝑏,𝑦𝑖 ≤ 𝑦𝑏𝑖 ≤ 𝑢𝑏,𝑦𝑖 , and Δ
𝑎,𝑏,𝑦𝑖

𝑙𝑏
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
where Δ

𝑎,𝑏,𝑦𝑖

𝑙𝑏
and Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
computed by applying

back-substitution on 𝛿𝑎,𝑏,≤𝑦𝑖 and 𝛿𝑎,𝑏,≥𝑦𝑖 respectively.

The concrete transformer 𝑇𝑔 : ℘(R2𝑖) → ℘(R2𝑖+2) for the assignments 𝑦𝑎𝑖 ← 𝑔(𝑥𝑎𝑖), 𝑦𝑏𝑖 ← 𝑔(𝑥𝑏𝑖)
is defined as 𝑇𝑔 (X) = {([𝑥𝑎1 , . . . , 𝑥𝑎𝑖 , 𝑦𝑎𝑖]𝑇 , [𝑥𝑏1 , . . . , 𝑥𝑏𝑖 , 𝑦𝑏𝑖]𝑇) | (𝑋𝑎, 𝑋𝑏) ∈ X} where 𝑦𝑎𝑖 = 𝑔(𝑥𝑎𝑖),
𝑦𝑏𝑖 = 𝑔(𝑥𝑏𝑖), X ⊆ R2𝑖

and 𝑋𝑎 = [𝑥𝑎
1
, . . . , 𝑥𝑎𝑖]𝑇 ∈ R𝑖

, 𝑋𝑏 = [𝑥𝑏
1
, . . . , 𝑥𝑏𝑖]𝑇 ∈ R𝑖

.

Theorem F.3 (Soundness of DiffPoly Sigmoid and Tanh Transformer). For any abstract
element 𝑎 ∈ A2𝑖 𝑇𝑔 (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯

𝑔 (𝑎)).
Proof. For any (𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎)we denote𝑔(𝑥𝑎𝑖) = 𝑦𝑎𝑖 and𝑔(𝑥𝑏𝑖) = 𝑦𝑏𝑖 where𝑋

𝑎 = [𝑥𝑎
1
, . . . , 𝑥𝑎𝑖]𝑇 ∈

R𝑖
, 𝑋𝑏 = [𝑥𝑏

1
, . . . , 𝑥𝑏𝑖]𝑇 ∈ R𝑖

. We use 𝛿
𝑎,𝑏
𝑦𝑖 to denote the difference 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑦𝑎𝑖 − 𝑦𝑏𝑖 . For any element

𝑎 = [𝑎1, . . . , 𝑎𝑖] ∈ A2𝑖 , 𝑎
′ = 𝑇

♯
𝑔 (𝑎) where 𝑎′ = [𝑎1, . . . , 𝑎𝑖 , 𝑎

′
𝑖+1] and 𝑎′𝑖+1 =< 𝐶′𝑖+1𝑠𝑦𝑚,𝐶

′𝑖+1
𝑐𝑜𝑛 > con-

structed as described in Section 4.3. 𝐶′𝑖+1𝑠𝑦𝑚 and 𝐶′𝑖+1𝑐𝑜𝑛 given by

𝐶′𝑖+1𝑠𝑦𝑚 =< 𝑦
𝑎,≤
𝑖

, 𝑦
𝑏,≤
𝑖

, 𝛿𝑎,𝑏,≤𝑦𝑖
, 𝑦

𝑎,≥
𝑖

, 𝑦
𝑏,≥
𝑖

, 𝛿𝑎,𝑏,≥𝑦𝑖
> 𝐶′𝑖+1𝑐𝑜𝑛 =< 𝑙𝑎,𝑦𝑖 , 𝑙𝑏,𝑦𝑖 ,Δ

𝑎,𝑏,𝑦𝑖

𝑙𝑏
, 𝑢𝑎,𝑦𝑖 , 𝑢𝑏,𝑦𝑖 ,Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
>

We use symbolic bounds of 𝑦
𝑎,≤
𝑖

, 𝑦
𝑎,≥
𝑖

and 𝑦
𝑏,≤
𝑖

, 𝑦
𝑏,≥
𝑖

of 𝑦𝑎𝑖 , 𝑦
𝑏
𝑖 described in existing work [69]. For

the correctness of symbolic bounds, 𝑦
𝑎,≤
𝑖

, 𝑦
𝑎,≥
𝑖

and 𝑦
𝑏,≤
𝑖

, 𝑦
𝑏,≥
𝑖

we only the state the results and refer

the readers to [69] for details.

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑦𝑎𝑖 = 𝑔(𝑥𝑎𝑖)) ∧ (𝑦𝑏𝑖 = 𝑔(𝑥𝑏𝑖))
=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎𝑗 ∈ [𝑙𝑎,𝑥 𝑗

, 𝑢𝑎,𝑥 𝑗
]) ∧ (𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗

, 𝑢𝑏,𝑥 𝑗
])

=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎,≤
𝑗
≤ 𝑥𝑎𝑗) ∧ (𝑥𝑎𝑗 ≤ 𝑥

𝑎,≥
𝑗
) ∧ (𝑥𝑏,≤

𝑗
≤ 𝑥𝑏𝑗) ∧ (𝑥𝑏𝑗 ≤ 𝑥

𝑏,≥
𝑗
)

=⇒ (𝑦𝑎,≤
𝑖
≤ 𝑦𝑎𝑖) ∧ (𝑦𝑎𝑖 ≤ 𝑦

𝑎,≥
𝑖
) ∧ (𝑦𝑏,≤

𝑖
≤ 𝑦𝑏𝑖) ∧ (𝑦𝑏𝑖 ≤ 𝑦

𝑏,≥
𝑖
) (21)

From Theorem 4.3 [69] (22)

=⇒ (𝑦𝑎𝑖 ∈ [𝑙𝑎,𝑦𝑖 , 𝑢𝑎,𝑦𝑖]) ∧ (𝑦𝑏𝑖 ∈ [𝑙𝑏,𝑦𝑖 , 𝑢𝑏,𝑦𝑖]) From Lemma F.2 (23)

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑦𝑎𝑖 = 𝑔(𝑥𝑎𝑖)) ∧ (𝑦𝑏𝑖 = 𝑔(𝑥𝑏𝑖))

=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎𝑗 ∈ [𝑙𝑎,𝑥 𝑗
, 𝑢𝑎,𝑥 𝑗

]) ∧ (𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗
, 𝑢𝑏,𝑥 𝑗

]) ∧ (𝛿𝑎,𝑏𝑥 𝑗
∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
])

=⇒ (𝛿𝑎,𝑏,≤𝑦𝑖
≤ 𝛿𝑎,𝑏𝑦𝑖) ∧ (𝛿

𝑎,𝑏
𝑦𝑖
≤ 𝛿𝑎,𝑏,≥𝑦𝑖

) ∧ (𝛿𝑎,𝑏𝑥𝑖
∈ [Δ𝑎,𝑏,𝑦𝑖

𝑙𝑏
,Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
]) From Lemma F.1 and F.2 (24)

From 21, 23 and 24 we show that

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑦𝑎𝑖 = 𝑔(𝑥𝑎𝑖)) ∧ (𝑦𝑏𝑖 = 𝑔(𝑥𝑏𝑖))
=⇒ ([𝑥𝑎

1
, . . . , 𝑥𝑎𝑖 , 𝑦

𝑎
𝑖]𝑇 , [𝑥𝑏1 , . . . , 𝑥𝑏𝑖 , 𝑦𝑏𝑖]𝑇) ∈ 𝛾2𝑖+2 (𝑎′) (25)

Eq. 25 proves that (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯
𝑔 (𝑎)). □

F.3 Soundness Proof of the DiffPoly Affine Transformer
First, we describe the concrete affine transformer 𝑇𝐴 : ℘(R2𝑖) → ℘(R2𝑖+2). Let,𝑊 ∈ R𝑖

and

𝑣𝑖+1 ∈ R denote the weight vector and bias respectively then the concrete transformer is given

below where 𝑥𝑎𝑖+1 = 𝑣 +∑𝑖
𝑗=1

𝑤 𝑗 · 𝑥𝑎𝑗 and 𝑥𝑏𝑖+1 = 𝑣 +∑𝑖
𝑗=1

𝑤 𝑗 · 𝑥𝑏𝑗
𝑇𝐴 (X) = {([𝑥𝑎1 , . . . , 𝑥𝑎𝑖 , 𝑥𝑎𝑖+1]𝑇 , [𝑥𝑏1 , . . . , 𝑥𝑏𝑖 , 𝑥𝑏𝑖+1)]𝑇) | (𝑋𝑎, 𝑋𝑏) ∈ X}

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

We first state a couple of lemmas needed to prove the soundness of𝑇
♯

𝐴
. The proof of the lemmas F.4

and F.5 is in Appendix G.3.

Lemma F.4. (Correctness of symbolic bounds computed by the affine transformer) If ∀𝑗 ∈ [𝑖] . 𝑥𝑎𝑗 ∈
[𝑙𝑎,𝑥 𝑗

, 𝑢𝑎,𝑥 𝑗
], ∀𝑗 ∈ [𝑖] . 𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗

, 𝑢𝑏,𝑥 𝑗
] and ∀𝑗 ∈ [𝑖] . 𝛿𝑎,𝑏𝑥 𝑗

∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
] and 𝑥𝑎𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 ·

𝑥𝑎𝑗 , 𝑥
𝑏
𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 · 𝑥𝑏𝑗 , and 𝛿

𝑎,𝑏
𝑥𝑖+1 = (𝑥𝑎𝑖+1 − 𝑥𝑏𝑖+1) then 𝑥

𝑎,≤
𝑖+1 ≤ 𝑥𝑎𝑖+1 ≤ 𝑥

𝑎,≥
𝑖+1 , 𝑥

𝑏,≤
𝑖+1 ≤ 𝑥𝑏𝑖+1 ≤ 𝑥

𝑏,≥
𝑖+1 and

𝛿
𝑎,𝑏,≤
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖+1 where 𝑥𝑎,≤

𝑖+1 , 𝑥
𝑎,≥
𝑖+1 , 𝑥

𝑏,≤
𝑖+1 , 𝑥

𝑏,≥
𝑖+1 , 𝛿

𝑎,𝑏,≤
𝑥𝑖+1 and 𝛿𝑎,𝑏,≥𝑥𝑖+1 defined in Eq. 8.

Lemma F.5. (Correctness of concrete bounds computed by the affine transformer) If ∀𝑗 ∈ [𝑖] . 𝑥𝑎𝑗 ∈
[𝑙𝑎,𝑥 𝑗

, 𝑢𝑎,𝑥 𝑗
], ∀𝑗 ∈ [𝑖] . 𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗

, 𝑢𝑏,𝑥 𝑗
] and ∀𝑗 ∈ [𝑖] . 𝛿𝑎,𝑏𝑥 𝑗

∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
] and 𝑥𝑎𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 ·

𝑥𝑎𝑗 , 𝑥
𝑏
𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 · 𝑥𝑏𝑗 , and 𝛿

𝑎,𝑏
𝑥𝑖+1 = (𝑥𝑎𝑖+1 −𝑥𝑏𝑖+1) then 𝑙𝑎,𝑥𝑖+1 ≤ 𝑥𝑎𝑖+1 ≤ 𝑢𝑎,𝑥𝑖+1 , 𝑙𝑏,𝑥𝑖+1 ≤ 𝑥𝑏𝑖+1 ≤ 𝑢𝑏,𝑥𝑖+1

and Δ𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

≤ 𝛿
𝑎,𝑏
𝑥𝑖+1 ≤ Δ𝑎,𝑏,𝑥𝑖+1

𝑢𝑏
.

Theorem F.6. (Soundness of DiffPoly Affine Transformer) For all abstract element 𝑎 ∈ A2𝑖

𝑇𝐴 (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯

𝐴
(𝑎)).

Proof. For any (𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎) we denote 𝑥𝑎𝑖+1 = 𝑣 +∑𝑖
𝑗=1

𝑤 𝑗 ·𝑥𝑎𝑗 , 𝑥𝑏𝑖+1 = 𝑣 +∑𝑖
𝑗=1

𝑤 𝑗 ·𝑥𝑏𝑗 where
𝑊 ∈ R𝑖

is the weight vector, 𝑣 ∈ R is the bias vector and 𝛿
𝑎,𝑏
𝑥𝑖+1 = (𝑥𝑎𝑖+1 − 𝑦𝑏𝑖+1). For any element

𝑎 ∈ A2𝑖 , 𝑎
′ = 𝑇

♯

𝐴
(𝑎) where 𝑎′ = [𝑎1, . . . , 𝑎𝑖 , 𝑎

′
𝑖+1] and 𝑎′𝑖+1 =< 𝐶′𝑖+1𝑠𝑦𝑚,𝐶

′𝑖+1
𝑐𝑜𝑛 > constructed as described

in Section 4.4. 𝐶′𝑖+1𝑠𝑦𝑚 and 𝐶′𝑖+1𝑐𝑜𝑛 given by

𝐶′𝑖+1𝑠𝑦𝑚 =< 𝑥
𝑎,≤
𝑖+1 , 𝑥

𝑏,≤
𝑖+1 , 𝛿

𝑎,𝑏,≤
𝑥𝑖+1 , 𝑥

𝑎,≥
𝑖+1 , 𝑥

𝑏,≥
𝑖+1 , 𝛿

𝑎,𝑏,≥
𝑥𝑖+1 > 𝐶′𝑖𝑐𝑜𝑛 =< 𝑙𝑎,𝑥𝑖+1 , 𝑙𝑏,𝑥𝑖+1 ,Δ

𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

, 𝑢𝑎,𝑥𝑖+1 , 𝑢𝑏,𝑥𝑖+1 ,Δ
𝑎,𝑏,𝑥𝑖+1
𝑢𝑏

>

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑥𝑎𝑖+1 = 𝑣 +
𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑎𝑗) ∧ (𝑥𝑏𝑖+1 = 𝑣 +
𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑏𝑗)

=⇒ ∀𝑖 ∈ [𝑖] . (𝑥𝑎𝑗 ∈ [𝑙𝑎,𝑥 𝑗
, 𝑢𝑎,𝑥 𝑗

]) ∧ (𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥 𝑗
])

=⇒ (𝑥𝑎,≤
𝑖+1 ≤ 𝑥𝑎𝑖+1) ∧ (𝑥𝑎𝑖+1 ≤ 𝑥

𝑎,≥
𝑖+1) ∧ (𝑥

𝑏,≤
𝑖+1 ≤ 𝑥𝑏𝑖+1) ∧ (𝑥𝑏𝑖+1 ≤ 𝑥

𝑏,≥
𝑖+1) From Lemma F.4 (26)

=⇒ (𝑥𝑎𝑖+1 ∈ [𝑙𝑎,𝑥𝑖+1 , 𝑢𝑎,𝑥𝑖+1]) ∧ (𝑥𝑏𝑖+1 ∈ [𝑙𝑏,𝑥𝑖+1 , 𝑢𝑏,𝑥𝑖+1]) From Lemma F.5 (27)

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑥𝑎𝑖+1 = 𝑣 +
𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑎𝑗) ∧ (𝑥𝑏𝑖+1 = 𝑣 +
𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑏𝑗)

=⇒ ∀𝑗 ∈ [𝑖] . (𝑥𝑎𝑗 ∈ [𝑙𝑎,𝑥 𝑗
, 𝑢𝑎,𝑥 𝑗

]) ∧ (𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗
, 𝑢𝑏,𝑥 𝑗

]) ∧ (𝛿𝑎,𝑏𝑥 𝑗
∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
])

=⇒ (𝛿𝑎,𝑏,≤𝑥𝑖+1 ≤ 𝛿𝑎,𝑏𝑥𝑖+1) ∧ (𝛿
𝑎,𝑏
𝑥𝑖+1 ≤ 𝛿𝑎,𝑏,≥𝑥𝑖+1) ∧ (𝛿

𝑎,𝑏
𝑥𝑖+1 ∈ [Δ

𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖+1
𝑢𝑏

]) From Lemma F.4 and F.5

(28)

From 26, 27 and 28 we show that

∀(𝑋𝑎, 𝑋𝑏) ∈ 𝛾2𝑖 (𝑎). (𝑥𝑎𝑖+1 = 𝑣 +
𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑎𝑗) ∧ (𝑥𝑏𝑖+1 = 𝑣 +
𝑖∑︁
𝑗=1

𝑤 𝑗 · 𝑥𝑏𝑗) (29)

=⇒ ([𝑥𝑎
1
, . . . , 𝑥𝑎𝑖 , 𝑥

𝑎
𝑖+1]𝑇 , [𝑥𝑏1 , . . . , 𝑥𝑏𝑖 , 𝑥𝑏𝑖+1)]𝑇) ∈ 𝛾2𝑛 (𝑎′) (30)

Eq. 30 shows that 𝑇𝐴 (𝛾2𝑖 (𝑎)) ⊆ 𝛾2𝑖+2 (𝑇 ♯

𝐴
(𝑎′)) □

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Input-Relational Verification of Deep Neural Networks 39

F.4 Soundness Proof of Product DNN analysis
Theorem 4.5. (Soundness of Product DNN analysis) ∀(𝑋1, . . . , 𝑋𝑘) ∈ R𝑛0×𝑘 .Φ((𝑋1, . . . , 𝑋𝑘)) =⇒
(N𝑘 ((𝑋1, . . . , 𝑋𝑘)) ∈ P).

Proof. P =
>𝑘

𝑖=1
P𝑖 implies (𝑌1, . . . , 𝑌𝑘) ∈ P ⇐⇒ ∧𝑘𝑖=1

(𝑌𝑖 ∈ P𝑖) where ∀𝑖 ∈ [𝑘] .(𝑌𝑖 ∈ R𝑛𝑙).

∀𝑋1, . . . , 𝑋𝑘 ∈ R𝑛0 .Φ((𝑋1, . . . , 𝑋𝑘)) =⇒ ∧𝑘𝑖=1
𝜙𝑖
𝑖𝑛 (𝑋𝑖) =⇒ ∧𝑘𝑖=1

(𝑁 (𝑋𝑖) ∈ P𝑖)
=⇒ [𝑁 (𝑋1) . . . , 𝑁 (𝑋𝑘)]𝑇 ∈ P =⇒ N𝑘 ((𝑋1, . . . , 𝑋𝑘)) ∈ P

□

F.5 Soundness of RaVeN LP Formulation
Theorem 4.6. (Soundness of Linear constraints) Φ𝑡 ⊆ L0

𝑡 and∀𝑖 ∈ [𝑙] .∀𝑋1, . . . 𝑋𝑘 ∈ R𝑛0 .Φ(𝑋1, . . . , 𝑋𝑘)
=⇒ (𝑁 𝑖 (𝑋1), . . . , 𝑁 𝑖 (𝑋𝑘)) ∈ L𝑖

𝑡 where 𝑁
𝑖

: R𝑛0 → R𝑛𝑖 is the composition of first 𝑖 layers of the
network 𝑁 , 𝑁 𝑖 = 𝑁1 ◦ · · · ◦ 𝑁𝑖 .

Proof. The input specification Φ is defined as a set of linear constraints over the input variables

and exactly encoded as a set of linear constraints. Hence, L0

𝑡 is same as Φ𝑡 , L0

𝑡 = Φ𝑡 . ∀𝑖 ∈ [𝑙] L𝑖
is

defined from the constraints in Eq 9. We show that all concrete bounds 𝑙
𝑎,𝑙
𝑗
, 𝑢

𝑎,𝑙
𝑗
,Δ

𝑎,𝑏,𝑙,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑙,𝑥 𝑗

𝑢𝑏
and

all symbolic bounds 𝑥
𝑎,𝑙,≤
𝑗

, 𝑥
𝑎,𝑙,≥
𝑗

, 𝛿
𝑎,𝑏,𝑙,≤
𝑗

, 𝛿
𝑎,𝑏,≥
𝑗

shown in 9. From Lemma 4.3, F.2 and,F.5 all concrete

bounds satisfy Eq 9. From Lemma , F.1, 4.2, and, F.4 all symbolic bounds satisfy Eq 9. □

F.6 Correctness of encoding of Ψ

The output specificationΨ : R𝑛𝑙×𝑘 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} is defined asΨ(𝑌1, . . . , 𝑌𝑘) =
∧𝑚

𝑖=1

(∨𝑛
𝑗=1

𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘)
)
,

𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘) =
(∑𝑘

𝑖′=1
𝐶𝑇
𝑖,𝑗,𝑖′𝑌𝑖′ ≥ 0

)
and 𝐶𝑖, 𝑗,𝑖′ ∈ R𝑛𝑙

. We show that the following objective com-

putes the minimum number of clauses that remain satisfied for all (𝑌1, . . . , 𝑌𝑘).

min

(𝑌1,...,𝑌𝑘)

𝑚∑︁
𝑖=1

𝑧𝑖 s.t. 𝑥𝑖, 𝑗 = 𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘) =
(

𝑘∑︁
𝑖′=1

𝐶𝑇
𝑖,𝑗,𝑖′𝑌𝑖′ ≥ 0

)
; 𝑧𝑖 =

(
𝑛∑︁
𝑗=1

𝑥𝑖, 𝑗 ≥ 0

)
(31)

For any (𝑌1, . . . , 𝑌𝑘) for all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] (𝑥𝑖, 𝑗 = 1) ⇐⇒
(∑𝑘

𝑖′=1
𝐶𝑇
𝑖,𝑗,𝑖′𝑌𝑖′ ≥ 0

)
. Then(∑𝑛

𝑗=1
𝑥𝑖, 𝑗 ≥ 0

)
⇐⇒ ∨𝑛

𝑗=1
𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘). Hence, (𝑧𝑖 = 1) ⇐⇒ ∨𝑛

𝑗=1
𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘). So

∑𝑚
𝑖=1

𝑧𝑖

is the number of clauses satisfied for any (𝑌1, . . . , 𝑌𝑘) and the optimal solution of the optimization

problem gives the minimum number of clauses that remain satisfied for all (𝑌1, . . . , 𝑌𝑘).

G PROOFS OF LEMMAS
G.1 Proof of lemmas for DiffPoly ReLU transformer
Lemma G.1. (Case a in Fig. 4) If ˆ𝛿 = 𝑥 − 𝑦 where 𝑥,𝑦 ∈ R, ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏] and Δ̂𝑙𝑏 ≥ 0 then

𝛿 = 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) then (0 ≤ 𝛿) and (𝛿 ≤ ˆ𝛿) .

Proof. Δ̂𝑙𝑏 ≥ 0 =⇒ ˆ𝛿 ≥ 0 =⇒ 𝑥 ≥ 𝑦. Now we consider all 3 possible cases below.

Case 1 (𝑥 ≥ 0) ∧ (𝑦 ≥ 0) =⇒ 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) = (𝑥 − 𝑦) =⇒ (𝛿 = ˆ𝛿) =⇒ (𝛿 ≥ 0)
Case 2 (𝑥 ≥ 0) ∧ (𝑦 < 0) =⇒ 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) = 𝑥 =⇒ (𝛿 ≤ (𝑥 − 𝑦) = ˆ𝛿) ∧ (𝛿 ≥ 0)
Case 3 (𝑥 < 0) ∧ (𝑦 < 0) =⇒ 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) = 0 =⇒ (𝛿 = 0 ≤ ˆ𝛿)

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

40 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

□

Lemma G.2. (Case b in Fig. 4) If ˆ𝛿 = 𝑥 − 𝑦 where 𝑥,𝑦 ∈ R, ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏] and Δ̂𝑢𝑏 ≤ 0 then
𝛿 = 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) then (ˆ𝛿 ≤ 𝛿) and (𝛿 ≤ 0).

Proof. Δ̂𝑢𝑏 ≤ 0 =⇒ ˆ𝛿 ≤ 0 =⇒ 𝑥 ≤ 𝑦. Now we consider all 3 possible cases below.

Case 1 (𝑥 ≥ 0) ∧ (𝑦 ≥ 0) =⇒ 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) = (𝑥 − 𝑦) =⇒ (𝛿 = ˆ𝛿) =⇒ (𝛿 ≤ 0)
Case 2 (𝑥 < 0) ∧ (𝑦 ≥ 0) =⇒ 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) = −𝑦 =⇒ (𝛿 ≥ (𝑥 − 𝑦) = ˆ𝛿) ∧ (𝛿 ≤ 0)
Case 3 (𝑥 < 0) ∧ (𝑦 < 0) =⇒ 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) = 0 =⇒ (𝛿 = 0 ≥ ˆ𝛿)

□

Lemma G.3. (Case c in Fig. 4) If ˆ𝛿 = 𝑥 −𝑦 where 𝑥,𝑦 ∈ R, ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏] and (Δ̂𝑙𝑏 < 0) ∧ (Δ̂𝑢𝑏 > 0)
then 𝛿 = 𝑅𝑒𝐿𝑈 (𝑥) − 𝑅𝑒𝐿𝑈 (𝑦) satisfies (𝜆𝛿

𝑙𝑏
· ˆ𝛿 + 𝜇𝛿

𝑙𝑏
≤ 𝛿) ∧ (𝛿 ≤ 𝜆𝛿

𝑢𝑏
· ˆ𝛿 + 𝜇𝛿

𝑢𝑏
) where 𝜆𝛿

𝑢𝑏
=

Δ̂𝑢𝑏

Δ̂𝑢𝑏−Δ̂𝑙𝑏

,

𝜆𝛿
𝑙𝑏

= − Δ̂𝑙𝑏

Δ̂𝑢𝑏−Δ̂𝑙𝑏

, −𝜇𝛿
𝑢𝑏

= 𝜇𝛿
𝑙𝑏
=

Δ̂𝑙𝑏×Δ̂𝑢𝑏

Δ̂𝑢𝑏−Δ̂𝑙𝑏

.

Proof. Lemma G.1 and lemma G.2 implies max(0, ˆ𝛿) ≥ 𝛿 . Next, we show 𝜆𝛿
𝑢𝑏
· ˆ𝛿+𝜇𝛿

𝑢𝑏
≥ max(0, ˆ𝛿).

(𝜆𝛿
𝑢𝑏

> 0) =⇒ (∀ ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏]) . (𝜆𝛿𝑢𝑏 · ˆ𝛿 + 𝜇𝛿
𝑢𝑏
≥ Δ̂𝑙𝑏 × Δ̂𝑢𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

+ 𝜇𝛿
𝑢𝑏

= 0)

(𝜆𝛿
𝑢𝑏
− 1 < 0) =⇒ (∀ ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏]). (𝜆𝛿𝑢𝑏 · ˆ𝛿 + 𝜇𝛿

𝑢𝑏
− ˆ𝛿 ≥ Δ̂𝑙𝑏 × Δ̂𝑢𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

+ 𝜇𝛿
𝑢𝑏

= 0)

(∀ ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏]). (𝜆𝛿𝑢𝑏 · ˆ𝛿 + 𝜇𝛿
𝑢𝑏
≥ max(0, ˆ𝛿)

Lemma G.1 and lemma G.2 implies 𝛿 ≥ min(0, ˆ𝛿). Next, we show min(0, ˆ𝛿) ≥ 𝜆𝛿
𝑙𝑏
· ˆ𝛿 + 𝜇𝛿

𝑙𝑏
.

(𝜆𝛿
𝑙𝑏

> 0) =⇒ (∀ ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏]) . (𝜆𝛿𝑙𝑏 · ˆ𝛿 + 𝜇𝛿
𝑙𝑏
≤ − Δ̂𝑙𝑏 × Δ̂𝑢𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

+ 𝜇𝛿
𝑙𝑏

= 0)

(𝜆𝛿
𝑙𝑏
− 1 < 0) =⇒ (∀ ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏]). (𝜆𝛿𝑙𝑏 · ˆ𝛿 + 𝜇𝛿

𝑙𝑏
− ˆ𝛿 ≤ Δ̂𝑙𝑏 × Δ̂𝑢𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

+ 𝜇𝛿
𝑙𝑏

= 0)

(∀ ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏]). (𝜆𝛿𝑙𝑏 · ˆ𝛿 + 𝜇𝛿
𝑙𝑏
≥ min(0, ˆ𝛿)

□

For the cases defined in Table 1, we compute the symbolic bounds 𝑦
𝑎,≤
𝑖

and 𝑦
𝑎,≥
𝑖

.

𝑥𝑎,𝑖− =⇒ (𝑦𝑎,≤
𝑖

= 𝑦
𝑎,≥
𝑖

= 0) 𝑥
𝑎,𝑖
+ =⇒ (𝑦𝑎,≤

𝑖
= 𝑦

𝑎,≥
𝑖

= 𝑥𝑎𝑖) (𝑥𝑎,𝑖±) ∧ (𝑢𝑎,𝑥𝑖 ≥ −𝑙𝑎,𝑥𝑖) =⇒ (𝑦𝑎,≤
𝑖

= 𝑥𝑎𝑖)

(𝑥𝑎,𝑖±) ∧ (𝑢𝑎,𝑥𝑖 < −𝑙𝑎,𝑥𝑖) =⇒ (𝑦𝑎,≥
𝑖

= 0) (𝑥𝑎,𝑖±) =⇒ (𝑦𝑎,≥
𝑖

=
𝑢𝑎,𝑥𝑖

𝑢𝑎,𝑥𝑖 − 𝑙𝑎,𝑥𝑖
· 𝑥𝑎𝑖 −

𝑢𝑎,𝑥𝑖 × 𝑙𝑎,𝑥𝑖
𝑢𝑎,𝑥𝑖 − 𝑙𝑎,𝑥𝑖

) (32)

Lemma G.4. (Correctness of symbolic bounds in Eq. 32) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖] then 𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖)
then 𝑦𝑎,≤

𝑖
≤ 𝑦𝑎𝑖 ≤ 𝑦

𝑎,≥
𝑖

where 𝑦𝑎,≤
𝑖

and 𝑦𝑎,≥
𝑖

defined in Eq. 32.

Proof. Refer to proof of Theorem 4.2 of [69]. □

Lemma 4.2. (Correctness of symbolic bounds in Table 2 and 3) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖], 𝑥𝑏𝑖 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖]
and 𝛿𝑎,𝑏𝑥𝑖 = (𝑥𝑎𝑖 − 𝑥𝑏𝑖) ∈ [Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏
] and 𝛿𝑎,𝑏𝑦𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖) −𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) then 𝛿

𝑎,𝑏,≤
𝑦𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑦𝑖

where 𝛿𝑎,𝑏,≤𝑦𝑖 and 𝛿𝑎,𝑏,≥𝑦𝑖 defined in Table 2 and 3.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Input-Relational Verification of Deep Neural Networks 41

Proof. We show in all 12 cases shown in Table 2 and Table 3 𝛿
𝑎,𝑏,≤
𝑦𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑦𝑖 holds.

• Case 1: 𝑥𝑎,𝑖− ∧ 𝑥𝑏,𝑖− =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖 = 0) ∧ (𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖 = 0)) =⇒ 𝛿
𝑎,𝑏
𝑦𝑖 = 0

• Case 2: 𝑥
𝑎,𝑖
+ ∧ 𝑥𝑏,𝑖+ =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖) = 𝑥𝑎𝑖) ∧ (𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) = 𝑥𝑏𝑖) =⇒ 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑥𝑎𝑖 − 𝑥𝑏𝑖 = 𝛿

𝑎,𝑏
𝑥𝑖 .

• Case 3: 𝑥
𝑎,𝑖
+ ∧ 𝑥𝑏,𝑖− =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖) = 𝑥𝑎𝑖) ∧ (𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) = 0) =⇒ 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑥𝑎𝑖 .

• Case 4: 𝑥𝑎,𝑖− ∧ 𝑥𝑏,𝑖+ =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖) = 0) ∧ (𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) = 𝑥𝑏𝑖) =⇒ 𝛿
𝑎,𝑏
𝑦𝑖 = −𝑥𝑏𝑖 .

• Case 5: 𝑥
𝑎,𝑖
± ∧ 𝑥𝑏,𝑖− =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) = 0) =⇒ 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑦𝑎𝑖 =⇒ 𝑦

𝑎,≤
𝑖
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝑦

𝑎,≥
𝑖

.

• Case 6: 𝑥𝑎,𝑖− ∧ 𝑥𝑏,𝑖± =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖) = 0) =⇒ 𝛿
𝑎,𝑏
𝑦𝑖 = −𝑦𝑏𝑖 =⇒ −𝑦𝑏,≥

𝑖
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ −𝑦

𝑏,≤
𝑖

.

• Case 7: 𝑥
𝑎,𝑖
± ∧ 𝑥𝑏,𝑖+ =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖) = 𝑥𝑏𝑖) =⇒ 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑦𝑎𝑖 − 𝑥𝑏𝑖 =⇒ 𝑦

𝑎,≤
𝑖
− 𝑥𝑏𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝑦

𝑎,≥
𝑖
− 𝑥𝑏𝑖 .

• Case 8: 𝑥
𝑎,𝑖
+ ∧ 𝑥𝑏,𝑖± =⇒ (𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖) = 𝑥𝑎𝑖) =⇒ 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑥𝑎𝑖 −𝑦𝑏𝑖 =⇒ 𝑥𝑎𝑖 −𝑦

𝑏,≥
𝑖
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝑥𝑎𝑖 −𝑦

𝑏,≤
𝑖

.

• Case 9: 𝑥
𝑎,𝑖
± ∧ 𝑥𝑏,𝑖± =⇒ 𝛿

𝑎,𝑏
𝑦𝑖 = 𝑦𝑎𝑖 − 𝑦𝑏𝑖 =⇒ 𝑦

𝑎,≤
𝑖
− 𝑦𝑏,≥

𝑖
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝑦

𝑎,≥
𝑖
− 𝑦𝑏,≤

𝑖
.

• Case 10: 𝛿+ =⇒ 0 ≤ 𝛿
𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏
𝑥𝑖 from Lemma G.1.

• Case 11: 𝛿− =⇒ 𝛿
𝑎,𝑏
𝑥𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 0 from Lemma G.2.

• Case 12: 𝛿± =⇒ 𝜆𝛿
𝑙𝑏
𝛿
𝑎,𝑏
𝑥𝑖 + 𝜇𝛿𝑙𝑏 ≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝜆𝛿

𝑢𝑏
𝛿
𝑎,𝑏
𝑥𝑖 + 𝜇𝛿𝑢𝑏 from Lemma G.3.

□

Lemma 4.3. (Correctness of concrete bounds computed by the ReLU transformer) If 𝑥𝑎𝑖 ∈ [𝑙𝑎,𝑥𝑖 , 𝑢𝑎,𝑥𝑖],
𝑥𝑏𝑖 ∈ [𝑙𝑏,𝑥𝑖 , 𝑢𝑏,𝑥𝑖] and 𝛿

𝑎,𝑏
𝑥𝑖 = (𝑥𝑎𝑖 − 𝑥𝑏𝑖) ∈ [Δ

𝑎,𝑏,𝑥𝑖
𝑙𝑏

,Δ𝑎,𝑏,𝑥𝑖
𝑢𝑏
], 𝑦𝑎𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑎𝑖), 𝑦𝑏𝑖 = 𝑅𝑒𝐿𝑈 (𝑥𝑏𝑖), 𝛿

𝑎,𝑏
𝑦𝑖 =

𝑦𝑎𝑖 − 𝑦𝑏𝑖 then 𝑙𝑎,𝑦𝑖 ≤ 𝑦𝑎𝑖 ≤ 𝑢𝑎,𝑦𝑖 , 𝑙𝑏,𝑦𝑖 ≤ 𝑦𝑏𝑖 ≤ 𝑢𝑏,𝑦𝑖 , and Δ
𝑎,𝑏,𝑦𝑖

𝑙𝑏
≤ 𝛿

𝑎,𝑏
𝑦𝑖 ≤ Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
where Δ𝑎,𝑏,𝑦𝑖

𝑙𝑏
and

Δ
𝑎,𝑏,𝑦𝑖

𝑢𝑏
computed by applying back-substitution on 𝛿𝑎,𝑏,≤𝑦𝑖 and 𝛿𝑎,𝑏,≥𝑦𝑖 respectively.

Proof. The concrete bounds 𝑙𝑎,𝑦𝑖 , 𝑙𝑏,𝑦𝑖 ,𝑢𝑎,𝑦𝑖 ,𝑢𝑏,𝑦𝑖 are obtained from the analysis of product DNN

with existing DNN abstract interpreter. The existing DNN abstract interpreter ensures the concrete

lower and upper bounds always satisfy the following - 𝑙𝑎,𝑦𝑖 ≤ 𝑦𝑎𝑖 ≤ 𝑢𝑎,𝑦𝑖 , 𝑙𝑏,𝑦𝑖 ≤ 𝑦𝑏𝑖 ≤ 𝑢𝑏,𝑦𝑖 . Now,

the concrete bounds Δ
𝑎,𝑏,𝑦𝑖

𝑙𝑏
and Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
are obtained with back-substitution starting with symbolic

bounds 𝛿
𝑎,𝑏,≤
𝑦𝑖 and 𝛿

𝑎,𝑏,≥
𝑦𝑖 respectively. From Lemma 4.2 we show that (𝛿𝑎,𝑏,≤𝑦𝑖 ≤ 𝛿

𝑎,𝑏
𝑦𝑖) ∧ (𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑦𝑖)

holds. Since, (𝛿𝑎,𝑏,≤𝑦𝑖 ≤ 𝛿
𝑎,𝑏
𝑦𝑖) ∧ (𝛿

𝑎,𝑏
𝑦𝑖 ≤ 𝛿

𝑎,𝑏,≥
𝑦𝑖) using Lemma E.1 we show that Δ

𝑎,𝑏,𝑦𝑖

𝑙𝑏
≤ 𝛿

𝑎,𝑏
𝑦𝑖 and

𝛿
𝑎,𝑏
𝑦𝑖 ≤ Δ

𝑎,𝑏,𝑦𝑖

𝑢𝑏
. □

G.2 Proof of lemmas for DiffPoly Sigmoid and Tanh transformer
For the rest of this section, we assume the function 𝑔 : R→ R is differentiable everywhere. We use

𝑙𝑔′ and 𝑢𝑔′ to denote minimum and maximum value of 𝑔′ (derivative of 𝑔) for the range [𝑙, 𝑢] where
𝑙 = min(𝑙𝑎,𝑥𝑖 , 𝑙𝑏,𝑥𝑖) and 𝑢 = max(𝑢𝑎,𝑥𝑖 , 𝑢𝑏,𝑥𝑖). Here, 𝑙𝑔′ = min

𝑥∈[𝑙,𝑢]
𝑔′ (𝑥) and 𝑢𝑔′ = max

𝑥∈[𝑙,𝑢]
𝑔′ (𝑥)

Lemma G.5. If ˆ𝛿 = 𝑥 − 𝑦 where 𝑥,𝑦 ∈ R, ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏], 𝑥 ∈ [𝑙, 𝑢], 𝑦 ∈ [𝑙, 𝑢] and Δ̂𝑙𝑏 ≥ 0 then
𝛿 = 𝑔(𝑥) − 𝑔(𝑦) then (𝑙𝑔′ · ˆ𝛿 ≤ 𝛿) and (𝛿 ≤ 𝑢𝑔′ · ˆ𝛿) .

Proof. Since 𝑔 is differentiable everywhere by using the Mean Value Theorem

𝑔(𝑥) − 𝑔(𝑦)
𝑥 − 𝑦 = 𝑓 ′ (𝑐) where 𝑐 ∈ [𝑙, 𝑢]

𝑙𝑔′ ≤
𝑔(𝑥) − 𝑔(𝑦)

𝑥 − 𝑦 ≤ 𝑢𝑔′ (33)

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

42 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

Now Δ̂𝑙𝑏 ≥ 0 =⇒ ˆ𝛿 ≥ 0 =⇒ (𝑥 − 𝑦) ≥ 0.

(𝑥 − 𝑦) ≥ 0 =⇒ (𝑙𝑔′ · (𝑥 − 𝑦) ≤ (𝑔(𝑥) − 𝑔(𝑦)) using Eq. 33

(𝑥 − 𝑦) ≥ 0 =⇒ ((𝑔(𝑥) − 𝑔(𝑦) ≤ 𝑢𝑔′ · (𝑥 − 𝑦)) using Eq. 33

□

Lemma G.6. If ˆ𝛿 = 𝑥 − 𝑦 where 𝑥,𝑦 ∈ R, ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏], 𝑥 ∈ [𝑙, 𝑢], 𝑦 ∈ [𝑙, 𝑢] and Δ̂𝑢𝑏 ≤ 0 then
𝛿 = 𝑔(𝑥) − 𝑔(𝑦) then (𝑢𝑔′ · ˆ𝛿 ≤ 𝛿) and (𝛿 ≤ 𝑙𝑔′ · ˆ𝛿) .

Proof. Now Δ̂𝑢𝑏 ≤ 0 =⇒ ˆ𝛿 ≤ 0 =⇒ (𝑥 − 𝑦) ≤ 0.

(𝑥 − 𝑦) ≤ 0 =⇒ (𝑢𝑔′ · (𝑥 − 𝑦) ≤ (𝑔(𝑥) − 𝑔(𝑦)) using Eq. 33

(𝑥 − 𝑦) ≤ 0 =⇒ ((𝑔(𝑥) − 𝑔(𝑦) ≤ 𝑙𝑔′ · (𝑥 − 𝑦)) using Eq. 33

□

Lemma G.7. If ˆ𝛿 = 𝑥 − 𝑦 where 𝑥,𝑦 ∈ R, ˆ𝛿 ∈ [Δ̂𝑙𝑏, Δ̂𝑢𝑏] and (Δ̂𝑙𝑏 < 0) and (Δ̂𝑢𝑏 > 0) then
𝛿 = 𝑔(𝑥) − 𝑔(𝑦) satisfies (𝜆𝛿

𝑙𝑏
· ˆ𝛿 + 𝜇𝛿

𝑙𝑏
≤ 𝛿) and (𝛿 ≤ 𝜆𝛿

𝑢𝑏
· ˆ𝛿 + 𝜇𝛿

𝑢𝑏
) where 𝜆𝛿

𝑢𝑏
=

𝑢𝑔′×Δ̂𝑢𝑏−𝑙𝑔′×Δ̂𝑙𝑏

Δ̂𝑢𝑏−Δ̂𝑙𝑏

,

𝜆𝛿
𝑙𝑏

=
𝑙𝑔′×Δ̂𝑢𝑏−𝑢𝑔′×Δ̂𝑙𝑏

Δ̂𝑢𝑏−Δ̂𝑙𝑏

, −𝜇𝛿
𝑢𝑏

= 𝜇𝛿
𝑙𝑏
=
(𝑢𝑔′−𝑙𝑔′)×Δ̂𝑙𝑏×Δ̂𝑢𝑏

Δ̂𝑢𝑏−Δ̂𝑙𝑏

.

Proof. Lemma G.5 and lemma G.6 implies max(𝑙𝑔′ · ˆ𝛿,𝑢𝑔′ · ˆ𝛿) ≥ 𝛿 . Next, we show 𝜆𝛿
𝑢𝑏
· ˆ𝛿 + 𝜇𝛿

𝑢𝑏
≥

max(𝑙𝑔′ · ˆ𝛿,𝑢𝑔′ · ˆ𝛿).

(𝜆𝛿
𝑢𝑏
− 𝑙𝑔′) · ˆ𝛿 =

(𝑢𝑔′ − 𝑙𝑔′) × Δ̂𝑢𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

· ˆ𝛿 ≥
(𝑢𝑔′ − 𝑙𝑔′) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

=⇒ (𝜆𝛿
𝑢𝑏
− 𝑙𝑔′) · ˆ𝛿 + 𝜇𝛿

𝑢𝑏
≥
(𝑢𝑔′ − 𝑙𝑔′) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

+ 𝜇𝛿
𝑢𝑏

= 0

=⇒ 𝜆𝛿
𝑢𝑏
· ˆ𝛿 + +𝜇𝛿

𝑢𝑏
≥ 𝑙𝑔′ · ˆ𝛿 (34)

(𝜆𝛿
𝑢𝑏
− 𝑢𝑔′) · ˆ𝛿 =

(𝑢𝑔′ − 𝑙𝑔′) × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

· ˆ𝛿 ≥
(𝑢𝑔′ − 𝑙𝑔′) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

=⇒ (𝜆𝛿
𝑢𝑏
− 𝑢𝑔′) · ˆ𝛿 + 𝜇𝛿

𝑢𝑏
≥
(𝑢𝑔′ − 𝑙𝑔′) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

+ 𝜇𝛿
𝑢𝑏

= 0

=⇒ 𝜆𝛿
𝑢𝑏
· ˆ𝛿 + +𝜇𝛿

𝑢𝑏
≥ 𝑢𝑔′ · ˆ𝛿 (35)

Combining results from Eq. 34 and Eq. 35 we show that 𝜆𝛿
𝑢𝑏
· ˆ𝛿 + 𝜇𝛿

𝑢𝑏
≥ max(𝑙𝑔′ · ˆ𝛿,𝑢𝑔′ · ˆ𝛿) ≥ 𝛿 .

Lemma G.5 and lemma G.6 implies 𝛿 ≥ min(𝑙𝑔′ · ˆ𝛿,𝑢𝑔′ · ˆ𝛿).
Next, we show min(𝑙𝑔′ · ˆ𝛿,𝑢𝑔′ · ˆ𝛿) ≥ 𝜆𝛿

𝑙𝑏
· ˆ𝛿 + 𝜇𝛿

𝑙𝑏
.

(𝑙𝑔′ − 𝜆𝛿𝑢𝑏) · ˆ𝛿 =
(𝑢𝑔′ − 𝑙𝑔′) × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

· ˆ𝛿 ≥
(𝑢𝑔′ − 𝑙𝑔′) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

=⇒ (𝑙𝑔′ − 𝜆𝛿𝑢𝑏) · ˆ𝛿 − 𝜇𝛿
𝑙𝑏
≥
(𝑢𝑔′ − 𝑙𝑔′) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

− 𝜇𝛿
𝑙𝑏

= 0

=⇒ 𝑙𝑔′ · ˆ𝛿 ≥ 𝜆𝛿
𝑙𝑏
· ˆ𝛿 + +𝜇𝛿

𝑙𝑏
(36)

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Input-Relational Verification of Deep Neural Networks 43

(𝑢𝑔′ − 𝜆𝛿𝑢𝑏) · ˆ𝛿 =
(𝑢𝑔′ − 𝑙𝑔′) × Δ̂𝑢𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

· ˆ𝛿 ≥
(𝑢𝑔′ − 𝑙𝑔′) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

=⇒ (𝑢𝑔′ − 𝜆𝛿𝑢𝑏) · ˆ𝛿 − 𝜇𝛿
𝑙𝑏
≥
(𝑢𝑔′ − 𝑙𝑔′) × Δ̂𝑢𝑏 × Δ̂𝑙𝑏

Δ̂𝑢𝑏 − Δ̂𝑙𝑏

− 𝜇𝛿
𝑙𝑏

= 0

=⇒ 𝑢𝑔′ · ˆ𝛿 ≥ 𝜆𝛿
𝑙𝑏
· ˆ𝛿 + +𝜇𝛿

𝑙𝑏
(37)

Combining results from Eq. 36 and Eq. 37 we show that 𝜆𝛿
𝑙𝑏
· ˆ𝛿 + 𝜇𝛿

𝑙𝑏
≤ min(𝑙𝑔′ · ˆ𝛿,𝑢𝑔′ · ˆ𝛿) ≤ 𝛿 . □

G.3 Proof of soundness for DiffPoly Affine transformer
Lemma G.8. For 𝑦 ← 𝑣 +∑𝑛

𝑖=1
𝑤𝑖 · 𝑥𝑖 and ∀𝑖 ∈ [𝑛] .(𝑥≤𝑖 ≤ 𝑥𝑖) ∧ (𝑥𝑖 ≤ 𝑥≥

𝑖
) then 𝑦 ≤ 𝑣 +∑𝑛

𝑖=1
𝑤+𝑖 ·

𝑥≥
𝑖
+∑𝑛

𝑖=1
𝑤−𝑖 · 𝑥≤𝑖 where 𝑣,𝑤1, . . .𝑤𝑛 ∈ R and𝑤−𝑖 = min(𝑤𝑖 , 0) and𝑤+𝑖 = max(𝑤𝑖 , 0).

Proof. 𝑤−𝑖 ≤ 0 =⇒ 𝑤−𝑖 · 𝑥𝑖 ≤ 𝑤−𝑖 · 𝑥≤𝑖 and 𝑤+𝑖 ≥ 0 =⇒ 𝑤+𝑖 · 𝑥𝑖 ≤ 𝑤+𝑖 · 𝑥≥𝑖 . Since
(∀𝑖 ∈ [𝑛]).(𝑤−𝑖 · 𝑥𝑖 +𝑤+𝑖 · 𝑥𝑖 = 𝑤𝑖 · 𝑥𝑖) then

𝑦 = 𝑣 +
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥𝑖 = 𝑣 +
𝑛∑︁
𝑖=1

𝑤−𝑖 · 𝑥𝑖 +𝑤+𝑖 · 𝑥𝑖 ≤ 𝑣 +
𝑛∑︁
𝑖=1

𝑤+𝑖 · 𝑥≥𝑖 +
𝑛∑︁
𝑖=1

𝑤−𝑖 · 𝑥≤𝑖

□

Lemma G.9. For 𝑦 ← 𝑣 +∑𝑛
𝑖=1

𝑤𝑖 · 𝑥𝑖 and ∀𝑖 ∈ [𝑛] .(𝑥≤𝑖 ≤ 𝑥𝑖) ∧ (𝑥𝑖 ≤ 𝑥≥
𝑖
) then 𝑦 ≥ 𝑣 +∑𝑛

𝑖=1
𝑤+𝑖 ·

𝑥≤
𝑖
+∑𝑛

𝑖=1
𝑤−𝑖 · 𝑥≥𝑖 where 𝑣,𝑤1, . . .𝑤𝑛 ∈ R and𝑤−𝑖 = min(𝑤𝑖 , 0) and𝑤+𝑖 = max(𝑤𝑖 , 0).

Proof. 𝑤−𝑖 ≤ 0 =⇒ 𝑤−𝑖 · 𝑥𝑖 ≥ 𝑤−𝑖 · 𝑥≥𝑖 and 𝑤+𝑖 ≥ 0 =⇒ 𝑤+𝑖 · 𝑥𝑖 ≥ 𝑤+𝑖 · 𝑥≤𝑖 . Since
(∀𝑖 ∈ [𝑛]).(𝑤−𝑖 · 𝑥𝑖 +𝑤+𝑖 · 𝑥𝑖 = 𝑤𝑖 · 𝑥𝑖) then

𝑦 = 𝑣 +
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥𝑖 = 𝑣 +
𝑛∑︁
𝑖=1

𝑤−𝑖 · 𝑥𝑖 +𝑤+𝑖 · 𝑥𝑖 ≥ 𝑣 +
𝑛∑︁
𝑖=1

𝑤−𝑖 · 𝑥≥𝑖 +
𝑛∑︁
𝑖=1

𝑤+𝑖 · 𝑥≤𝑖

□

Lemma F.4. (Correctness of symbolic bounds computed by the affine transformer) If ∀𝑗 ∈ [𝑖] . 𝑥𝑎𝑗 ∈
[𝑙𝑎,𝑥 𝑗

, 𝑢𝑎,𝑥 𝑗
], ∀𝑗 ∈ [𝑖] . 𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗

, 𝑢𝑏,𝑥 𝑗
] and ∀𝑗 ∈ [𝑖] . 𝛿𝑎,𝑏𝑥 𝑗

∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
] and 𝑥𝑎𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 ·

𝑥𝑎𝑗 , 𝑥
𝑏
𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 · 𝑥𝑏𝑗 , and 𝛿

𝑎,𝑏
𝑥𝑖+1 = (𝑥𝑎𝑖+1 − 𝑥𝑏𝑖+1) then 𝑥

𝑎,≤
𝑖+1 ≤ 𝑥𝑎𝑖+1 ≤ 𝑥

𝑎,≥
𝑖+1 , 𝑥

𝑏,≤
𝑖+1 ≤ 𝑥𝑏𝑖+1 ≤ 𝑥

𝑏,≥
𝑖+1 and

𝛿
𝑎,𝑏,≤
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖+1 where 𝑥𝑎,≤

𝑖+1 , 𝑥
𝑎,≥
𝑖+1 , 𝑥

𝑏,≤
𝑖+1 , 𝑥

𝑏,≥
𝑖+1 , 𝛿

𝑎,𝑏,≤
𝑥𝑖+1 and 𝛿𝑎,𝑏,≥𝑥𝑖+1 defined in Eq. 8.

Proof. We use the results of Lemma G.8 and Lemma G.8 to show the correctness of the symbolic

bounds.

(𝑥𝑎𝑖+1 ≤ 𝑥
𝑎,≥
𝑖+1) ∧ (𝑥

𝑏
𝑖+1 ≤ 𝑥

𝑏,≥
𝑖+1) ∧ (𝛿

𝑎,𝑏
𝑥𝑖+1 ≤ 𝛿𝑎,𝑏,≥𝑥𝑖+1) From lemma G.8

(𝑥𝑎𝑖+1 ≥ 𝑥
𝑎,≤
𝑖+1) ∧ (𝑥

𝑏
𝑖+1 ≥ 𝑥

𝑏,≤
𝑖+1) ∧ (𝛿

𝑎,𝑏
𝑥𝑖+1 ≥ 𝛿𝑎,𝑏,≤𝑥𝑖+1) From lemma G.9

□

Lemma F.5. (Correctness of concrete bounds computed by the affine transformer) If ∀𝑗 ∈ [𝑖] . 𝑥𝑎𝑗 ∈
[𝑙𝑎,𝑥 𝑗

, 𝑢𝑎,𝑥 𝑗
], ∀𝑗 ∈ [𝑖] . 𝑥𝑏𝑗 ∈ [𝑙𝑏,𝑥 𝑗

, 𝑢𝑏,𝑥 𝑗
] and ∀𝑗 ∈ [𝑖] . 𝛿𝑎,𝑏𝑥 𝑗

∈ [Δ𝑎,𝑏,𝑥 𝑗

𝑙𝑏
,Δ

𝑎,𝑏,𝑥 𝑗

𝑢𝑏
] and 𝑥𝑎𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 ·

𝑥𝑎𝑗 , 𝑥
𝑏
𝑖+1 = 𝑣 +∑𝑖

𝑗=1
𝑤 𝑗 · 𝑥𝑏𝑗 , and 𝛿

𝑎,𝑏
𝑥𝑖+1 = (𝑥𝑎𝑖+1 −𝑥𝑏𝑖+1) then 𝑙𝑎,𝑥𝑖+1 ≤ 𝑥𝑎𝑖+1 ≤ 𝑢𝑎,𝑥𝑖+1 , 𝑙𝑏,𝑥𝑖+1 ≤ 𝑥𝑏𝑖+1 ≤ 𝑢𝑏,𝑥𝑖+1

and Δ𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

≤ 𝛿
𝑎,𝑏
𝑥𝑖+1 ≤ Δ𝑎,𝑏,𝑥𝑖+1

𝑢𝑏
.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

44 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

Proof. The concrete bounds 𝑙𝑎,𝑥𝑖+1 , 𝑙𝑏,𝑥𝑖+1 , 𝑢𝑎,𝑥𝑖+1 , 𝑢𝑏,𝑥𝑖+1 are obtained from the analysis of product

DNN with existing DNN abstract interpreter. The existing DNN abstract interpreter ensures the

concrete lower and upper bounds always satisfy the following - 𝑙𝑎,𝑥𝑖+1 ≤ 𝑥𝑎𝑖+1 ≤ 𝑢𝑎,𝑥𝑖+1 , 𝑙𝑏,𝑥𝑖+1 ≤
𝑥𝑏𝑖+1 ≤ 𝑢𝑏,𝑥𝑖+1 . Now, the concrete bounds Δ

𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

and Δ𝑎,𝑏,𝑥𝑖+1
𝑢𝑏

are obtained with back-substitution

starting with symbolic bounds 𝛿
𝑎,𝑏,≤
𝑥𝑖+1 and 𝛿

𝑎,𝑏,≥
𝑥𝑖+1 respectively. From Lemma F.4 we show that (𝛿𝑎,𝑏,≤𝑥𝑖+1 ≤

𝛿
𝑎,𝑏
𝑥𝑖+1) ∧ (𝛿

𝑎,𝑏
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖+1) holds. Since, (𝛿

𝑎,𝑏,≤
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏
𝑥𝑖+1) ∧ (𝛿

𝑎,𝑏
𝑥𝑖+1 ≤ 𝛿

𝑎,𝑏,≥
𝑥𝑖+1) using Lemma E.1 we show

that Δ𝑎,𝑏,𝑥𝑖+1
𝑙𝑏

≤ 𝛿
𝑎,𝑏
𝑥𝑖+1 and 𝛿

𝑎,𝑏
𝑥𝑖+1 ≤ Δ𝑎,𝑏,𝑥𝑖+1

𝑢𝑏
. □

G.4 Specific MILP encoding UAP, hamming distance and targeted UAP
UAP MILP objective encoding

min

(𝑌1,...,𝑌𝑘)

𝑘∑︁
𝑖=1

𝑧𝑖 s.t.

𝑥𝑖, 𝑗 = 𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘) =
(
𝐶𝑇
𝑖,𝑗𝑌𝑖 ≥ 0

)
𝑗 ∈ [𝑛𝑙] and 𝐶𝑖, 𝑗 from Eq. 12

𝑧𝑖 =

(
𝑛𝑙∑︁
𝑗=1

𝑥𝑖, 𝑗 ≥ 𝑛𝑙

)
𝑖 ∈ [𝑘]

Hamming distance MILP objective encoding

max

(𝑌1,...,𝑌𝑘)
𝑘 −

𝑘∑︁
𝑖=1

𝑧𝑖 s.t.

𝑥𝑖, 𝑗 = 𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘) =
(
𝐶𝑇
𝑖,𝑗𝑌𝑖 ≥ 0

)
𝑗 ∈ [𝑛𝑙] and 𝐶𝑖, 𝑗 from Eq. 12

𝑧𝑖 =

(
𝑛𝑙∑︁
𝑗=1

𝑥𝑖, 𝑗 ≥ 𝑛𝑙

)
𝑖 ∈ [𝑘]

Targeted UAP MILP objective encoding

min

(𝑌1,...,𝑌𝑘)

𝑘∑︁
𝑖=1

𝑧𝑖 s.t.

𝑥𝑖, 𝑗 = 𝜓𝑖, 𝑗 (𝑌1, . . . , 𝑌𝑘) =
(
𝐶𝑇
𝑖,𝑗𝑌𝑖 ≥ 0

)
𝑗 ∈ [𝑛𝑙] and 𝐶𝑖, 𝑗 from Eq. 13

𝑧𝑖 =

(
𝑛𝑙∑︁
𝑗=1

𝑥𝑖, 𝑗 ≥ 0

)
𝑖 ∈ [𝑘]

G.5 Generalization of DiffPoly
In this section, we discuss how DiffPoly can be generalized for computing bounds on any general

linear combination specified by of the layerwise outputs of any 𝑘 DNN executions. This will enable

us to handle relational properties where the cross-execution input constraint bounds a general linear

combination of inputs used in different executions rather than bounding pairwise input differences.

However, to the best of our knowledge, for most of the common DNN relational properties, the

cross-execution input constraints are limited to bounding differences. For 𝑘 executions, the general

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Input-Relational Verification of Deep Neural Networks 45

form of cross-execution input constraint is as follows where 𝑋1, . . . , 𝑋𝑘 ∈ R𝑛0
are inputs to 𝑘

executions and 𝑎1, · · · , 𝑎𝑘 ∈ R are constant real numbers and 𝐿 ∈ R𝑛0
and𝑈 are constant vectors:

𝐿 ≤
𝑘∑︁
𝑖=1

𝑎𝑖 · 𝑋𝑖 ≤ 𝑈 (38)

We consider 𝑘 copies of the same variable < 𝑥1

𝑖 , . . . , 𝑥
𝑘
𝑖 > one from from each of 𝑘 executions and

use 𝛿𝑥𝑖 to denote linear combination of all 𝑥
𝑗

𝑖
where 𝑗 ∈ [𝑘] i.e. 𝛿𝑥𝑖 =

∑𝑘
𝑗=1

𝑎 𝑗 · 𝑥 𝑗

𝑖
. Now, similar

to DiffPoly, we discuss how we handle affine and activation assignments involving the variables

< 𝑥1

1
, . . . , 𝑥𝑘

1
> . . .< 𝑥1

𝑛, . . . , 𝑥
𝑘
𝑛 > and compute symbolic and concrete bounds on 𝛿𝑥𝑖 =

∑𝑘
𝑗=1

𝑎 𝑗 · 𝑥 𝑗

𝑖

for each variable in 𝑁 where 𝑎 𝑗 s are fixed reals. The symbolic bounds follow the same format as de

Affine assignments:We consider the following 𝑘 affine assignments.

𝑥1

𝑛+1 ←
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥1

𝑖 + 𝑏 𝑥2

𝑛+1 ←
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥2

𝑖 + 𝑏

.

𝑥𝑘−1

𝑛+1 ←
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥𝑘−1

𝑖 + 𝑏 𝑥𝑘𝑛+1 ←
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥𝑘𝑖 + 𝑏

Then if 𝛿𝑥𝑛+1 =
∑𝑘

𝑗=1
𝑎 𝑗 · 𝑥 𝑗

𝑛+1 then 𝛿𝑥𝑛+1 =
∑𝑛

𝑖=1
𝑤𝑖 · 𝛿𝑥𝑖 + 𝑏 ·

∑𝑘
𝑖=1

𝑎𝑖 . Given, 𝛿
𝑥
𝑛+1 is already a linear

function of 𝛿𝑥𝑗 where 𝑗 ∈ 𝑛, the symbolic bounds 𝛿𝑥𝑛+1 can directly computed as shown below

𝛿
𝑥,≤
𝑛+1 = 𝛿

𝑥,≥
𝑛+1 =

𝑛∑︁
𝑖=1

𝑤𝑖 · 𝛿𝑥𝑖 + 𝑏 ·
𝑘∑︁
𝑖=1

𝑎𝑖

The concrete bounds of 𝛿𝑥𝑛+1 in this case are obtained by back substitution.

Non-linear activation assignments: We consider the following 𝑘 assignments involving a non-

linear activation 𝜎 : R→ R like ReLU, Sigmoid, Tanh, etc.

𝑦1

𝑛 ← 𝜎 (𝑥1

𝑛) 𝑦2

𝑛 ← 𝜎 (𝑥2

𝑛)
.

𝑦𝑘−1

𝑛 ← 𝜎 (𝑥𝑘−1

𝑛) 𝑦𝑘𝑛 ← 𝜎 (𝑥𝑘𝑛)

Let, 𝑙 = min𝑖∈[𝑘] 𝑙
𝑖
𝑛 and 𝑢 = max𝑖∈[𝑘] 𝑢

𝑖
𝑛 where for all 𝑖 ∈ [𝑘] 𝑙𝑖𝑛 ≤ 𝑥𝑖𝑛 ≤ 𝑢𝑖𝑛 . Next, we use the linear

overapproximation of popular activation functions including ReLU, Sigmoid and Tanh used in

DeepZ [68] utilizing the bounds 𝑙, 𝑢. Given, 𝑙 and 𝑢 DeepZ computes linear bounds specified by

𝜆𝜎 , 𝜇 such that 𝜇 ≥ 0for all 𝑥 ∈ [𝑙, 𝑢] following inequalities holds:
𝜆𝜎 · 𝑥 − 𝜇 ≤ 𝜎 (𝑥) ≤ 𝜆𝜎 · 𝑥 + 𝜇

Now we will compute the symbolic bounds for 𝛿
𝑦
𝑛 =

∑𝑘
𝑖=1

𝑎𝑖 · 𝑦𝑖𝑛 . For all 𝑥 ∈ [𝑙, 𝑢] and real number

𝑎 ∈ R following inequality holds

𝑎 · 𝜆𝜎 · 𝑥 − |𝑎 | · 𝜇 ≤ 𝑎 · 𝜎 (𝑥) ≤ 𝑎 · 𝜆𝜎 · 𝑥 + |𝑎 | · 𝜇

Given for all 𝑖 ∈ [𝑘] 𝑙 ≤ 𝑥𝑖𝑛 ≤ 𝑢, then

𝑎𝑖 · 𝜆𝜎 · 𝑥𝑖 − |𝑎𝑖 | · 𝜇 ≤ 𝑎𝑖 · 𝜎 (𝑥𝑛𝑖) ≤ 𝑎𝑖 · 𝜆𝜎 · 𝑥 + |𝑎𝑖 | · 𝜇 ∀𝑖 ∈ [𝑘]

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

46 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

Symbolic bounds of 𝛿
𝑦
𝑛 are as follows:(

𝑘∑︁
𝑖=1

𝑎𝑖 · 𝜆𝜎 · 𝑥𝑖𝑛 − |𝑎𝑖 |
)
· 𝜇) ≤

𝑘∑︁
𝑖=1

𝑎𝑖 · 𝜎 (𝑥𝑛𝑖) ≤
(

𝑘∑︁
𝑖=1

𝑎𝑖 · 𝜆𝜎 · 𝑥 + |𝑎𝑖 | · 𝜇
)

𝜆𝜎𝛿
𝑥𝑛 − 𝜇 ·

𝑘∑︁
𝑖=1

|𝑎𝑖 | ≤ 𝛿
𝑦
𝑛 ≤ 𝜆𝜎𝛿

𝑥𝑛 + 𝜇 ·
𝑘∑︁
𝑖=1

|𝑎𝑖 |

The concrete bounds of 𝛿𝑥𝑛+1 in this case are obtained by back substitution.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Input-Relational Verification of Deep Neural Networks 47

H ADDITIONAL EXPERIMENTS

H.1 Targeted UAP Verification
In this section, we show results for the targeted UAP verification problem. We see that RaVeN

outperforms both baselines significantly. Figure 15 shows RaVeN and baseline approaches perfor-

mance on each class with a standardly trained ConvSmall network on CIFAR10 with 𝜖 = 4/255. For

example, when targeting the 8th label we see that RaVeN achieves an average worst-case accuracy

of 70% compared to 33% achieved by the two baselines.

Fig. 15. Average Worst case targeted UAP accuracy over all classes for ConvSmall on CIFAR10 with 𝜖 = 4/255

H.2 Ablation on using different Individual Verifiers
In this section, we show results using DeepPoly [69] instead of DeepZ [68]. Similarly to when using

DeepZ we see that RaVeN obtains better performance when compared the the baselines for all

networks and 𝜖s.

(a) IBP-Small (MNIST) (b) ConvSmall (MNIST) (c) IBP (MNIST) (d) ConvBig (MNIST)

Fig. 16. RaVeN results with DeepPoly as the baseline verifier.

H.3 RaVeN Layerwise Formulation Runtimes
In Table 7, we show the runtime comparision of RaVeN Layerwise (LW) formulation and RaVeN

with difference constraints on networks shown in Figure 11. We note that the primary increase in

computation time we observe comes from running DiffPoly. For networks which incur additional

cost in MILP time with difference constraints (RaVeN MILP Time vs Layerwise MILP Time) we

believe that the increase in performance justifies this cost. For example, for hamming distance

verification, RaVeN Layerwise does not improve over the two baseline approaches. Only by adding

the difference constraints do we see a performance jump over the baselines.

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

48 Debangshu Banerjee, Changming Xu, and Gagandeep Singh

Table 7. Runtime Comparison of RaVeN Layerwise formulation and RaVeN with difference constraints

Dataset Model Ind. Veri. I/O Form. RaVeN RaVeN LW RaVeN MILP Time LW MILP Time

MNIST IBP-Small 0.04 0.12 1.98 1.01 1.06 0.96

MNIST ConvSmall 0.30 0.38 7.40 4.98 4.06 4.66

CIFAR10 IBP-Small 0.29 0.47 8.39 3.94 5.03 3.63

MNIST Hamming (Sigmoid) 0.03 0.13 1.41 0.46 1.34 0.45

	Abstract
	1 Introduction
	2 Background
	2.1 Relational Verification of DNN
	2.2 Interesting Relational Properties of DNNs

	3 Overview
	3.1 Illustrative Example
	3.2 Using Analysis Bounds to Solve the UAP Verification Problem

	4 RaVeN Algorithm
	4.1 DiffPoly Abstract Domain
	4.2 DiffPoly ReLU Abstract Transformer
	4.3 DiffPoly Abstract Transformer For Differentiable Activations
	4.4 DiffPoly Affine Abstract Transformer
	4.5 RaVeN's Layerwise Constraint Formulation
	4.6 RaVeN MILP encoding
	4.7 Soundness Proof Sketch of RaVeN
	4.8 Asymptotic Runtime Analysis

	5 Evaluation
	5.1 Experimental Setup
	5.2 Relational Properties
	5.3 Universal Adversarial Perturbation Verification
	5.4 Hamming Distance Verification
	5.5 Monotonicity Verification
	5.6 Ablation Studies

	6 Related Work
	7 Conclusion
	References
	A Additional Background
	A.1 Adversarial Perturbations
	A.2 Universal Adversarial Perturbations
	A.3 UAP verification
	A.4 Targeted UAP verification
	A.5 Worst case Hamming distance verification
	A.6 Monotonicity verification
	A.7 Detailed execution of DeepZ abstract transformer on the example Product DNN
	A.8 Detailed DiffPoly constraints on x1i & x2i for the illustrative example

	B MILPs for the Illustrative Example
	B.1 MILP formulation from state-of-the-art baseline iclrUap
	B.2 MILP formulation with RaVeN layerwise constraints on the illustrative example
	B.3 MILP Formulation of RaVeN with difference tracking for Illustrative Example

	C Convex relaxation of ReLU
	D DiffPoly transformer for differentiable activations
	E Pseudocode for back-substitution algorithm
	F Soundness of RaVeN
	F.1 Soundness Proof of the DiffPoly ReLU transformer
	F.2 Soundness Proof of the DiffPoly transformer for differentiable activations
	F.3 Soundness Proof of the DiffPoly Affine Transformer
	F.4 Soundness Proof of Product DNN analysis
	F.5 Soundness of RaVeN LP Formulation
	F.6 Correctness of encoding of

	G Proofs of Lemmas
	G.1 Proof of lemmas for DiffPoly ReLU transformer
	G.2 Proof of lemmas for DiffPoly Sigmoid and Tanh transformer
	G.3 Proof of soundness for DiffPoly Affine transformer
	G.4 Specific MILP encoding UAP, hamming distance and targeted UAP
	G.5 Generalization of DiffPoly

	H Additional Experiments
	H.1 Targeted UAP Verification
	H.2 Ablation on using different Individual Verifiers
	H.3 RaVeN Layerwise Formulation Runtimes

